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1. Introduction

The upcoming High Luminosity upgrade of the LHC will provide us with experimental data of
unprecedented precision. Making sense of the data and exploiting the machine’s full potential will
require theoretical predictions of equally high precision. In recent years, the theoretical community
has made tremendous effort to meet the challenge of performing notoriously difficult perturbative
calculations in Quantum Field Theory. The current precision frontier for the QCD dominated
processes studied at the LHC lies at the Next-to-Next-to-Leading-Order (NNLO) for massless
2→ 3 scattering with one off-shell external particle [1, 2].

A typical NNLO calculation involves, among other things, the computation of two-loop Feyn-
man diagrams [3]. The established method for performing such calculations is by solving first-order
differential equations (DE) satisfied by the relevant Feynman integrals (FI) [4–7]. Working within
dimensional regularisation in d = 4 − 2ε dimensions, allow us the derivation of linear relations in
the form of Integration-By-Parts (IBP) identities satisfied by these integrals [8], which allows one
to obtain a minimal and finite set of FI for a specific scattering process, known as master integrals
(MI).

It has been conjectured that FI with constant leading singularities in d dimensions satisfy a
simpler class of DE [9], known as canonical DE [10]. A basis of MI satisfying canonical DE is
known as a pure basis. The study of the special functions which appear in the solutions of such
DE has provided a deeper understanding of their mathematical properties. These special functions
often admit a representation in the form of Chen iterated integrals [11]. For a large class of FI,
their result can be written in terms of a well studied class of special functions, known as Multiple
or Goncharov polylogarithms (GPLs) [12–14]. Several computational tools have been developed
for their algebraic manipulation [15] and numerical evaluation [16, 17].

For the case of two-loop five-point MI with one massive leg, pure bases of MI have been
recently presented in [18] for the planar topologies, which we will call one-mass pentaboxes,
and more recently in [19] for some of the non-planar topologies, which we will call one-mass
hexaboxes. All one-mass pentaboxes have been computed both numerically [18], using generalised
power-series expansions [20, 21], as well as analytically in terms of GPLs [22, 23], by employing
the Simplified Differential Equations (SDE) approach [24]. Recently, analytic results were also
obtained in the form of Chen iterated integrals and have been implemented into the so-called one-
mass pentagon functions [25], similar to the two-loop five-point massless results [26, 27]. These
results, along with fully analytic solutions for the relevant one-loop integral family [28], have lead
to the production of the first phenomenological studies at the leading-colour approximation for
2 → 3 scattering processes involving one massive particle at the LHC [29–31]. For the one-mass
hexabox topologies, numerical results were first presented in [32], using a method which emulates
the Feynman parameter technique, for one of the non-planar integral families. All three integral
families were treated numerically in [19] using the same methods as in [18] and analytically using
the SDE approach in [33].
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Figure 1: The eight families with one external massive leg. The first row corresponds to the so-called
planar pentaboxes (from left to right P1, P2, P3), the second to the hexabox topologies (from left to right
N1, N2, N3), whereas the diagrams of the third row are known as double-pentagons (from left to right N4, N5).
All diagrams have been drawn using Jaxodraw [34].

2. The Simplified Differential Equations approach

In figure 1, Feynman Integrals at the top sector corresponding to all eight different families are
shown, with the convention that double lines for external legs are associated to off-shell momenta
(p2 , 0), single lines to light-like momenta, whereas internal single lines correspond to massless
particles.

In the SDE approach [24] the external momenta are parametrized by introducing a dimen-
sionless variable x, mapping the external momenta configuration E = {qi; i = 1, . . . , N} to
Ẽ = {x} ∪ {pi; i = 1, . . . N} with the property that if there are n off-shell momenta in E there
are n − 1 off-shell momenta in Ẽ . To be more specific, let us consider the following mapping, as
depicted in the first row of figure 1,

q1 → p123 − xp12, q2 → p4, q3 → −p1234, q4 → xp1 (1)

