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Pushing the reach of NNLO QCD predictions to 2→ 3 production processes is one of the pillars
of precision phenomenology program at the LHC. In this talk we will overview recent results and
developments in the calculation of two-loop five-point amplitudes contributing towards achieving
this goal. We will discuss challenges encountered in advancing the state-of-the-art beyond the
class of massless five-point scattering. We will then present a basis set of transcendental functions
sufficient to express any planar two-loop five-particle scattering amplitude with one external
massive leg. This basis greatly facilitates derivation of compact analytic form of scattering
amplitudes, and opens a possibility of their fast and reliable numerical evaluation. Applications
for phenomenology of electroweak boson production can be reasonably anticipated in the near
future.
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1. Introduction

Precise theoretical predictions for 2 → 3 scattering cross sections are key ingredients for
achieving the ultimate precision goal at the Large Hadron Collider. The computation of higher order
terms of their series expansion in the Standard Model coupling constants is therefore essential. To
reach accuracy of theoretical predictions at the level of few percent at least NNLO QCD and NLO
EW corrections are commonly required. In this report we will focus on the former.

To calculate a differential hard-scattering cross section to higher orders in perturbation theory
one needs to compute all relevant loop scattering amplitudes, and a framework to arrange the
intricate cancellation of their infrared divergences. It has been recently demonstrated that the latter
is possible for the 2 → 3 processes with the most complicated IR structure [1, 2] at NNLO QCD.
On the other hand, only the simplest two-loop amplitudes required for NNLO QCD corrections
to five-point scattering are currently known (see table 1). Therefore the availability of NNLO
predictions for high-multiplicity processes is largely limited by our ability to calculate two-loop
amplitudes.

2. State of the art

Scattering amplitudes are calculated in perturbation theory as sums of a large number of Feyn-
man integrals. The latter can be reduced to a smaller set of master integrals by systematically
resolving integral relations such as integration-by-parts (IBP) identities. This procedure is highly
challenging for problems with many kinematic scales involved, mainly due to intermediate expres-
sion swell. Thanks to the remarkable progress in the reduction of multiscale amplitudes, most of
the massless two-loop five-point amplitudes relevant for hadron collider phenomenology has been
computed in the past two years in leading-color approximation (see table 1 for references). First
results in full QCD have also been reported [3, 4]. Among others, one of the main advances which
made these analytic calculations possible was systematic integration of exact numerical evaluations
over finite fields and functional reconstruction techniques [5–7] into modern amplitude reduction
frameworks [7, 8].

The full potential of the finite-field reconstruction methods can be achieved if the final an-
alytic expressions for an amplitude simplify dramatically compared to intermediate expressions.
Mathematical understanding of relevant Feynman integrals and the associated space of transcen-
dental functions is essential to expose these simplifications. The knowledge of all pure two-loop
five-point massless master integrals [25, 26], and the basis of relevant transcendental functions,
pentagon functions [23], was indeed a prerequisite for the success of analytic multiscale amplitude
calculations. For phenomenological applications of loop scattering amplitudes, it is crucial that
their numerical evaluation is sufficiently fast and stable, such that Monte Carlo integration over
final-state phase space is feasible. Satisfying this requirement is highly nontrivial, especially for the
transcendental parts of amplitudes. Indeed, for two-loop five-point scattering, applications of the
methods commonly employed in organizing the function spaces of lower-multiplicity amplitudes
has not been effective to date. Instead, a new method of function-basis construction, based on
properties of iterated integrals, and its numerical evaluation was developed [23] to open the door
for broad phenomenological applications.
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Comment
Complete
analytic
results

Public
numerical

code

Cross
sections

?? → 9 9 9 l.c. [9] [9] [1, 2]
?? → WW 9 l.c.★ [10, 11] [10] [12]
?? → WWW l.c.★ [13, 14] [13] [15, 16]
?? → WW 9 [3]

66 → WW6
NLO loop
induced

[4] [4] [17]

?? → ,11̄ l.c.★, on-shell, [18]
?? → , (;a)11̄ l.c. [19, 20] [20]
?? → , (;a) 9 9 l.c. [19]
?? → / (; ;̄) 9 9 l.c.★ [19]
?? → , (;a)W 9 l.c.★ [21]

?? → �11̄
l.c., 1-quark
Yukawa

[22]

Table 1: Known two-loop QCD corrections for five-point scattering processes at hardon colliders. “l.c.”
refers to the calculations in the leading-color approximation; “l.c.★” means that in addition non-planar
l.c. contributions are omitted. All public codes employ PentagonFunctions++ [23, 24] for numerical
evaluation of special functions.

Going beyond purely massless two-loop five-point amplitudes, first analytic results with one
external mass (we will refer to it as one-mass kinematics here) have started to appear [18–22]. A
steep increase in complexity has been observed. In particular, the number of numerical samples that
is required to reconstruct the analytic form of rational coefficients using the “black-box” functional
reconstruction algorithms becomes prohibitively large. However the general methods developed
for tackling the massles five-point amplitudes could be still applied after certain improvements of
analytic reconstruction techniques [18, 19]. With new possibilities of systematically constraining
the analytic form of rational coefficients being currently explored [27, 28], one can be cautiously
optimistic that even more complex process can be tackled within this framework in the future.

