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We present a new grand unification paradigm, where gauge couplings do not need to be equal at
any given scale, instead they run towards the same fixed point in the deep ultraviolet. We provide
a concrete example based on SU(5) with a compactified extra space dimension. By construction,
fermions are embedded in different SU(5) bulk fields, hence baryon number is conserved and
proton decay is forbidden. The lightest Kaluza-Klein tier consists of stable states, providing an
asymmetric Dark Matter candidate via their baryonic charges, with a mass of 2.4 TeV. The model
features an interesting and predictive flavour structure.
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1. Introduction

The Standard Model of particle physics (SM) consists of a quantum field theory constructed
around the gauge principle, i.e. the presence of a local invariance under a symmetry transformation.
Experimental evidence has shown that the gauge symmetry underlying the SM can be described
in terms of a semi-simple Lie group: SU(3)𝑐× SU(2)𝐿× U(1)𝑌 . Each group factor corresponds
to gauge interactions with distinct strength, hence characterised by different coupling constants 𝑔𝑖 ,
𝑖 = 1, 2, 3. However, this structure is not static and unchangeable, as proven by two characteristics
of the SM itself. On the one hand, coupling constants evolve with the energy of the physical
processes, following the renormalisation group approach to quantum corrections [1]. In the SM,
with increasing energy the three gauge coupling values tend to approach each other around energy
scales of 1012÷1018 GeV. On the other hand, the gauge structure itself is different at different scales.
In the SM, below about 100 GeV the gauge symmetry is reduced to SU(3)𝑐× U(1)em, following the
spontaneous breaking of the electroweak scale. This phenomenon is described in the SM in terms
of the Higgs sector [2], i.e. a scalar field that develops a non-zero vacuum expectation value (VEV).

These features of the SM inspired the idea that, at high scales, the SU(3)𝑐× SU(2)𝐿× U(1)𝑌
gauge structure may be replaced by a simple unified Lie group GGUT, with a single gauge coupling.
Two minimal possibilities exist following the fact that the fermion field in a SM family can be
grouped in complete representations of SU(5) [3], or of SO(10) [4] if right-handed neutrinos are
included. This inevitably leads to the generation of proton decay operators at low energies, implying
that grand unification theories (GUTs) can only occur at energy scales above 1016 GeV. Note that the
existence of a single gauge coupling at high scales in traditional GUTs implies that the SM gauge
couplings must undergo precision unification, i.e. be identical at a given energy scale, where the
breaking of GGUT by a Higgs mechanism must occur. This feature has tremendous implications on
the GUT model building. Firstly, new states are required at an intermediate scale to drive the running
of the SM gauge couplings towards precision unification: this is usually achieved by introducing
supersymmetry at the TeV scale. Secondly, fermions must live in complete representation of GGUT,
leading to inevitable proton decay. Thirdly, GGUT must be broken and appropriate Yukawa couplings
generated, hence requiring the presence of a non-trivial set of scalar fields in large representations
of the unified gauge group. This last point can be problematic, especially for supersymmetric
GUTs: in fact, large representations impact the running of the unified gauge coupling, implying
the presence of Landau poles right above the unification scale. Hence, the validity of traditional
supersymmetric GUTs is very limited [5].

In this paper we put forward a novel approach to grand unification, where precision gauge
coupling unification is not necessary. The SM gauge couplings, in fact, may run towards a fixed
points at high scales, as occurring in Ultra-Violet safe theories [6]. Hence, instead of being equal
at a finite energy scale, the gauge couplings run asymptotically towards the same UV fixed point,
hence the name “aGUT”. The “a” here stands for asymptotic, but also refers to the important
fact that unification never really occurs. Namely, a unified gauge symmetry is never realised but
emerges, approximately, at high scales. One key feature of aGUTs is that only one scale is needed,
where some new dynamics is introduced to alter the running of the gauge couplings. This kind
of unification can be achieved in theories with a large number of massive fermions, provided an
intermediate Pati-Salam unification is achieved [7]. In this work, we will follow the route of

2



P
o
S
(
I
C
H
E
P
2
0
2
2
)
4
1
9

Minimal SU(5) aGUT Giacomo Cacciapaglia

Figure 1: Left: schematic running of the 5D ’t Hooft gauge couplings as a function of 𝑡 = ln 𝜇/𝑚𝑍 . Right:
estimate of the Indalo relic density from baryogenesis as a function of the Dark Matter mass. Plots adapted
from Ref. [11].

extra dimensional theories, pioneered in Ref. [8]. In theories with one compact extra space-like
dimension, an effective ’t Hooft coupling can be defined, including the effect of the Kaluza-Klein
modes, namely 𝛼̃ = 𝜇𝑅 𝛼, where 𝛼 = 𝑔2/4𝜋 and 𝜇 is the renormalisation energy. In fact, 𝜇𝑅 counts
how many states lie below the renormalisation scale, where 𝑅 is the radius of the extra dimension
that sets the scale of new physics in the model. Hence, the running of the ’t Hooft coupling can be
written as

2𝜋
(
𝛼̃ + 𝑑𝛼̃

𝑑 ln 𝜇

)
= 𝑏5 𝛼̃

2 , 𝛼̃UV = −2𝜋
𝑏5

. (1)

In the above equation, the linear term in the left-hand side comes from the explicit energy dependence
of the ’t Hooft coupling, while 𝑏5 is the one-loop coefficient from the 5D bulk fields. Thanks to
the first term, an attractive fixed point for 𝛼̃ → 𝛼̃UV emerges as long as 𝑏5 < 0. Note that this kind
of 5D theories are well defined at all scales, leading to definition of renormalisable theories [9, 10]
notwithstanding the fact that the 5D gauge coupling carries mass dimension.

