PROCEEDINGS

OF SCIENCE

Machine Learning inference using PYNQ environment in a
AWS EC2 F1 Instance

Marco Lorusso,*’* Daniele Bonacorsi,*” Davide Salomoni’* and Riccardo

Travaglini®-?

¢INFN Bologna,
viale Berti Pichat 6/2, Bologna, Italy

b Department of Physics and Astronomy, University of Bologna,
viale Berti Pichat 6/2, Bologna, Italy

¢INFN CNAF,

viale Berti Pichat 6/2, Bologna, Italy
E-mail: marco.lorussoll@unibo.it, daniele.bonacorsi@unibo.it,

d.salomoni@unibo.it, riccardo.travaglini@bo.infn.it

In the past few years, using Machine and Deep Learning techniques has become more and more
viable, thanks to the availability of tools which make the need of specific knowledge in the realm
of data science and complex networks less vital to achieve a satisfactory final result in a variety
of research fields. This process has caused an explosion in the adoption of such techniques,
e.g. in the context of High Energy Physics. The range of applications for ML becomes even
larger if we consider the implementation of these algorithms on low-latency hardware like FPGAs
which promise smaller latency with respect to traditional inference algorithms running on general
purpose CPUs.

This paper presents and discusses the activity running at the University of Bologna and INFN-
Bologna where a new open-source project from Xilinx called PYNQ is being tested. Its purpose is
to grant designers the possibility to exploit the benefits of programmable logic and microprocessors
using the Python language and libraries. This new software environment can be deployed on a
variety of Xilinx platforms, from the simplest ones like ZYNQ boards, to more advanced and high
performance ones, like Alveo accelerator cards and AWS EC2 F1 instances. The use of cloud
computing in this work lets us test the capabilities of this new workflow, from the creation and
training of a Neural Network and the creation of a HLS project using HLS4ML, to testing the
predictions of the NN using PYNQ APIs and functions written in Python.

International Symposium on Grids & Clouds 2022 (ISGC 2022)
21 - 25 March, 2022
Online, Academia Sinica Computing Centre (ASGC), Taipei, Taiwan™**

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:marco.lorusso11@unibo.it
mailto:daniele.bonacorsi@unibo.it
mailto:d.salomoni@unibo.it
mailto:riccardo.travaglini@bo.infn.it
https://pos.sissa.it/

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance Marco Lorusso

1. Introduction

Machine Learning (ML) has become in recent years one of the pillars of computer and data
science and it has been introduced in almost every aspect of everyday life and research fields alike.
Currently, the spread of learning algorithms in many sectors finds its roots mainly in an increased
quantity of data available, combined with a technological progress in storage and computational
power, which can nowadays be delivered with lower maintenance and building costs.

In order to reach the full potential of ML algorithms, new computing solutions are being
developed and tested like never before since the rise of the x86 architecture as the de facto standard
for general purpose computing. This is done to find the perfect combination of fast prediction times
and low energy consumption needed to deploy ML efficiently in a variety of use cases, from IoT
devices to data centers applications and scientific research.

This work focuses on a specific type of hardware called Field Programmable Gate Array
(described in Section 2) which promises low latencies and unprecedented power efficiency. In order
to facilitate the translation of ML models to fit in the usual workflow for programming FPGAs, a
variety of tools have been developed. One example is the HLS4ML toolkit, developed by the HEP
community, which allows the translation of Neural Networks built using tools like TensorFlow to a
High-Level Synthesis description (e.g. C++) in order to implement this kind of ML algorithms on
FPGAs. More details can be found in Section 4.

The analysis described in this paper concentrate on a new way to interact and retrieve results
from FPGAs: PYNQ (Section 5). This Python package allows to use a simple Python script to
program the FPGA and use the function included in its design in a similar way to usual function
calls.

Finally, performance tests on a regressor model used as benchmark, will be presented in Section
6, where the consistency in the predictions of the NN with respect to using an OpenCL application,
will be verified.