As in the fully massless case, the theoretical understanding of two-loop five-point one-mass
Feynman integrals has been essential. Canonical differential equations for all planar two-loop
five-point one-mass integral topologies [29], as well for some nonplanar topologies [30] are already
known, however a complete set of nonplanar internal topologies is still under investigation. Repre-
sentations of all integrals with planar topologies and certain nonplanar integrals through Goncharov
polylogarithms (GPLs) have been found [31–33]. Nevertheless, finding adequate representations
in physical regions still remains challenging. A special function basis for strictly color-ordered
amplitudes have been constructed in [18], and its numerical evaluation through generalized series
expansions [34] has been explored. A complete planar function basis was constructed in [24],
and it was demonstrated that remarkably fast and stable numerical evaluation of these functions is
possible. We discuss this in section 4. These developments have been applied to achieve the first
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complete calculation of NNLO QCD corrections involving one-mass kinematics,,11̄ production
at the LHC [20]. It is worth noting that important advances in methods of numerical evaluation
of Feynman integrals have been also achieved. In particular, a direct numerical evaluation of the
two-loop five-point one-mass integrals is now feasible [35, 36]. These methods provide valuable
input for future analytic studies of even more complex integrals.

3. Reduction of multiscale loop amplitudes

To compute a loop scattering amplitude, one starts by writing down its integrand which
schematically can be represented as

A(ℓ;) =
∑
Γ∈Δ

∑
8

2Γ,8 (s, n)
<Γ,8 (ℓ;)∏
9∈%Γ d 9

, (1)

where ℓ; denotes the loop momenta of the problem, Δ is the set of distinct propagator structures Γ,
and %Γ is the multiset of inverse propagators d 9 in Γ. <Γ,8 (ℓ;) are polynomials in loop momenta
and rational functions of external kinematics s and the dimensional regulator n = 1

2 (4−�). Integral
reduction brings the amplitude’s integrand to the form

A =
∑
8

28 (s, n) I8 , (2)

where IΓ,8 are the master integrals and 28 (s, n) ∈ Q(s, n). The master integrals are then expanded in
n and expressed through special functions. If these functions form a basis, i.e. they are algebraically
independent, the UV and IR divergences can be subtracted analytically and one can derive the finite
remainder,

R =
∑
i

Ai(s) gi + O(n), (3)

where gi in our case are the relevant monomials of pentagon functions in the multi-index nota-
tion. For a well-chosen basis gi the rational coefficients Ai(s) are significantly simpler than any
intermediate expressions encountered in their derivation starting from the amplitude’s integrand in
eq. (1).

An impressively powerful method to take advantage of the finite remainders’ simplicity is to
reconstruct their analytic expressions from exact numerical samples over finite fields [5, 6]. The
complete amplitude reduction frameworks built around this idea were made publicly available:
FiniteFlow [7, 37, 38] and two-loop numerical unitary [8, 39–43]. In the latter, even the integrand
in eq. (1) is evaluated numerically, eliminating the need for analytic processing of individual
Feynman diagrams.

Employing the algorithm of [6], an analytic reconstruction of the rational functions Ai(s) with
no a priori knowledge of their structure is possible. This is known as black-box reconstruction. An
important advantage of the black-box reconstruction algorithm of ref. [6] is that the computational
complexity of the algorithm itself is negligible compared to the complexity of obtaining numerical
samples of Ai(s). On the other hand, the number of required samples is maximal. Planar two-
loop five-point massless amplitudes can be obtained with a straightforward application of some
variations of the black-box reconstruction. More complicated amplitudes, however, would require
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too many numerical samples. For example, a black-box reconstruction of the two-loop amplitudes
contributing to ?? → , 9 9 production would require 107 samples [19], with each sample taking an
order of few minutes. It is therefore clear that black-box reconstruction cannot be straightforwardly
applied beyond purely massless five-point scattering.

Fortunately, the coefficients Ai(s) in scattering amplitudes are not arbitrary rational functions.
On the contrary, their analytic structure is deeply constrained by the underlying physics. The finite-
field framework opens up a possibility to constructively incorporate constraints on their analytic
structure and therefore reduce the number of numerical samples required for their reconstruction.
For instance, the denominators of the coefficients Ai are entirely determined by the rational subset of
the associated symbol alphabet [42]. Another example is that reconstruction and partial fractioning
in one of the variables can allow one to fix the coefficients of a dense polynomial ansatz in the
remaining variables with a significantly smaller number of required samples [4]. In addition, the
tractable size of the polynomial ansatz can be significantly increased by the Vandermonde sampling
[19], which allows to invert a linear system of size # in O(#2) time, instead of O(#3). Armed with
these ideas, the number of samples required to reconstruct the two-loop amplitudes contributing
to ?? → , 9 9 production could be decreased by two orders of magnitude. More systematic
approaches in constraining the ansätze from their behavior in special limits are also being explored
[27, 28]. It would be interesting to see if they can be applied in the calculations of yet unknown
amplitudes in the future.

