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Despite several observational evidence for dark matter, there is no experimental hint on its nature
so far. As a result, a plethora of scenarios extending the standard model of particle physics can
accommodate dark matter-related observations while escaping the latest experimental constraints.
In this context, one of the main approaches pursued by the ATLAS collaboration at the LHC is to
search for weakly-interacting massive particles with minimal assumptions, which we give a brief
overview in this document.
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1. Introduction: weakly-interating massive particles hunting with the ATLAS
detector

Many dark matter (DM) models rely on the existence of hypothetical weakly-interacting massive
particles (WIMP) [1]. WIMP with a mass in the 1 to 1000 GeV range in thermal equilibrium in the
early Universe would freeze-out at the abundance reported by DM-related observations assuming
weak interaction (< 𝜎𝑣 >∼ 10−26cm3s−1) with standard model (SM) particles. This feature is
quite generic, includes minimal assumptions and involves new physics at the TeV scale, making
the WIMP model a flagship target for searches at the ATLAS experiment [2] at the LHC [3]. The
searches for WIMP at the LHC typically rely on the reverse process with respect to the one which
supposedly occurred during the thermal freeze-out, where two SM particles interact to create a pair
of WIMP (DM, also labeled 𝜒), with the addition of an extra radiation in the final state (labeled
𝑋), see Figure 1, leading to so-called ‘mono-𝑋’ signatures. The presence of 𝑋 in the final state is
required to trigger the data-taking as the WIMP escape the collision undetected. Many different
mono-𝑋 signatures have been explored by ATLAS, as discussed in the following sections.

Figure 1: Schematics of (left) the typical WIMP pair production mode at the LHC and (right) the topology
of a WIMP pair production event in the plane transverse to the collision.

The ATLAS detector recorded 139 fb−1 of proton-proton collision data at
√
𝑠 = 13 TeV

during the run 2 of data-taking (2015-2019). This very large dataset includes millions of Higgs
bosons, hundreds of millions of top quarks and thousands of millions of 𝑍 bosons. The ATLAS
detector is a multi-purpose apparatus with a high efficiency and acceptance throughout a wide
range of energies and angles which allows for advanced particle identification. Its excellent online
and offline reconstruction performance are illustrated in Figure 2 left and right, respectively, for
kinematics quantities relevant to mono-𝑋 searches, namely the missing transverse energy (Emiss

T ) [4],
which would correspond to the sum of the transverse momenta (𝑝T) of the WIMP in a signal event,
and the jet energy scale (JES) [5], which is a key quantity to reconstruct Emiss

T precisely.

2. Mono-jet search analysis

In the mono-jet analysis [6], mono-𝑋 events in which the 𝑋 system is composed by at most
4 jets well separated from the Emiss

T are selected, the leading jet 𝑝T being greater or equal than
150 GeV. The main background originates from 𝑍 (→ 𝜈𝜈)+jets events and 𝑊 (→ ℓ𝜈) + jets events
in which the charged lepton is misidentified or out of acceptance. These are estimated with
Monte Carlo simulations corrected by state-of-the-art predictions [7] to which the normalisation is
constrained in data control regions including one and two charged leptons. The total uncertainty
in the background prediction reaches 2-4%, with a significant contribution originating from the
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Figure 2: Measurement of (left) the lowest unprescaled missing transverse energy trigger efficiency [4] and
(right) the jet energy scale [5] in ATLAS during the run 2 of data-taking (2015-2018).

uncertainty in the QCD and EW corrections of the predictions. No excess over the background
predictions are observed, see Figure 3. The results are used to set competitive exclusion limits
on several WIMP models. One of them considers DM interactions mediated by an axial vector,
𝑍𝐴, and can be compared under some model assumptions to the limits set by DM direct detection
experiments, see Figure 4 (top row). In this model, the mediator couples to SM particles such that
direct searches for SM-decaying mediators with narrow width are performed by looking for a bump
over smoothly falling background, e.g. in the di-jet mass spectrum. The complementarity of both
approaches is illustrated in Figure 4 (bottom row) for various coupling assumptions [8].
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Figure 3: Comparison between the data and the background model in (left) the signal-enriched region and
(right) the 𝑍 + jets background control region [6].

3. Searches with third generation quarks

Models with spin-0 mediators under the minimal flavour violation hypothesis are better probed
by studying collision events including third generation quarks in the final state, as the coupling
between the mediator and the SM particles is Yukawa-like and therefore scales with the particle
masses. Representative diagrams are shown in Figure 5, top left. The ATLAS research program
covers the 𝑏𝑏̄+Emiss

T [9] and the 𝑡𝑡+Emiss
T final states, including final states with 0 to 2 leptons [10].