Summing up, this paper describes the work done to produce a complete and as simple as
possible workflow to implement algorithms of interest to the HEP field, namely Neural Networks,
on FPGAs. A case study from the CMS experiment at CERN was used as an example to test the
different tools employed and as a benchmark to take some preliminary measurements regarding
latency and accuracy of the algorithm.

2. Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) [1] are devices that blend the benefits of both
hardware and software [2]. They implement circuits just like hardware, providing huge power,
area and performance benefits over software, yet they can be reprogrammed cheaply and easily
to implement a wide range of tasks. FPGAs implement computations spatially, simultaneously
computing millions of operations in resources distributed across a silicon chip. Such systems can
be hundreds of times faster than microprocessor based designs. However, unlike in ASICs, these
computations are programmed into the chip, not permanently frozen by the manufacturing process.
This means that an FPGA-based system can be programmed and reprogrammed many times.

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance Marco Lorusso

The internal layout of an FPGA, shown in Figure 1, is made up of replicated units of digital
electronic circuits, called logic blocks, embedded in a general routing structure, hence the gate
and array in the name of this type of devices. The various kinds of logic blocks perform different
functions, e.g. :

LookUp Tables (LUT) for simple combinational logic;
Flip-Flops (FF) for implementing sequential logic;

Digital Signal Processors (DSP) for efficient multiplication of fixed-point numbers.

O A A A OO o

L1 Programable 10 |
(] Legic Logic Logic Legic L
E= block block bleck block]
(] —
(=} Logic Logic Logic Logic]
1 o block block block block .]
[% i |
] g Logic Logic Logic Logic s
s block block block block E =
o
Oe g
B Logic Logic Logic Logic | * [
- block block block block]|
(] —
B Logic Logic Logic Leogic 1
block block block block
(i / 1
[Programable I0 | =

uuaniuiuooomioooo

/
Interconnect Switch matrix

Figure 1: An abstract view of an FPGA. Logic cells are embedded in a general routing structure. [4]

With these predefined, fixed-logic units, which are fabricated into the silicon, FPGAs are
capable of implementing complete systems in a single programmable device, by configuring the
connections between these units to perform complex algorithms. Because customizing an FPGA
involves storing values to the memory bits that control every routing choice, the creation of an
FPGA based circuit is a process of creating a bitstream to load into the device. This is usually done
starting with an application written in a hardware description language (HDL), such as VHDL or
Verilog, however in this work a "higher-level" approach is followed, using tools and libraries that
make it possible to finalize a FPGA design starting from a behavioural description written in C++
or, in the case of Neural Networks, in Python.

2.1 AWS EC2 F1 Instance

In order to test the capabilities of the implementation workflow presented in this work, cloud
computing resources, more specifically Amazon Web Services’ EC2 F1 instances [5], equipped
with Xilinx FPGA acceleration cards, have been used. F1 instances are equipped with tools to
develop, simulate, debug, and compile a hardware acceleration code, including an FPGA Developer
Amazon Machine Image (AMI) and supporting hardware level development on the cloud.

Using F1 instances to deploy hardware accelerations can be useful in many applications to
solve complex science, engineering, and business problems that require high bandwidth, enhanced
networking, and very high compute capabilities. Examples of target applications that can benefit

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance Marco Lorusso

from F1 instance acceleration are genomics, search/analytics, image and video processing, network
security, electronic design automation (EDA), image and file compression and big data analytics.

F1 instances provide diverse development environments: from low-level hardware developers
to software developers who are more comfortable with C/C++ and OpenCL environments. Once
an FPGA design is complete, it can be registered as an Amazon FPGA Image (AFI), and deployed
to every F1 instance needed.

3. Artificial Neural Network

An Artificial Neural Network (ANN) is a learning algorithm vastly used in Machine and Deep
Learning, inspired by the biological neural connections that constitute the human brain, specifically
designed to tackle non-linear learning problems [6].