Finally, let us make an important observation that the form of coefficients Ai that we obtain
from any of the modern reconstruction algorithms is by far not ideal. In fact, it has been observed
[44] that dramatic simplification can be achieved with multivariate partial fractioning [44–47].
These simplifications are crucial to achieve sufficient numerical performance for phenomenological
applications. Due to the unpredictable complexity of Gröbner bases calculation, this step itself
might become challenging in applications beyond purely massless five-point scattering. In the
meantime, one might wonder if it is possible to find a way to reconstruct the simplified form of the
result directly? This intriguing possibility would significantly advance the capabilities of current
computational methods.

Other key developments in IBP reduction techniques concern judicious selection and orga-
nization of the IBP identities [39, 48–53]. A particularly helpful observation in this context is
to systematically avoid introducing integrals with propagators raised to higher powers. The latter
are ubiquitously encountered in generic IBP identities, but only sparsely appear in integrands of
scattering amplitudes. Eliminating the unnecessary integrals from the identities beforehand can sig-
nificantly reduce the complexity of the residual linear systems. These ideas have been instrumental
in many of the recent two-loop five-point amplitude calculations.

4. Planar one-mass pentagon functions

As we argued in the previous sections, knowledge of a transcendental function basis is ad-
vantageous both for studying the analytic structure of scattering amplitudes and for their efficient
numerical evaluation. In this section we present our method of constructing such a basis for
five-point scattering with one external mass at two loops. We will refer to this basis as one-mass
pentagon functions. Our method is largely based on the earlier work on the massless pentagon
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functions in ref. [23], and described in detail in ref. [24]. Here we will mostly focus on highlighting
the differences and new developments in the latter compared to the former.

Master integrals can be systematically expressed in terms of pure functions order-by-order in n
within the method of canonical differential equations. The canonical DEs for integrals ®5g,f of the
integral topology (or familty) g and permutation of external momenta f take the form

d ®5g,f = n d�g,f
®5g,f , d�g,f =

∑
8

0
(8)
g,f d log,8 , (4)

where 0 (8)g,f are rational matrices, and ,8 are letters from the symbol alphabet. For amplitudes
with few scales an exceptionally successful strategy for construction of function bases has been to
map the n-expansion of Feynman integrals into a particular class of functions known as multiple
polylogarithms (MPLs). These functions can be viewed as iterated integrals over logarithmic
one-forms with particular structure,

d log(C − F(s)) = dC
C − F(s) , (5)

where the pole positions F(s) may depend on the scattering kinematics. Within the DE approach,
one can attempt to find a path W : [0, 1] → P, where P is the space of kinematic variables,
such that the pullbacks of all d log forms in the r.h.s. of eq. (4) take the form of eq. (5). Practical
considerations aside, this is always possible for rational alphabets. In multiscale problems, however,
algebraic letters are ubiquitous. Maximal cuts of relevant integrals typically evaluate to a square
root A, and letters of the form @−A

@+A with @ polynomial get introduced. It is then clear that finding
coordinate charts and/or appropriate paths on which all logarithmic forms from the alphabet are of
the form of eq. (5) is highly nontrivial.1 There has been much effort dedicated to addressing this
problem [31, 32, 54–58]. Nevertheless, it becomes increasingly clear that even if one succeeds in
deriving some MPL-representation of master integrals, finding a good representation in the whole
physical region is very challenging (see e.g. discussion in [31, 32, 32, 58–60]). Typical issues are
proliferation of spurious branch cuts, which makes analytic continuation difficult, and explosion
of number of MPL functions required to represent the solution. This leads to unacceptably slow
evaluation in the physical region, even in the simplest five-point massless case. In addition, perhaps
somewhat counter-intuitively, this has an effect that MPL representations can, in fact, obscure
analytic properties of amplitudes, and constructing a basis may be not straightforward.

The considerations above motivate us to follow a different route and forgo the attempts of
mapping Feynman integrals into MPLs, even in cases when it may be in principle possible. Instead,
we can trivially solve the eq. (4) through Chen’s iterated integrals [61], and construct a basis of
needed functions relying only on the properties of iterated integrals. We proceed as follows. First,
we write the solutions of eq. (4) [29] from a single point -0 in the physical scattering region for all
permutations of external momenta f (such that we cover all possible scattering amplitudes) and for
all relevant integral topologies g,

®5 (F) (-) =
F∑

F′=0

108∑
81,...,8F′=1

®̂(F−F
′)

81,...,8F′
[,81 , . . . ,,8F′ ] -0

(-) . (6)

1The question of whether such mapping for all Feynman integrals exists is, in fact, an open problem.
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where ^ (F−F′) are transcendental constants of weight F − F′,

^
(F−F′)
81,...,8F′

= 0 (81)0 (82) . . . 0 (8F′ ) ®5 (F−F′) (-0) , (7)

and the iterated integrals of weight F along the path W are defined recursively as

[,81 , . . . ,,8F ] -0
(-) =

∫
W

d log,8F (- ′) [,81 , . . . ,,8F−1] -0
(- ′), []-0 = 1 . (8)

To obtain the values ®5 (F) (-0) of master integrals at the initial point -0, we employ their represen-
tations through GPLs from ref. [32], and identify algebraic relations with PSLQ algorithm. The
representation (6) allows us to define a transcendental-weigh-graded vector space

G =
⊕
F

G(F) B
⊕
F

span{ ®5 (F) }. (9)

Linear independence of iterated integrals with different sequences of logarithmic kernels allows us
to straightforwardly construct a basis in G(F) . In addition, the shuffle product of iterated integrals
which maps G(F1) ⊗ G(F2) → G(F1+F2) allows us to recursively construct an irreducible basis,
i.e. the basis which is linearly independent from any products of lower-weight functions. In other
words, the irreducible basis functions are algebraically independent.

