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In the past decade, antenna subtraction has been used to compute NNLO QCD corrections to
a series of phenomenologically relevant processes. However, as for other subtraction schemes
at NNLO, the application of this method proceeded in a process-dependent way, with each new
calculation requiring a significant amount of work. In this talk we present an improved version of
antenna subtraction which aims at achieving an automated and process-independent generation of
the subtraction terms required for a NNLO calculation, as well as at overcoming some intrinsic
limitations present in the traditional formulation. In this new approach, a set of integrated dipoles
is used to reproduce the known infrared singularity structure of one- and two-loop amplitudes
in colour space. The real-virtual and double-real subtraction terms are subsequently generated
inferring their structure from the corresponding integrated subtraction terms. We demonstrate
the applicability of this method computing the full-colour NNLO correction to hadronic three-jet
production in the gluons-only assumption.
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1. Introduction

In this talk we present the colourful antenna subtraction formalism for gluonic processes, which
is described in detail in [1].

In intermediate steps of higher order calculations in QCD, infrared infinities arise either from
the integration over the loop momenta in virtual corrections or from soft and collinear emis-
sions in real corrections. For sufficiently inclusive observables, called infrared-safe observables,
such singularities cancel to yield the final finite result, after a proper regularization procedure is
adopted. This is achieved implementing a subtraction method. The state-of-the-art of perturbative
computations in QCD is represented by next-to-next-to-leading order (NNLO) calculations, with
next-to-next-to-next-to-leading order (N3LO) corrections available for benchmark processes.

The NNLO antenna subtraction method [2, 3] is based up to now on the identification of
single and double real radiation patterns in colour-ordered subprocess contributions and has been
applied successfully in computing NNLO corrections to a variety of hadron-collider processes [4–
13]. However, the efficiency of the present formulation scales poorly with the number of external
partons and its application to processes involving four or more external partons is extremely
challenging. One reason for this is the proliferation of infrared limits in real emission corrections
for high-multiplicity processes. Moreover, in the context of antenna subtraction, the treatment of
contributions beyond the leading colour approximation is highly non-trivial, due to the appearance
at the matrix element level of incoherent interferences between different colour orderings, which
cannot be straightforwardly addressed with the traditional technique.

It is the objective of the colourful antenna subtraction method to overcome these limitations
and to achieve a more general and process-independent formulation of the antenna subtraction.
The primary goals are the definition of a systematic procedure for the generation of the entire
subtraction infrastructure at NNLO and the more efficient treatment of colour correlations within
matrix elements to directly retain the full Nc-dependence.

The main idea behind the new approach consists in relying on the predictability of the singu-
larity structure of one- and two-loop amplitudes in colour space to automatically generate virtual
subtraction terms, which cancel the explicit poles of virtual corrections. Subsequently, the one-
to-one correspondence between antenna functions and their integrated counterparts is exploited to
systematically infer real subtraction terms which can be used to remove the divergent behaviour of
real emission corrections in the infrared limits. The colourful antenna subtraction method at NLO
is briefly described in the following. The treatment of the NNLO correction is too sizeable to be
discussed here and it is described in detail in [1]. Nevertheless, the underlying logic is completely
analogous to the NLO case, with natural complications due to the more involved infrared structure
of the NNLO scenario.

2. Colourful antenna subtraction at NLO

The NLO QCD correction to an n-jet partonic cross section with parton species a and b in the
initial state is given by [3]:

dσ̂ab,NLO =

∫
n

(
dσ̂V

ab,NLO + dσ̂MF
ab,NLO

)
+

∫
n+1

dσ̂R
ab,NLO, (1)
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where the symbol
∫
n indicates an integration over then final state particles. dσ̂V

ab,NLO and dσ̂R
ab,NLO

respectively represent the virtual and real corrections, while dσ̂MF
ab,NLO is the NLO mass factorization