The network architecture chosen for this work is the Fully Connected Multilayer Perceptron
[7], due to its relative simple design. MLPs, as the name suggests, are made up of single units called
Perceptrons. Inside these units, as shown in Figure 2a, the input values x = (x, y, z) are multiplied
by their weights (w;x;). All of these are then added together to create the net or weighted sum
2. Wix;, which is given to the activation function f(3,; w;x;) resulting in the perceptron’s outputs,
adding a non-linearity compared to the simple linear combination alone.

Hidden
Input
Output

(a) Graphical representation of a Perceptron. (b) Neural Network basic layout.

Figure 2: Simple diagrams representing the layout and functioning principle of Neural Networks.

Perceptrons can be stacked together to make a layer of neurons, each producing its own
outputs. These layers can then be put together to build arbitrarily deep custom networks, by feeding
the outputs of a layer to the neurons of the next layer, which will be "hidden" to the user, and
resulting in a structure like the one in Figure 2b.

3.1 Neural Network models

In this work two different NN models have been taken in consideration. The first consists
in a pattern recognition classifier trained and tested using the Iris dataset from the UCI Machine
Learning Repository [8]. Its structure sees an input layer, ingesting the 4 features included in the
data for each entry, linked to a hidden layer made up of 16 nodes, then connected to the output layer
with 3 nodes due to the 3 different classes the model can choose from. Thanks to the ready to use

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance Marco Lorusso

dataset and relatively low training time required, this model was mainly used to quickly test the
workflow for the implementation on the FPGA.

The second model built for this research is the next iteration of the regressor designed for my
previous work in [2, 3]. Its purpose was to find an alternative algorithm to perform transverse
momentum (p7) assignment to muons in the context of the Level-1 trigger at the Compact Muon
Solenoid experiment at CERN. This NN has been implemented with the following structure: the
first hidden layer has 35 neurons and receives the information directly from the input layer of 27
different features with the ReLLU (Rectified Linear Unit) selected as activation function. The second
layer is identical to the first one but contains 20 neurons and this is repeated for other 4 additional
hidden layers with 25, 40, 20 and 15 neurons, respectively. In the end, the output layer (with only
one node) closes the network. The results listed in this paper will focus mainly on this second, more
complex and more realistic application.

Developing a neural network in a specific hardware is usually accompanied by a certain level of
optimisation in terms of compression, to reduce the storage and computation costs for deep models.
In this case this task is accomplished by performing pre-training quantization and weight pruning.
The former consists in the conversion of the arithmetic used within the NN from high-precision
floating-points to normalized low-precision integers (fixed-point) [9]. The latter is the elimination
of unnecessary low values in the weight tensor, by practically setting the NN parameters’ values to
zero, which will be translated into "cut" connections between nodes of the NN, reducing the number
of parameters and operations involved in the computation of each output.

4. Implementing a NN on FPGA

The first step required for the implementation of a Neural Network on an FPGA is the conversion
of the high-level code used for the creation of the model (Python + Tensorflow & QKeras) into High
Level Synthesis (HLS) code. HLS describes the process of automatic generation of HDL code from
behavioural description contained in a C/C++ script. To accomplish this task, the hls4ml package
[10] has been used. This tool has been developed by members of the High Energy Physics (HEP)
community to translate ML algorithm, built using frameworks like TensorFlow2, into HLS code.
A schematic workflow of hls4ml is illustrated in Figure 3. The parts of the workflow illustrated on
the left in red indicates the usual software steps required to design a neural network for a specific
task. The blue section in the middle describes the task done by hls4ml, resulting in a HLS project
that can be synthesized and implemented to run on an FPGA.

As shown in Figure 4, once the target hardware has been defined, and the trained model
converted into HLS code using hls4ml (more details are available in [2, 3]), the project has to
be imported in Vitis [11], an application part of the Xilinx Design Suite, dedicated to developing
applications for data center acceleration cards. Here the C++ code must be tweaked in order to
expose the interface of the Neural Network and make it compatible with Application Acceleration
development flow, offered by Vitis.