In practice, it is convenient to first construct a basis under the symbol map, which simply
projects out all but the longest iterated integrals at each transcendental weight. One can then
assign beyond-the-symbol terms to the basis functions in a way such that the basis dimension does
not increase, and the basis functions are still related to the (monomials of) n-expansion of master
integrals. This has two important advantages. First, the expressions of master integrals through
basis functions do not involve unnatural constants as was the case in [23], and only Z-values and
i c are explicitly present, as expected.2 Second, the action of the permutation group of external
momenta on the one-mass pentagon functions is well-defined and can be straightforwardly derived.
This makes it possible to cross scattering amplitudes into different channels by simple substitutions,
instead of performing a rather intricate procedure as described in [9]. The results of our construction
of one-mass pentagon functions are summarized in table 2.

There is a great degree of ambiguity in choosing the basis elements. Compared to [23], we
take advantage of this ambiguity to make certain properties of scattering amplitudes explicit. For
example our weight 4 basis has the following structure:

cyclic︷                                                   ︸︸                                                   ︷
1, . . . , 67, 68, . . . , 106︸        ︷︷        ︸

S

, 107, . . . , 112︸          ︷︷          ︸
Z

, 113︸︷︷︸
S,
√
Δ5

,

non-cyclic︷                                                                    ︸︸                                                                    ︷
114, . . . , 441, 442, . . . , 664︸          ︷︷          ︸

S

, 665, . . . , 672︸          ︷︷          ︸
√
Δ5

, 673, . . . , 675︸          ︷︷          ︸
S,
√
Δ5

.

(10)
Here functions with

√
Δ5 involve the letter which equals the pentagon gram determinant. These

functions are expected to drop out of properly defined finite remainders (see the discussion in [62]).
The functions involving the subset of letters denoted by Z were observed to not contribute to any
of the known two-loop amplitudes [18], an interesting fact which that has no known explanation.
We also maximally isolate the functions containing letters which can vanish in the physical region
(denoted as the set S) to improve numerical performance. The cyclic subset of functions was
already studied in [18] and is sufficient for any strictly color-ordered amplitude.

2As a consequence, we also do not have to introduce constants which are odd under changes of square-root signs.
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Weight
Linearly

independent
Irreducible Cyclic

1 11 11 6
2 86 25 8
3 483 145 31
4 1187 675 113

Table 2: Number of master integral components at each n order. The second column corresponds to the
number of the Q-linearly independent components. The third column shows the number of irreducible
components, i.e. the number of one-mass pentagon functions. The third column corresponds to the number
of one-mass pentagon functions contributing to strictly color-ordered amplitudes. The total number of
topologically-independent master integrals is 1417.

Figure 1: A sketch of the numerical integration over a path connecting the points -0, - ∈ P, bounded by
the equation Δ5 = 0. The initial point -0 is chosen to lie on the intersection of zero-sets of all linear letters
that can vanish within the physical region, denoted by dotted black lines. The dashed red lines correspond to
quadratic letters that can vanish within the physical region.

Our strategy of numerical evaluation of one-mass pentagon largely follows the one from [23]
and is inspired by [59, 63]. We derive their explicit representations in terms of logarithms and
dilogarithms up to weight two, making sure that all the functions are well-defined in the whole
physical region. For weight three and four we derive one-fold integral representations, and we
explicitly check that the integrands are well-defined analytic functions in the whole integration
domain.3 We evaluate the integrals by a specifically optimized numerical quadrature algorithm
which guarantees exponential convergence. We encounter two new complications compared to
ref. [23] which are schematically illustrated in fig. 1. First, it is possible that a point - cannot
be connected by a straight line that lies entirely within the physical phase space P. To avoid this
situation we chose an additional random point - ′ ∈ P, such that the line segments [-0, -

′] and
[- ′, -] both lie within P. Second, in the presence of quadratic letters that can vanish within P,
we must take care of spurious singularities. To this end, we find series expansions of the integrands
in the neighbourhood of vanishing quadratic letters, thereby achieving analytic cancellation of
spurious poles.

We demonstrate the excellent numerical performance of one-mass pentagon functions by
evaluating them on 105 points sampled from a typical physical phase-space (see the details in ref.

3Logarithmic integrable singularities can occur at the endpoints of the integration point, which does not create
additional complications due to our choice of the numerical integration algorithm.