Complementary sensitivity at high mediator mass is obtained with 𝑏𝑏̄ and 𝑡𝑡 resonance searches, in
a similar way than di-jet resonances for the vector scenario described in the previous section. The
program has been recently extended to 𝑡𝑞/𝑡𝑊+Emiss

T final states (topic of a dedicated talk at this
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Figure 4: Exclusion limits for a model considering DM interactions mediated by an axial vector particle
𝑍𝐴 (top) [6] set by the mono-jet analysis and (bottom) set by mono-𝑋 and resonance searches under various
coupling assumptions [8]. Representative production diagrams are shown in the top-left corner.

conference) as well as to 𝑡𝑡+Emiss
T final states with lower Emiss

T , including a statistical combination of
all 𝑡𝑡+Emiss

T channels (0-lepton low Emiss
T , 0-lepton, 1-lepton and 2-lepton) [10]. The 𝑡𝑡+Emiss

T search
at lower Emiss

T uses a combination of Emiss
T and 𝑏-jet triggers to access the lower Emiss

T region. It
deals with the large background originating from semi-leptonic top decays with a missed lepton by
defining several regions allowing to constrain separately the normalisation of 𝑡𝑊+jets, 𝑡𝑡+jets and
𝑡𝑡 + 𝑏 events. Data is found to be compatible with the SM background predictions within 2𝜎 and
the results are interpreted in terms of exclusion limit as shown in Figure 5, top right and bottom.
The 2-lepton channel dominates the sensitivity throughout the mediator mass range considered and
the 0-lepton extension at low Emiss

T alone reaches the expected sensitivity of the 1-lepton channel
at low mediator masses. For a scalar mediator, masses below 370 GeV are excluded for unity
coupling, whereas couplings above 0.17 are excluded for a mediator mass fixed to 10 GeV. Results
for a pseudo-scalar mediator particle are also available as well as comparisons to the limits from
direct detection experiments.

4. Searches for Higgs to invisible decays

The Higgs boson could also be mediating DM interactions, a scenario which can be seen as a
particular case of spin-0 mediator1. In this context, invisible decays of the Higgs are searched for

1in that scenario however, the mediator (which is the Higgs boson) also couples to vector bosons whereas this coupling
is set to zero in the spin-0 model. This can lead to large phenomenological differences, e.g for single-top-associated
production where the cross section is much larger in the spin-0 model than in the Higgs to invisible scenario.
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Figure 5: Exclusion limits for a model considering DM interactions mediated by a scalar particle, 𝜙, by (top,
right) the various 𝑡𝑡+Emiss

T channels [10], (bottom, left) the two 𝑡𝑡+Emiss
T 0-lepton channels [10] and (bottom,

right) all the relevant channels published by ATLAS [8]. Some representative diagrams are shown in the
top-left corner.

assuming SM production modes. The most sensitive channels in ATLAS are VBF production (VBF
+ Emiss

T ) [11], 𝑍-associated production (𝑍 → ℓℓ + Emiss
T ) [12] and top-pair-associated production

(𝑡𝑡+Emiss
T ) [10], leading respectively to an expected (observed) limit on the branching ratio of Higgs

to invisible to 0.103 (0.145), 0.19 (0.19) and 0.30 (0.40), in the absence of significant excess above
background predictions. The VBF and 𝑍𝐻 channels are typically more sensitive than 𝑡𝑡𝐻 but
also more systematically-dominated and rely on the 𝐻𝑉𝑉 coupling to be SM-like whereas the 𝑡𝑡𝐻

channel is independent from it. Partial run 1 + run 2 combined results are available in [13] and the
full combination of run 1 + run 2 results is in progress.

5. Conclusion & outlook

As a summary, the ATLAS collaboration is very actively searching for WIMP based on
simplified single mediator models, leading to mono-𝑋 signatures, but also to Higgs portal models,
which lead to the Higgs to invisible searches. A number of more UV complete models not discussed
here are also being investigated in parallel by the ATLAS collaborations, such as the 2 Higgs doublet
+ pseudo-scalar model (2HDM+a) [14] and the dark Higgs model [15], for which summary plots are
shown in Figure 6. These models involve more parameters but also give rise to extra experimental
signatures such as mono-𝐻 (2HDM+a) or 𝑉𝑉+Emiss

T (dark Higgs).
Such a very large variety of signatures can be explored thanks to the excellent performance of

the ATLAS detector at the LHC, which provide a sensitivity typically more model-dependent but
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offering a nice complementarity with other experiments such as DM direct detection experiments.
Other ATLAS talks at this conference give additional details on specific analyses.
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Figure 6: Summary plots of the existing limits set by the ATLAS experiment (left) on the 2HDM+a model
and (right) on the dark Higgs model [8].
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