Then, we can instruct Vitis to build the entire project targeting the desired hardware. This will
produce a bitstream file used to flash our design onto the FPGA. Together with the firmware design,
an OpenCL application can be written that can be launched on the machine that houses the FPGA
to program it, start the inference and retrieve the results (as shown in the next section).

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance Marco Lorusso

Keras
TensorFlow
PyTorch

v, Co-processing kernel

. hils 4 ml
compressed ‘ /
model HLS_ —_—
conversion
t

Custom firmware
design

Usual machine learning
software workflow

tune configuration
precision
reuse/pipeline

Figure 3: A typical workflow to translate a model into an implementable FPGA design using hls4ml.

Synthesis and 4,\ R PYNQ
NN Translation Amazon FPGA unning script
using his4mi HLS code Implementation Bitstream (_scibin) Image creation for FPGA programming
using Vitis™ 1 Ve and inference

Figure 4: Deploying workflow targeting AWS EC2 F1 instances.

LiLll

F1

LA

Ll

LA

Moreover, to deploy a design on Amazon’s F1 instances, the bitstream must be uploaded to an
S3 Bucket [12] and request the creation of an Amazon FPGA Image (AMI) using a script included
in the official github repository of the AWS EC2 FPGA Hardware Development Kit [13]. This will
produce a awsxclbin file that can be used to program Amazon’s FPGAs.

5. The PYNQ project

PYNQ [14] is an open-source project from Xilinx®, a prominent FPGA producer. It provides
a Jupyter-based framework with Python APIs for using Xilinx platforms and AWS-F1 instances.

FPGA designs are presented as Python objects called overlays that can be accessed through
a Python API. Creating a new overlay still requires developers with expertise in designing pro-
grammable logic circuits. Overlays, like software libraries, are designed to be configurable and
re-used as often as possible in many different applications.

To date, C or C++ are the most common embedded programming languages. In contrast, Python
raises the level of programming abstraction and programmer productivity. These are not mutually
exclusive choices, however. PYNQ uses CPython which is written in C, and integrates thousands
of C libraries and can be extended with optimized code written in C. Wherever practical, the more
productive Python environment should be used, and whenever efficiency dictates, lower-level C
code can be used.

PYNQ aims to work on any computing platform and operating system. This goal is achieved
by adopting a web-based architecture, which is also browser agnostic. It incorporates the open-

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance Marco Lorusso

"Applications =

i I : 3
a3 Jupyter! “L{ PYNQ notebooks
{thon b IPython) i o X
:I‘F' I-“__ ! matplotlib | caffe :] pylorch | | opencw |
Jupyte - A
— !

-\.

- L e [wwo

4 Software Python .
: Ty
yo) Lnamey

§ me [T - [GPI0 }{ Interrupt_}{ Overlay | PL_|[allocate |~
\ - L J ! N { pyng.device 1-.
- [Lmu:: karnel - ’

) . Xilinz Runtime (XRT) J d
(" Hardware | - : - -

’J . L[witisiPs)

=% FPGA

ﬁ _ [wwaws T Userirs

e, # i

Figure 5: PYNQ’s components in the different level of abstraction needed for running applications on
FPGAs.

source Jupyter notebook infrastructure to run an Interactive Python (IPython) kernel and a web
server directly on the ARM processor of a MPSoC or host’s CPU of an acceleration card. The
web server brokers access to the kernel via a suite of browser-based tools that provide a dashboard,
bash terminal, code editors and Jupyter notebooks. The browser tools are implemented with a
combination of JavaScript, HTML and CSS and run on any modern browser. PYNQ’s main
components are summed up in Figure 5.

A description on how to use PYNQ and a comparison with writing an OpenCL application
can be found in Appendix A. By looking at both approaches, it is evident how writing Python code
including the PYNQ package is less complicated than the alternative.