8



P
o
S
(
L
L
2
0
2
2
)
0
0
2

Status of double virtual NNLO QCD corrections for high multiplicity processes Vasily Sotnikov

[24]). We estimate the relative error A8 of a double-precision evaluation of a pentagon function by
comparing it to its evaluation in quadruple precision. We then define the number of correct digits
as − log10 |A8 |. On each phase-space point - we evaluate all one-mass pentagon functions and we
take the worst (smallest) number of digits ' among them as the overall measure of accuracy for
this point. We display the distribution of '(-) in fig. 2. We observe excellent numerical stability
in the bulk of the phase space and average evaluation time of less than a second. Clearly, one-mass
pentagon functions completely eliminate the problem of numerical evaluation of special functions
relevant for two-loop five-point one-mass scattering for any future phenomenological applications.
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Figure 2: Logarithmic distribution of minimal correct digits of one-mass pentagon functions evaluated on a
sample of 105 phase-space points. The average evaluation time of all pentagon function in double precision
on a single thread is estimated on a server with Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz. This figure
is taken from ref. [24] licensed under CC-BY 4.0.

5. Conclusions

The availability of NNLO QCD predictions for 2 → 3 processes still remains limited by our
ability to compute two-loop five-point amplitudes. Much progress has been achieved in the past
few years. Calculations of leading color amplitudes for the production of up to three jets and
photons have been completed, and the first results in full color have started to appear. Beyond
purely massless 2 → 3 scattering a steep increase in complexity is observed, but the techniques
developed for the massless calculations still remain promising. The most complicated kinematics
currently within reach is five-point with one external mass, and the analytic results for leading-color
+ 9 9 ,, 9H, �11̄ amplitudes have been derived. The planar function basis for this class of processes
has been successfully constructed, enabling phenomenological applications in the near future.

Despite the great progress, NNLO QCD corrections for many key 2 → 3 Standard Model
processes (+ 9 9 , /11̄, � 9 9 , CC̄ 9 , CC̄+, CC̄�, etc.) remain unknown, and it is very much expected that
new challenges will need to be overcome to complete calculations of all processes relevant for the
LHC physics program. Nevertheless, the modern computations methods do not appear to be entirely

9



P
o
S
(
L
L
2
0
2
2
)
0
0
2

Status of double virtual NNLO QCD corrections for high multiplicity processes Vasily Sotnikov

stretched to their limits. We can therefore remain carefully optimistic that the ultimate precision
reach of the LHCwill not be limited by the uncertainties due to truncation of the perturbation series.
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ment 101019620 (ERC Advanced Grant TOPUP).

References

[1] M. Czakon, A. Mitov and R. Poncelet, Next-to-Next-to-Leading Order Study of Three-Jet
Production at the LHC, Phys. Rev. Lett. 127 (2021) 152001 [2106.05331].

[2] X. Chen, T. Gehrmann, N. Glover, A. Huss and M. Marcoli, Automation of antenna
subtraction in colour space: gluonic processes, 2203.13531.

[3] B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, Two-Loop Helicity Amplitudes
for Diphoton Plus Jet Production in Full Color, Phys. Rev. Lett. 127 (2021) 262001
[2105.04585].

[4] S. Badger, C. Brønnum-Hansen, D. Chicherin, T. Gehrmann, H.B. Hartanto, J. Henn et al.,
Virtual QCD corrections to gluon-initiated diphoton plus jet production at hadron colliders,
JHEP 11 (2021) 083 [2106.08664].

[5] A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction,
Phys. Lett. B 744 (2015) 101 [1406.4513].

[6] T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction,
JHEP 12 (2016) 030 [1608.01902].

[7] T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields and dataflow
graphs, JHEP 07 (2019) 031 [1905.08019].

[8] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, M. Kraus, B. Page et al., Caravel: A C++
framework for the computation of multi-loop amplitudes with numerical unitarity, Comput.
Phys. Commun. 267 (2021) 108069 [2009.11957].

[9] S. Abreu, F.F. Cordero, H. Ita, B. Page and V. Sotnikov, Leading-color two-loop QCD
corrections for three-jet production at hadron colliders, JHEP 07 (2021) 095 [2102.13609].

[10] B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, Two-loop leading colour QCD
corrections to @@̄ → WW6 and @6 → WW@, JHEP 04 (2021) 201 [2102.01820].

[11] H.A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, Two-loop leading-colour QCD
helicity amplitudes for two-photon plus jet production at the LHC, JHEP 07 (2021) 164
[2103.04319].

[12] H.A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to diphoton
production with an additional jet at the LHC, JHEP 09 (2021) 093 [2105.06940].

10

https://doi.org/10.1103/PhysRevLett.127.152001
https://arxiv.org/abs/2106.05331
https://arxiv.org/abs/2203.13531
https://doi.org/10.1103/PhysRevLett.127.262001
https://arxiv.org/abs/2105.04585
https://doi.org/10.1007/JHEP11(2021)083
https://arxiv.org/abs/2106.08664
https://doi.org/10.1016/j.physletb.2015.03.029
https://arxiv.org/abs/1406.4513
https://doi.org/10.1007/JHEP12(2016)030
https://arxiv.org/abs/1608.01902
https://doi.org/10.1007/JHEP07(2019)031
https://arxiv.org/abs/1905.08019
https://doi.org/10.1016/j.cpc.2021.108069
https://doi.org/10.1016/j.cpc.2021.108069
https://arxiv.org/abs/2009.11957
https://doi.org/10.1007/JHEP07(2021)095
https://arxiv.org/abs/2102.13609
https://doi.org/10.1007/JHEP04(2021)201
https://arxiv.org/abs/2102.01820
https://doi.org/10.1007/JHEP07(2021)164
https://arxiv.org/abs/2103.04319
https://doi.org/10.1007/JHEP09(2021)093
https://arxiv.org/abs/2105.06940


P
o
S
(
L
L
2
0
2
2
)
0
0
2

Status of double virtual NNLO QCD corrections for high multiplicity processes Vasily Sotnikov

[13] S. Abreu, B. Page, E. Pascual and V. Sotnikov, Leading-Color Two-Loop QCD Corrections
for Three-Photon Production at Hadron Colliders, JHEP 01 (2021) 078 [2010.15834].