counterterm. Due to the emergence of infrared divergences in both the virtual and real corrections,
a subtraction procedure is needed to numerically evaluate (1). In the context of antenna subtraction,
this is achieved constructing a real subtraction term dσ̂S

ab,NLO [3], which locally removes the
singular behaviour of dσ̂R

ab,NLO in the IR limits and can be analytically integrated over the phase
space of the unresolved radiation. This latter feature is required to obtain from dσ̂S

ab,NLO the virtual
subtraction term dσ̂T

ab,NLO, which cancels the explicit poles of the virtual correction and contains
the mass factorization contribution. The NLO cross section can then be reformulated as [3]:

dσ̂ab,NLO =

∫
n

[
dσ̂V

ab,NLO − dσ̂T
ab,NLO

]
+

∫
n+1

[
dσ̂R

ab,NLO − dσ̂S
ab,NLO

]
, (2)

with
dσ̂T

ab,NLO = −
∫
1

dσ̂S
ab,NLO − dσ̂MF

ab,NLO. (3)

The singularity structure of renormalized (n+ 2)-parton one-loop amplitudes in QCD can be
described in colour space with [14]:

|A1
n+2⟩ = I(1)

(
ϵ, µ2

r

)
|A0

n+2⟩+ |A1,fin
n+2(µ

2
r)⟩ , (4)

where µr is the renormalization scale, |A1,fin
n+2(µ

2
r)⟩ is a finite remainder and I(1)

(
ϵ, µ2

r

)
is Catani’s

IR insertion operator [14], which can be rewritten as

I(1)
(
ϵ, µ2

r

)
=

∑
(i,j)

(Ti · Tj) I(1)
ij

(
ϵ, µ2

r

)
, (5)

where in the last line the sum runs over pairs of partons. For the gluons-only case that is considered
in this talk, we only need the expression of I(1)

igjg

(
ϵ, µ2

r

)
at Nf = 0:

I(1)
igjg

(
ϵ, µ2

r

)
=

eϵγE

Γ(1− ϵ)

[
1

ϵ2
+

b0
ϵ

](
−sij
µ2
r

)−ϵ

, b0 =
11

6
. (6)

Using (5) it is possible to write down the IR singularity structure of the virtual correction in
the following general way:

Poles
(
σ̂V
gg,NLO

)
= N V

NLO

∫
dΦn(p3, . . . , pn+2; p1, p2) J

(n)
n ({p}n)

×Poles

 ∑
(ig ,jg)

⟨A0
n+2|Tig · Tjg |A0

n+2⟩ 2Re
(
I(1)
igjg

(
ϵ, µ2

r

)) , (7)

where the factorN V
NLO is an appropriate overall normalization. In the colourful antenna subtraction

approach, we exploit the previous result to directly construct the NLO virtual subtraction term. To
do so, we define a NLO singularity dipole operator in colour space for an (n+ 2)-parton process:

J (1)(ϵ) =
∑

(i,j)≥3

(Ti · Tj)J (1)
2 (ig, jg) +

∑
i ̸=1,2

(T1 · Ti)J (1)
2 (1g, ig)

+
∑
i ̸=1,2

(T2 · Ti)J (1)
2 (2g, ig) + (T1 · T2)J (1)

2 (1g, 2g) . (8)
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The first sum in the previous formula runs over all pairs of gluons in the final state, the second and the
third sums include all pairs with an initial-state gluon (respectively 1g and 2g) and a final-state one
and the last term addresses the configuration where both gluons are in the initial state. The scalar
functions J (1)

2 (i, j) are colour stripped one-loop integrated dipoles [3, 15], given by a combination
of integrated three-parton tree-level antenna functions and NLO mass factorization kernels. The
explicit expressions of the gluon-gluon integrated dipoles for final-final (FF), initial-final (IF) and
initial-initial (II) configurations are the following:

J (1)
2 (ig, jg) =

1

3
F0
3 (sij), J (1)

2 (1g, jg) =
1

2
F0
3,g(s1j)−

1

2
Γ(1)
gg (x1) ,

J (1)
2 (1g, 2g) = F0

3,gg(s12)−
1

2
Γ(1)
gg (x1) δ2 −

1

2
Γ(1)
gg (x2) δ1, (9)

where δi = δ(1 − xi). The functions F0
3 , F0

3,g and F0
3,gg are gluon-gluon three-parton integrated

antenna functions [2, 16]. The integrated dipoles in (9) incorporate the mass factorization countert-
erm, as indicated by the presence of the gluon-gluon splitting kernels Γ(1)

gg . The poles carried by the
mass factorization kernels cancel with poles in the integrated initial-final and initial-initial antenna
functions associated with initial-state collinear divergences. The remaining ϵ-poles exactly match
the ones of the virtual matrix element, once the operator in (8) is evaluated on the corresponding
Born-level amplitude in colour space. In particular, at one loop the following relation holds:

Poles
[
J (1)
2 (ig, jg)

]
= Poles

[
Re

(
I(1)
igjg

(
ϵ, µ2

r

))]
. (10)

It is then possible to express the NLO virtual subtraction term as

dσ̂T
gg,NLO = N V

NLO

∫
dx1
x1

dx2
x2

dΦn(p3, . . . , pn+2;x1p1, x2p2)J
(n)
n ({p}n)

×2 ⟨A0
n+2|J (1)(ϵ)|A0

n+2⟩ . (11)

We remark that (11) is a completely general result in the case of gluon scattering: it is valid for any
number of external legs and retains the full Nc dependence.

The real subtraction term at NLO is systematically obtained from (11) relying on the one-to-one
correspondence between integrated and unintegrated antenna functions:

X 0
3 (sij) ↔ X0

3 (i, k, j), (12)

where X 0
3 (sij) is the integrated antenna function obtained integrating the tree-level three-parton

antenna function X0
3 (i, k, j) over the phase space of the unresolved parton k. Due to this relation,

once the virtual subtraction term is obtained, the structure of the real subtraction term can be com-
pletely determined by inserting an unresolved gluon between each pair of hard radiators appearing
in the integrated dipoles. The procedure to obtain dσ̂S

NLO,gg from dσ̂T
NLO,gg can be then formulated

as follows:

1. Removal of the splitting kernels from the integrated dipoles;

2. Transition from integrated three-parton antenna functions to unintegrated ones:

FF: F0
3 (sij) → 3 f0

3 (i, k, j),

IF: F0
3,g(s1i) → 2 f0

3,g(1, k, i),

II: F0
3,gg(s12) → F 0

3,gg(1, k, 2),

(13)
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Figure 1: Differential distributions in HT =
∑

j∈jets pT,j (left), transverse momentum of the leading jet
(centre) and rapidity difference between the two leading jets (right). NNLO-LC and NNLO-FC respectively
indicate the NNLO correction in the leading colour approximation and in full colour.

3. Momenta relabeling within colour interferences and jet functions according to the accompa-
nying antenna function;

4. Sum over permutations of the n + 3 momenta to cover all possible IR limits and symmetry
factor adjustments;

3. Results and conclusions

We implemented the colourful antenna subtraction method to construct the subtraction infras-
tructure required for the calculation of the NNLO correction to the gluons-only process gg → ggg.
This computation is part of the NNLO correction to 3-jet production, recently presented in [17], and
demonstrates the applicability of the colourful antenna approach to the construction of NNLO sub-
traction terms for a highly non-trivial high-multiplicity process. A selection of results, obtained in
the NNLOjet framework, is presented in Figure 1 to illustrate the quality of numerical convergence
that can be obtained with the generated subtraction terms.

The natural next step for the development of the described approach is the extension to sub-
processes involving quarks. Consistent work has already been performed in this direction and the
goal remains the definition of a complete, process-independent and systematic procedure for the
generation of the subtraction terms in the context of antenna subtraction.
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