6. Neural Network model performance on FPGA

Two main aspects have been considered to study the performance of using the PYNQ package
to carry out Neural Network inference on an FPGA: latency and inference accuracy. As briefly
explained in Section 3.1, the following analysis will focus only on the more advanced regressor
model, due to the fact that the Iris model was used only to test the principle of operation and verify
that this workflow could also be applied to classification algorithms, albeit this example being a
very simple one.

For the first metric, the wall time has been measured for the three main tasks that are executed
by the host-FPGA pair for each inference that is requested. In Figure 6 the time distribution for the
input injection on the FPGA card (blue), the actual inference (red) and output extraction (black) is
shown for the entire validation dataset using PYNQ on the left and the OpenCL application on the
right. In the PYNQ case, a degree of consistency can be seen between the different tasks. This can
be explained by a common overhead caused by Python’s nature as an interpreted language, which
can also be considered as the main cause for the overall larger total processing time, shown in Figure
7, with respect to the application compiled in C++.

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance

Marco Lorusso

Enlries
f il

-""["“|—|“||-Illli-lllli||||||||| “W' ilirl i

I it #* 1 Inference = s Inference E
Enfries 14748 & Entries 14248 =
Mean B9.19 Mean 483 2
JJ Std Doy 7348 Std Dev 1231
i Tnpal inection = Input injection =
Enlries 14248 — Entries 14248 =
Mean 87.18 E Mean 75 =
’J_,_lj —|L|\ e = 2 Std Dev 23.04 |=
Uhafpul extrachon ; Quiput extraction =
Enlries 14248 E Entries 14248 |=
Mean 8681 |2 E Mean B6.72 =
L\ Sid Dev 5.616 5 e Sid Dev 20.52 =
+ Thrre u.LQ% 2 Tinire u.l:s:p

(a) PYNQ (b) OpenCL

Figure 6: Distribution of the times needed to inject data in the FPGA, perform NN inference and extract the
output using the PYNQ package in Python (left) and an OpenCL application (right).

Entries

Regressor total timings Distribution

2000

1800

1600

1400

1200

1000

800

600

400

200

=
o

Pynq Latency
Entries 14248
Mean 263.2
Std Dev 12.33
OpenCL Latency
Entries 14248
Mean 189.8
Std Dev 34.52

350
Time (us)

Figure 7: Total inference time distribution (input injection + inference + output extraction) using PYNQ
(pink) and an OpenCL application (blue).

Nonetheless, the main objective of using PYNQ is offering an easier interface and less steep

learning curve in dealing with accelerating algorithms using FPGAs. This means that, to achieve
the full potential of this type of hardware, the traditional approach using C/C++ application is still
the way to follow.

6.1 pr resolution histogram

To study the accuracy of the NN model implemented on the F1 instance pr resolution his-

tograms were used. For each entry of the dataset, the histograms were built using the following

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance Marco Lorusso

relation:
ApT _ pTest - stim

pT stim

ey

where pr,, is the estimation of the transverse momentum, given by the model prediction or the
actual algorithm used in the Level-1 trigger at CMS to perform this task, and pr,,,, is the "true"
transverse momentum associated to each entry of the validation set. Even though this metric makes
a quick and easy to understand comparison possible, it is important to keep in mind that this
resolution is asymmetric, i.e. its range can go from -1 to infinite. This means that, for a constant
actual spread, the standard deviation associated to its distribution is affected by the value of its
mean: the smaller it is, the smaller the standard deviation gets.

P, resolution comparison

" L1-GEN Pt Resol. CPU Pt Resol.
@ 3500— Entries 13740 | Entries 13740
= C Mean 0.04407 | Mean 0.02725
- - StdDev 0342 |StdDev 0.2784

3000—

2500~ p, Resolution:

C —}— CPU Neural Network

2000~ —— Level-1 Algorithm

1500—

1000—

500—

3 4
P, resolution

Figure 8: Transverse momentum resolution histograms computed for the machine learning model (blue) and
Level-1 trigger (red) based momentum assignment.