[14] H.A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, Two-loop leading-color helicity
amplitudes for three-photon production at the LHC, JHEP 06 (2021) 150 [2012.13553].

[15] H.A. Chawdhry, M.L. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to
three-photon production at the LHC, JHEP 02 (2020) 057 [1911.00479].

[16] S. Kallweit, V. Sotnikov and M. Wiesemann, Triphoton production at hadron colliders in
NNLO QCD, Phys. Lett. B 812 (2021) 136013 [2010.04681].

[17] S. Badger, T. Gehrmann, M. Marcoli and R. Moodie, Next-to-leading order QCD corrections
to diphoton-plus-jet production through gluon fusion at the LHC, Phys. Lett. B 824 (2022)
136802 [2109.12003].

[18] S. Badger, H.B. Hartanto and S. Zoia, Two-Loop QCD Corrections to Wbb¯ Production at
Hadron Colliders, Phys. Rev. Lett. 127 (2021) 012001 [2102.02516].

[19] S. Abreu, F. Febres Cordero, H. Ita, M. Klinkert, B. Page and V. Sotnikov, Leading-color
two-loop amplitudes for four partons and a W boson in QCD, JHEP 04 (2022) 042
[2110.07541].

[20] H.B. Hartanto, R. Poncelet, A. Popescu and S. Zoia, NNLO QCD corrections to,11̄
production at the LHC, 2205.01687.

[21] S. Badger, H.B. Hartanto, J. Kryś and S. Zoia, Two-loop leading colour helicity amplitudes
for WW + j production at the LHC, JHEP 05 (2022) 035 [2201.04075].

[22] S. Badger, H.B. Hartanto, J. Kryś and S. Zoia, Two-loop leading-colour QCD helicity
amplitudes for Higgs boson production in association with a bottom-quark pair at the LHC,
JHEP 11 (2021) 012 [2107.14733].

[23] D. Chicherin and V. Sotnikov, Pentagon Functions for Scattering of Five Massless Particles,
JHEP 12 (2020) 167 [2009.07803].

[24] D. Chicherin, V. Sotnikov and S. Zoia, Pentagon functions for one-mass planar scattering
amplitudes, JHEP 01 (2022) 096 [2110.10111].

[25] S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude
in N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 122 (2019) 121603 [1812.08941].

[26] D. Chicherin, T. Gehrmann, J. Henn, P. Wasser, Y. Zhang and S. Zoia, All Master Integrals
for Three-Jet Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 123 (2019)
041603 [1812.11160].

[27] G. De Laurentis and D. Maître, Two-Loop Five-Parton Leading-Colour Finite Remainders in
the Spinor-Helicity Formalism, JHEP 02 (2021) 016 [2010.14525].

11

https://doi.org/10.1007/JHEP01(2021)078
https://arxiv.org/abs/2010.15834
https://doi.org/10.1007/JHEP06(2021)150
https://arxiv.org/abs/2012.13553
https://doi.org/10.1007/JHEP02(2020)057
https://arxiv.org/abs/1911.00479
https://doi.org/10.1016/j.physletb.2020.136013
https://arxiv.org/abs/2010.04681
https://doi.org/10.1016/j.physletb.2021.136802
https://doi.org/10.1016/j.physletb.2021.136802
https://arxiv.org/abs/2109.12003
https://doi.org/10.1103/PhysRevLett.127.012001
https://arxiv.org/abs/2102.02516
https://doi.org/10.1007/JHEP04(2022)042
https://arxiv.org/abs/2110.07541
https://arxiv.org/abs/2205.01687
https://doi.org/10.1007/JHEP05(2022)035
https://arxiv.org/abs/2201.04075
https://doi.org/10.1007/JHEP11(2021)012
https://arxiv.org/abs/2107.14733
https://doi.org/10.1007/JHEP12(2020)167
https://arxiv.org/abs/2009.07803
https://doi.org/10.1007/JHEP01(2022)096
https://arxiv.org/abs/2110.10111
https://doi.org/10.1103/PhysRevLett.122.121603
https://arxiv.org/abs/1812.08941
https://doi.org/10.1103/PhysRevLett.123.041603
https://doi.org/10.1103/PhysRevLett.123.041603
https://arxiv.org/abs/1812.11160
https://doi.org/10.1007/JHEP02(2021)016
https://arxiv.org/abs/2010.14525


P
o
S
(
L
L
2
0
2
2
)
0
0
2

Status of double virtual NNLO QCD corrections for high multiplicity processes Vasily Sotnikov

[28] G. De Laurentis and B. Page, Ansätze for Scattering Amplitudes from ?-adic Numbers and
Algebraic Geometry, 2203.04269.