In Ref. [11] we constructed the first explicit aGUT model in 5D, based on the minimal gauge
group SU(5). One important model building constraint is due to the running of the Yukawa
couplings, for which the UV fixed points are not attractive. Hence one needs to make sure that their
running from the low energy SM values do not generate a Landau pole [12]. This can rule out some
possibilities, as for instance the minimal SO(10) aGUT [13]. An interesting feature of these models
is that Yukawa couplings are not required to unify, hence avoiding proton decay and allowing the
extra dimensional scale 𝑚KK ≡ 1/𝑅 to be as low as the TeV scale.

2. Minimal SU(5) aGUT and its flavour structure

The minimal SU(5) aGUT model [11] is based on a 5D background compactified on 𝑆1/Z2×Z′2.
The two parities can be chosen in such a way that SU(5) is broken to the SM on one boundary, via
Z2, while the second parity leaves the bulk group unbroken. A generic feature of 5D models is
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that, due to the SU(5) breaking, different components of an SU(5) multiplet have different parities.
Henceforth, it is not possible to embed the SM fermion zero modes into the same multiplets, as it is
usually done in traditional GUT model building. For instance, if we consider a bulk 5̄ ⊂ (𝑏𝑐

𝑅
, 𝑙𝐿),

choosing the parities that ensure a left-handed zero mode for 𝑙𝐿 implies that the 𝑏𝑐
𝑅

component has
no zero mode. The solution is to add a 5 with flipped boundary conditions, such that a right-handed
zero model is present for the 𝑏𝑅 component, and none for the leptons. This mechanism implies
that: (a) the representation content of a bulk family is doubled with respect to traditional GUTs;
(b) SM fermions are embedded in different bulk fields. In Table 1 we list the minimal set of bulk
fields with the appropriate parities assigned to the SM components. Note that the parities refer to
the left-handed spinors, such that (+, +) implies a left-handed zero mode, while (−,−) implies a
right-handed zero mode. We see that only the right handed up-type quarks 𝑡𝑅 and the right-handed
charged leptons 𝜏𝑅 belong to the same bulk field. The SM Higgs, instead, is embedded in a bulk
5, where the coloured component has no zero mode, hence solving the doublet-triplet splitting
problem.

With this bulk field content, the 5D beta function reads

𝑏5 = −52
3

+ 16
3
𝑛𝑔 , (2)

where 𝑛𝑔 is the number of bulk generations. We see that 𝑏5 < 0, as required by the presence of
fixed points in Eq. (1), requires 𝑛𝑔 ≤ 3. The running of the ’t Hooft gauge couplings is shown
in the left panel of Fig. 1, where the kink in the running indicate the mass scale 𝑚KK where
the extra dimensional effects kick in. The gauge couplings approach the same value above the
compactification scale, but they are never identical.

As the SM fermions are embedded in different bulk fields, the Yukawa couplings do not unify.
This is due to the fact that one can write independent SU(5)-invariant couplings for the charged
fermions, as follows:

LYuk = −
√

2𝑌𝜏 𝜓̄5̄ 𝜓1̄0 𝜙5 −
√

2𝑌𝑏 𝜓̄5 𝜓10 𝜙∗5 −
1
2
𝑌𝑡 𝜓̄1̄0 𝜓10 𝜙5 + h.c. (3)

Note that in Table 1 we also included two singlets, to play the role of right-handed neutrinos and
allow to generate neutrino masses. A consequence of the Yukawa couplings above is that baryon and
lepton numbers emerge as conserved accidental symmetries, as in the SM. The charge assignment
is reported in Table 1. Note that the components that do not have zero modes feature unusual
charges, namely half of the usual baryon and lepton numbers of quarks and leptons. This implies
that such states, whose lowest mode has mass 𝑚KK, cannot decay into SM states, hence leading to
accidental stability. In Ref. [11], these states were dubbed “Indalo”, from a Zulu word that means
creation or nature. The lightest such states, i.e. the singlet S, can play the role of Dark Matter and
an asymmetric relic density will be produced together with baryogenesis. In the right plot of Fig. 1
we show the predicted relic density as a function of the mass, indicating that the asymmetric relic
can saturate the Dark Matter one for 𝑚KK ≈ 2.4 TeV. Larger masses are also allowed as long as a
dominant thermal component is present.