Firstly, the resolution of the model before the implementation on the FPGA must be checked
(Figure 8). The red histogram describes the resolution distribution of the Level-1 trigger system
while the blue one shows the resolution of the predictions made by the network model running on
a consumer CPU.

In particular, it is possible to notice a less broad distribution for the ML resolution, resulting in
an overall improvement, yet small, with respect to the Level-1 trigger system. Another noticeable
detail is the small peak corresponding to the value -1: this happens when the pr assigned by the
trigger is significantly underestimated with respect to the true py. The Machine Learning based
momentum assignment is therefore less prone to large pr underestimation.

Having verified the accuracy of the NN model, its implementation on the FPGA available in
the F1 instance can be analyzed. In Figure 9 the pr resolution histogram obtained by performing
the inference using the PYNQ environment is shown over the model resolution described before.
It is clear that the model infer momenta with a resolution distribution which is narrower when the

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance

Marco Lorusso

entries

3500

3000

2500

2000

1500

1000

500

p_ resolution comparison

T PYNQ Pt Resol. | CPU Pt Resol.
— Entries 13740 | Entries 13740
n Mean 0.08848 | Mean 0.02725
- Std Dev 0.3218 |Std Dev 0.2784
= Efficiency:
= —— NN on FPGA (PYNQ)
:_ —+— NNon CPU
- L L L | L |- | - | L L L 1 |
-2 2

4
P, resolution

Figure 9: Transverse momentum resolution histograms computed for the machine learning model (blue) and
Level-1 trigger (red) based momentum assignment.

entries

3500

3000

2500

2000

1500

1000

500

p_ resolution comparison

T OpenCL Pt Resol. | CPU Pt Resol.
— Entries 13740 | Entries 13740
- Mean 0.07842 | Mean 0.02725
- Std Dev 0.319 | 5td Dev 0.2784
. Efficiency:
C —}— NN on FPGA (OpenCL)
- —}— NN on CPU
H L L L | L l L | 1 1 1 1 |
-2 2

3 4
P, resolution

Figure 10: Transverse momentum resolution histograms computed for the machine learning model (blue)
and Level-1 trigger (red) based momentum assignment.

computation is carried out on a CPU. When the assignment is performed on an FPGA, slightly worse

results are produced, with a small bias towards higher values of Apr/pr. This could be the effect

of the loss in precision the input features have to go through due to the conversion to fixed-point

representation needed to perform computations efficiently in an FPGA [2, 3]. Nevertheless, the

10

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance Marco Lorusso

hardware approach still appears compatible, or in case of higher momenta, even better than the
Level-1 trigger based momentum assignment.

For a final comparison, in Figure 10 there is the resolution histogram obtained by performing
the inference on the FPGA using an OpenCL application. Asexpected the resultis very similar to the
PYNQ one, however there is a small difference which can be explained by a different implementation
of floating point numbers to fixed point precision conversion.

7. Conclusions

An open-source project from Xilinx (a major FPGA producer) called PYNQ has been tested,
combined with the HLS4ML toolkit, in order to program a Neural Network on an FPGA and use it
to perform inference. The PYNQ purpose is to grant designers the possibility to exploit the benefits
of programmable logic and microprocessors using the Python language. Cloud computing was
used in this work to test the capabilities of this workflow, from the creation and training of a Neural
Network and the creation of a HLS project using HLS4ML, to testing the predictions of the NN
using PYNQ APIs and functions written in Python.

Hardware and software set-up, together with performance, were tested. An increase in latency
of the algorithm was discovered when using PYNQ with respect to a more traditional way of
interacting with an FPGA via an application written in OpenCL. This can be explained by an
overhead caused by Python’s nature as an interpreted language. Consistency between the predictions
of a NN before and after its implementation on the FPGA was verified. The inference results obtained
using PYNQ were very similar to the OpenCL application ones, however there is a small difference
which can be explained by a different implementation of floating point numbers to fixed point
precision conversion.