[29] S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, Two-Loop Integrals for
Planar Five-Point One-Mass Processes, JHEP 11 (2020) 117 [2005.04195].

[30] S. Abreu, H. Ita, B. Page and W. Tschernow, Two-loop hexa-box integrals for non-planar
five-point one-mass processes, JHEP 03 (2022) 182 [2107.14180].

[31] C.G. Papadopoulos, D. Tommasini and C. Wever, The Pentabox Master Integrals with the
Simplified Differential Equations approach, JHEP 04 (2016) 078 [1511.09404].

[32] D.D. Canko, C.G. Papadopoulos and N. Syrrakos, Analytic representation of all planar
two-loop five-point Master Integrals with one off-shell leg, JHEP 01 (2021) 199
[2009.13917].

[33] A. Kardos, C.G. Papadopoulos, A.V. Smirnov, N. Syrrakos and C. Wever, Two-loop
non-planar hexa-box integrals with one massive leg, JHEP 05 (2022) 033 [2201.07509].

[34] M. Hidding, DiffExp, a Mathematica package for computing Feynman integrals in terms of
one-dimensional series expansions, Comput. Phys. Commun. 269 (2021) 108125
[2006.05510].

[35] X. Liu and Y.-Q. Ma, Multiloop corrections for collider processes using auxiliary mass flow,
Phys. Rev. D 105 (2022) L051503 [2107.01864].

[36] M. Hidding and J. Usovitsch, Feynman parameter integration through differential equations,
2206.14790.

[37] S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop
five-gluon scattering in QCD, Phys. Rev. Lett. 120 (2018) 092001 [1712.02229].

[38] S. Badger, D. Chicherin, T. Gehrmann, G. Heinrich, J. Henn, T. Peraro et al., Analytic form
of the full two-loop five-gluon all-plus helicity amplitude, Phys. Rev. Lett. 123 (2019) 071601
[1905.03733].

[39] H. Ita, Two-loop Integrand Decomposition into Master Integrals and Surface Terms, Phys.
Rev. D 94 (2016) 116015 [1510.05626].

[40] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-Loop Four-Gluon
Amplitudes from Numerical Unitarity, Phys. Rev. Lett. 119 (2017) 142001 [1703.05273].

[41] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier and B. Page, Subleading Poles in the
Numerical Unitarity Method at Two Loops, Phys. Rev. D95 (2017) 096011 [1703.05255].

[42] S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar Two-Loop Five-Gluon
Amplitudes from Numerical Unitarity, Phys. Rev. D 97 (2018) 116014 [1712.03946].

12

https://arxiv.org/abs/2203.04269
https://doi.org/10.1007/JHEP11(2020)117
https://arxiv.org/abs/2005.04195
https://doi.org/10.1007/JHEP03(2022)182
https://arxiv.org/abs/2107.14180
https://doi.org/10.1007/JHEP04(2016)078
https://arxiv.org/abs/1511.09404
https://doi.org/10.1007/JHEP01(2021)199
https://arxiv.org/abs/2009.13917
https://doi.org/10.1007/JHEP05(2022)033
https://arxiv.org/abs/2201.07509
https://doi.org/10.1016/j.cpc.2021.108125
https://arxiv.org/abs/2006.05510
https://doi.org/10.1103/PhysRevD.105.L051503
https://arxiv.org/abs/2107.01864
https://arxiv.org/abs/2206.14790
https://doi.org/10.1103/PhysRevLett.120.092001
https://arxiv.org/abs/1712.02229
https://doi.org/10.1103/PhysRevLett.123.071601
https://arxiv.org/abs/1905.03733
https://doi.org/10.1103/PhysRevD.94.116015
https://doi.org/10.1103/PhysRevD.94.116015
https://arxiv.org/abs/1510.05626
https://doi.org/10.1103/PhysRevLett.119.142001
https://arxiv.org/abs/1703.05273
https://doi.org/10.1103/PhysRevD.95.096011
https://arxiv.org/abs/1703.05255
https://doi.org/10.1103/PhysRevD.97.116014
https://arxiv.org/abs/1712.03946


P
o
S
(
L
L
2
0
2
2
)
0
0
2

Status of double virtual NNLO QCD corrections for high multiplicity processes Vasily Sotnikov

[43] S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar Two-Loop Five-Parton
Amplitudes from Numerical Unitarity, JHEP 11 (2018) 116 [1809.09067].

[44] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Analytic Form of
the Planar Two-Loop Five-Parton Scattering Amplitudes in QCD, JHEP 05 (2019) 084
[1904.00945].

[45] J. Boehm, M. Wittmann, Z. Wu, Y. Xu and Y. Zhang, IBP reduction coefficients made
simple, JHEP 12 (2020) 054 [2008.13194].

[46] M. Heller and A. von Manteuffel, MultivariateApart: Generalized partial fractions, Comput.
Phys. Commun. 271 (2022) 108174 [2101.08283].

[47] D. Bendle, J. Böhm, W. Decker, A. Georgoudis, F.-J. Pfreundt, M. Rahn et al.,
Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space, JHEP
02 (2020) 079 [1908.04301].