The Yukawa couplings also have a distinct flavour structure. By diagonalising the Yukawa
matrices, one can prove that two unitary matrices survive: one,𝑉𝐶 , corresponds to the CKM matrix
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Multiplets Fields SM gauge (Z2,Z
′
2) Zero

mode?
L B

𝜓5 𝐵𝑐
𝑅

(3̄, 1)1/3 (−, +) - 1/2 1/6
𝑙𝐿 (1, 2)−1/2 (+, +) √

1 0
𝜓5 𝑏𝑅 (3, 1)−1/3 (−,−) √

0 1/3
𝐿𝑐
𝐿

(1, 2)1/2 (+,−) - -1/2 1/2
𝜓10 𝑇𝑐

𝑅
(3̄, 1)−2/3 (−, +) - 1/2 1/6

T 𝑐
𝑅

(1, 1)1 (−, +) - -1/2 1/2
𝑞𝐿 (3, 2)1/6 (+, +) √

0 1/3
𝜓10 𝑡𝑅 (3, 1)2/3 (−,−) √

0 1/3
𝜏𝑅 (1, 1)−1 (−,−) √

1 0
𝑄𝑐

𝐿
(3̄, 2)−1/6 (+,−) - 1/2 1/6

𝜓1 𝑁 (1, 1)0 (−,−) √
1 0

𝜓′
1 S (1, 1)0 (+,−) - −1/2 1/2

𝜙5 𝐻 (3, 1)−1/3 (−, +) - 1/2 -1/6
𝜙ℎ (1, 2)1/2 (+, +) √

0 0

Table 1: List of 5D fermions and scalar fields, decomposed in SM components. We also list the SM
quantum numbers, parities, lepton (L) and baryon (B) numbers associated to the components. Parities refer
to left-handed spinors. The fields with zero modes, corresponding to the SM, are highlighted in a box.

in the SM, while another one,𝑉𝐼 , encodes new physics effects. In terms of SM and Indalo fermions,
they appear as [14]:

𝑌𝑏 : 𝑏̄ · 𝑌𝑏 · 𝑞 𝜙∗ℎ − 𝐿̄𝑐 · 𝑌𝑏 · 𝑞 𝐻∗ − 𝐿̄𝑐 · 𝑌𝑏 · T 𝑐𝜙∗ℎ + 𝑏̄ · 𝑌𝑏 · 𝑇𝑐 𝐻∗ ,

𝑌𝜏 : 𝜏 · 𝑌𝜏 · 𝑙 𝜙∗ℎ + 𝑄̄𝑐 · 𝑌𝜏 · 𝑙 𝐻∗ − 𝑄̄𝑐 · 𝑌𝜏 · 𝐵𝑐 𝜙∗ℎ + 𝑡 · 𝑌𝜏 · 𝑉𝑇
𝐼 𝐵𝑐 𝐻∗ ,

𝑌𝑡 : 𝑡 · 𝑌𝑡 · 𝑉𝐶 · 𝑞 𝜙ℎ + 𝑡 · 𝑌𝑡 · 𝑉𝐶 · T 𝑐 𝐻 + 𝜏 · 𝑉𝐼 · 𝑌𝑡 · 𝑉𝐶 · 𝑇𝑐 𝐻 + 𝑄̄𝑐 · 𝑉𝐼 · 𝑌𝑡 · 𝑇𝑐 𝜙ℎ +
+𝑄̄𝑐 · 𝑉𝐼 · 𝑌𝑡 · 𝑉𝐶 · 𝑞 𝐻 . (4)

The new flavour matrix 𝑉𝐼 appears in the top sector, but also involves leptons via the right-handed
zero modes. Hence, loops of the Indalo quarks and 𝐻 can generate lepton flavour violation. As an
example, contribution to decays via a photon can be estimated as

BR(𝑙 → 𝑙′𝛾)
BR(𝑙 → 𝑙′𝜈𝜈) = 8.4 × 10−8

(
2.4 TeV
𝑚KK

) ���(𝑉𝐼 )𝑙𝑡 (𝑉†
𝐼
)𝑡𝑙′ + O(𝑚2

𝑞/𝑚2
𝑡 )
���2 , (5)

where 𝑚𝑞 is the mass of light generations. The strongest experimental bound comes from muon
decays, BR(𝜇 → 𝑒𝛾) < 4.2 × 10−13, however is suffices to have mixing of the third generation to
the lighter ones of the order of 10−3, like in the CKM, to safely suppress these effects. A more
thorough analysis of flavour in this model is under way [14].
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3. Conclusions and outlook

We have presented the first concrete model in 5 dimensions implementing asymptotic grand
unification, via the presence of attractive UV fixed points for the gauge coupling running. The
model is based on a minimal SU(5) bulk gauge symmetry, broken via boundary conditions. The
fermion embedding into different fields, required by the boundary conditions, implies conservation
of baryon and lepton numbers. As a consequence, proton decay is avoided and the lightest KK mode
is accidentally stable. This provides a natural asymmetric Dark Matter candidate. Furthermore, the
flavour structure of the Yukawa couplings is well defined, leading to a new flavour mixing matrix
in addition to the CKM one.

This example shows the many advantages of the aGUT approach to grand unification. Fur-
thermore, the model building requirements are very restrictive, hence limiting the number of viable
models much more than in standard GUTs.
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