As a next step for this study, Alveo accelerator cards are expected to be tested with the
presented workflow, and a local server devoted to test NN in a fast, reliable and easy-to-use way
will be assembled as part of the INFN Cloud catalogue.

References

[1] André DeHon Scott Hauck, Reconfigurable computing: the theory and practice of FPGA-
based computation, Systems on Silicon, Morgan Kaufmann, 2007.

[2] M. Lorusso, FPGA implementation of Muon Momentum assignment with Machine Learning
at the CMS Level-1 Trigger, University of Bologna master thesis (unpublished).

[3] T. Diotalevi, M. Lorusso, R. Travaglini, C. Battilana and D. Bonacorsi, Deep Learning fast
inference on FPGA for CMS Muon Level-1 Trigger studies, PoS ISGC2021, 2021.

[4] A.Shawahna, S. Sait and A. El-Maleh, FPGA-Based Accelerators of Deep Learning Networks
for Learning and Classification: A Review, IEEE Access. PP. 1-1, 2018.

[5] https://aws.amazon.com/ec2/instance-types/fl
[6] S. Sandhya, Neural networks for applied sciences and engineering. From fundamentals to

complex pattern recognition (2007).

11

https://aws.amazon.com/ec2/instance-types/f1

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance Marco Lorusso

[7] M. C. Popescu, V. E. Balas, L. Perescu-Popescu and N. Mastorakis, Multilayer perceptron
and neural networks, WSEAS Trans. Cir. and Sys. 8, 7, July 2009, 579-588.

[8] D. Dua and C. Graft, UCI Machine Learning Repository, University of California, School of
Information and Computer Science, 2019.

[9] A. Taylor, The basics of FPGA mathematics, Xilinx Xcell Journal 80, 2012.

[10] J.Duarte et al. Fast inference of deep neural networks in FPGAs for particle physics, In Journal
of instrumentation 13.07, July 2008.

[11] https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
[12] https://aws.amazon.com/s3

[13] https://github.com/aws/aws-fpga

[14] http://pyng.readthedocs.io/

[15] https://github.com/Xilinx/Alveo-PYNQ/blob/master/pyng_alveo_examples/
notebooks/1_introduction/4-opencl-comparison.ipynb

A. A PYNQ Crush Course

After this introduction, we can describe how to use the PYNQ package and compare this new
approach against a "more traditional" way to deploy accelerated functions on FPGAs [15], namely
an application written in OpenCL.

The first thing to do in both cases, is to program the device and initialize the software context.
In the OpenCL version, this is achieved with the following code:

1 auto devices = xcl::get_xil_devices ()

> auto fileBuf = xcl::read_binary_file(binaryFile);

3 cl::Program:: Binaries bins{{fileBuf.data(), fileBuf.size () }};

4 OCL_CHECK(err , context = cl::Context({device}, NULL, NULL, NULL, &err));
5 OCL_CHECK(err, q = cl::CommandQueue(context, {device},

6 CL_QUEUE_PROFILING_ENABLE, &err));

7 OCL_CHECK(err , cl::Program program(context, {device}, bins, NULL, &err));
s OCL_CHECK(err , NNkernel = cl:: Kernel(program, "myproject", &err));

In particular, the get_xil_devices() function finds the available Xilinx devices and return
them as a list. Then, read_binary_file() loads the binary file (the .xclbin provided to the
application) and returns a pointer to the loaded file, that is then consumed to initialize the bins
object. A new OpenCL context is then created, that will be passed along the different functions
as a handle. After thath, a command queue q is created, in order to send commands to the device.
Then, the detected device is programmed, and finally the NN kernel include in the design is
assigned to the NNkernel variable.