[48] J. Gluza, K. Kajda and D.A. Kosower, Towards a Basis for Planar Two-Loop Integrals, Phys.
Rev. D 83 (2011) 045012 [1009.0472].

[49] K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic
geometry, Phys. Rev. D 93 (2016) 041701 [1511.01071].

[50] A. Georgoudis, K.J. Larsen and Y. Zhang, Azurite: An algebraic geometry based package for
finding bases of loop integrals, Comput. Phys. Commun. 221 (2017) 203 [1612.04252].

[51] J. Böhm, A. Georgoudis, K.J. Larsen, H. Schönemann and Y. Zhang, Complete
integration-by-parts reductions of the non-planar hexagon-box via module intersections,
JHEP 09 (2018) 024 [1805.01873].

[52] B. Agarwal, S.P. Jones and A. von Manteuffel, Two-loop helicity amplitudes for 66 → //

with full top-quark mass effects, JHEP 05 (2021) 256 [2011.15113].

[53] X. Guan, X. Liu and Y.-Q. Ma, Complete reduction of two-loop five-light-parton scattering
amplitudes, Chin. Phys. C 44 (2020) 9 [1912.09294].

[54] M. Heller, A. von Manteuffel and R.M. Schabinger, Multiple polylogarithms with algebraic
arguments and the two-loop EW-QCD Drell-Yan master integrals, Phys. Rev. D 102 (2020)
016025 [1907.00491].

[55] M. Heller, Planar two-loop integrals for `e scattering in QED with finite lepton masses,
2105.08046.

[56] M. Bonetti, E. Panzer, V.A. Smirnov and L. Tancredi, Two-loop mixed QCD-EW corrections
to 66 → �6, JHEP 11 (2020) 045 [2007.09813].

[57] P.A. Kreer and S. Weinzierl, The H-graph with equal masses in terms of multiple
polylogarithms, Phys. Lett. B 819 (2021) 136405 [2104.07488].

13

https://doi.org/10.1007/JHEP11(2018)116
https://arxiv.org/abs/1809.09067
https://doi.org/10.1007/JHEP05(2019)084
https://arxiv.org/abs/1904.00945
https://doi.org/10.1007/JHEP12(2020)054
https://arxiv.org/abs/2008.13194
https://doi.org/10.1016/j.cpc.2021.108174
https://doi.org/10.1016/j.cpc.2021.108174
https://arxiv.org/abs/2101.08283
https://doi.org/10.1007/JHEP02(2020)079
https://doi.org/10.1007/JHEP02(2020)079
https://arxiv.org/abs/1908.04301
https://doi.org/10.1103/PhysRevD.83.045012
https://doi.org/10.1103/PhysRevD.83.045012
https://arxiv.org/abs/1009.0472
https://doi.org/10.1103/PhysRevD.93.041701
https://arxiv.org/abs/1511.01071
https://doi.org/10.1016/j.cpc.2017.08.013
https://arxiv.org/abs/1612.04252
https://doi.org/10.1007/JHEP09(2018)024
https://arxiv.org/abs/1805.01873
https://doi.org/10.1007/JHEP05(2021)256
https://arxiv.org/abs/2011.15113
https://doi.org/10.1088/1674-1137/44/9/093106
https://arxiv.org/abs/1912.09294
https://doi.org/10.1103/PhysRevD.102.016025
https://doi.org/10.1103/PhysRevD.102.016025
https://arxiv.org/abs/1907.00491
https://arxiv.org/abs/2105.08046
https://doi.org/10.1007/JHEP11(2020)045
https://arxiv.org/abs/2007.09813
https://doi.org/10.1016/j.physletb.2021.136405
https://arxiv.org/abs/2104.07488


P
o
S
(
L
L
2
0
2
2
)
0
0
2

Status of double virtual NNLO QCD corrections for high multiplicity processes Vasily Sotnikov

[58] C. Duhr, V.A. Smirnov and L. Tancredi, Analytic results for two-loop planar master integrals
for Bhabha scattering, JHEP 09 (2021) 120 [2108.03828].

[59] T. Gehrmann, J. Henn and N. Lo Presti, Pentagon functions for massless planar scattering
amplitudes, JHEP 10 (2018) 103 [1807.09812].

[60] E. Chaubey, M. Kaur and A. Shivaji, Master integrals for O(UUB) corrections to � → //∗,
2205.06339.

[61] K.-T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831.

[62] D. Chicherin, J.M. Henn and G. Papathanasiou, Cluster algebras for Feynman integrals,
Phys. Rev. Lett. 126 (2021) 091603 [2012.12285].

[63] S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014)
114 [1404.2922].

14

https://doi.org/10.1007/JHEP09(2021)120
https://arxiv.org/abs/2108.03828
https://doi.org/10.1007/JHEP10(2018)103
https://arxiv.org/abs/1807.09812
https://arxiv.org/abs/2205.06339
https://doi.org/10.1103/PhysRevLett.126.091603
https://arxiv.org/abs/2012.12285
https://doi.org/10.1007/JHEP06(2014)114
https://doi.org/10.1007/JHEP06(2014)114
https://arxiv.org/abs/1404.2922

	Introduction
	State of the art
	Reduction of multiscale loop amplitudes
	Planar one-mass pentagon functions
	Conclusions