With PYNQ the same set of operations is achieved by instantiating a pynq.Overlay () object
(the device is programmed at this stage), and then assigning the vector addition kernel to the nn
variable, accessing directly the overlay.

12

https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://aws.amazon.com/s3
https://github.com/aws/aws-fpga
http://pynq.readthedocs.io/
https://github.com/Xilinx/Alveo-PYNQ/blob/master/pynq_alveo_examples/notebooks/1_introduction/4-opencl-comparison.ipynb
https://github.com/Xilinx/Alveo-PYNQ/blob/master/pynq_alveo_examples/notebooks/1_introduction/4-opencl-comparison.ipynb

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance Marco Lorusso

import pyng
ov = pyng.Overlay("designbitstream.xclbin") #or .awsxclbin for Fl1 instances

; nn = ov.myproject

&)

'S

In OpenCL host and FPGA buffers need to be handled separately. Therefore, we first have to
create the host buffer, and only after that is done, we can instantiate the FPGA buffer, linking it to
the corresponding host buffer:

std :: vector <input_t , aligned_allocator <input_t>> sample (N_IN);
std :: vector<result_t , aligned_allocator <result_t>> hw_results (N_OUT) ;

OCL_CHECK(err, cl::Buffer buffer_input(context,
CL_MEM_USE HOST PTR | CL_MEM READ_ONLY,
size_bytes_in , sample.data(), &err));
OCL_CHECK(err, cl::Buffer buffer_output(context,
CL_MEM_USE_HOST_PTR | CL_MEM_WRITE ONLY,
size_bytes_out, hw_results.data(), &err));
with N_IN and N_OUT the number of features in input for each sample and the number of outputs of
the NN, respectively.

On the other hand, with PYNQ buffers allocation is carried out by pynq.allocate, which
provides buffer object with the same interface as a numpy .ndarray. Host and FPGA buffers are
managed under the hood, and the user is only presented with a single interface for both:
inp = pyng.allocate((27,1),’u2’)
out = pyng.allocate((l,1),’u2’)

The enqueueMigrateMemObjects() is used in OpenCL to initiate data transfers. The devel-
oper must specify the direction of the transfer as a function parameter. In this case, we are sending
data from the host to the FPGA memory, therefore we need to pass 0 as direction for the input:

OCL_CHECK(err, err = q.enqueueMigrateMemObjects({ buffer_input}, 0, NULL));

The same behavior is achieved in PYNQ by invoking the . synq_to_device () method of the input
buffer:

inp.synq_to_device ()

To run the kernel in OpenCL each kernel argument need to be set explicitly using the setArgs ()
function, before starting the execution with enqueueTask():

OCL_CHECK(err, err = NNkernel.setArg(0, buffer_input));
OCL_CHECK(err, err NNkernel.setArg (1, buffer_output));
// send data here

OCL_CHECK(err, err = q.enqueueTask (NNkernel ,NULL)) ;
OCL_CHECK(err, err = q.finish());

// retrieve data here

The .call () function is used instead in PYNQ to do everything in a single line. This function
will take care of correctly setting the register_map of the IP and send the start signal:

nn.call (inp,out)

To retrieve data from the FPGA the enqueueMigrateMemObjects() is used again in OpenCL
to initiate data transfer. In this case, the host code uses the CL_MIGRATE_MEM_OBJECT_HOST
constant to specify the direction of the transfer:

13

Machine Learning inference using PYNQ environment in a AWS EC2 F1 Instance Marco Lorusso

1 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({ buffer_output},
CL_MIGRATE_MEM_OBJECT_HOST))

Finally, the same is achieved with PYNQ by calling .synq_from_device() from the output
buffer:

1 out.syng_from_device ()

14

	Introduction
	Field Programmable Gate Arrays
	AWS EC2 F1 Instance

	Artificial Neural Network
	Neural Network models

	Implementing a NN on FPGA
	The PYNQ project
	Neural Network model performance on FPGA
	pt resolution histogram

	Conclusions
	A PYNQ Crush Course