where the new momenta pi, i = 1 . . . 5 satisfy
∑5

1 pi = 0, p2
i = 0, i = 1 . . . 5, whereas pi... j :=

pi + . . . + pj . The explicit mapping between the two sets of invariants, in E : {si j} and Ẽ : {Si j},
is given by

q2
1 = (1 − x)(S45 − S12x) , 0, s12 = (S34 − S12(1 − x)) x, s23 = S45, s34 = S51x,

s45 = S12x2, s15 = S45 + (S23 − S45)x (2)

and as usual the x = 1 limit corresponds to the on-shell kinematics.
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Introducing pure bases, as presented in [18, 19], turns the system of differential equation
satisfied by the elements of the basis ®g, into the so-called d log or canonical form.

d ®g = ε
∑
i

d log (Wi) M̃a ®g (3)

where Wi are algebraic functions of the kinematics and M̃i are matrices independent of the kine-
matical invariants, whose matrix elements are pure rational numbers. In the SDE approach the
functions, in most cases, as for instance in the planar families and the first non-planar one, Wa

assume a very simple form in terms of the variable x and the corresponding DE takes the form

∂xg = ε

(
lmax∑
a=1

Ma

x − la

)
g (4)

where la are functions of the kinematics but independent of x and Ma are matrices independent
of the kinematical invariants, whose matrix elements are pure rational numbers. SDE provides
a mechanism to fully factorise the x−dependence, and the DE becomes a Fuchsian ODE whose
solution, up to the desired order in ε , can be directly cast in the form

g =
4∑
i=0

ε i
i∑

k=0
G

(
la1 . . . lai−k ; x

)
Ma1 . . .Mai−k b(k)0 (5)

where g and M are taken from Eq. (4), b(i)0 are the boundary values of the basis elements in the
limit x → 0 (see Eq.(3.6) of reference [23]) at order ε i, i = 0 . . . 4 and G(la1 la2 . . . ; x) stands for
Goncharov polylogarithms.

In the case of the two last non-planar hexabox topologies not all algebraic functionsWi factorise
in x and the DE assumes the more general form

∂xg = ε

(
lmax∑
a=1

dLa

dx
Ma

)
g (6)

where most of the La are simple rational functions of x, as in (4), whereas the rest are algebraic
functions of x involving the non-rationalisable square roots of the alphabet [33].

A detailed analysis of (6) reveals that these non-factorizable in x functions start appearing
at weight two. In practise this means that we can use the mapping (2) and solve the respective
canonical simplified DE by integrating with respect to x up to weight one in terms of ordinary
logarithms. For weight two, analytic expressions in terms of GPLs can be achieved 1. In fact,
most of the basis elements are straightforwardly expressed in terms of GPLs by integrating the
corresponding simplified DE. For the rest, an educated ansatz can be constructed involving only
specific weight-two GPLs, which are identified by inspecting the DE, modulo the boundary terms
that one needs to compute as we will discuss in the next section. Thus analytic expressions in terms
of GPLs up to weight two are obtained for all elements belonging in these families. In fact only one
element per family requires an ansatz, whereas there are three more elements in lower sectors that
cannot be obtained by direct integration but are known in terms of GPLs up to weight 4 [22, 35],
based though on different variants of the parametrisation (1).

1For details, please see reference [33]
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3. Boundary terms

Our main approach is the one introduced in [22] and elaborated in detail in [36]. In general we
need to calculate the x → 0 limit of each pure basis element. At first we exploit the canonical SDE
at the limit x → 0 and define through it the resummation matrix

R = SeεD log(x)S−1 (7)

where the matrices S, D are obtained through the Jordan decomposition of the residue matrix for
the letter l1 = 0, M1,

M1 = SDS−1. (8)

Secondly, we can relate the elements of the pure basis to a set of MI G through IBP reduction,

g = TG. (9)

Using the expansion by regions method [37] as implemented in the asy code which is shipped
along with FIESTA4 [38], we can obtain the x → 0 limit of the MI in terms of which we express
the pure basis (9),

Gi =
x→0

∑
j

xb j+a j εG(b j+a j ε )

i (10)

where aj and bj are integers and Gi are the individual members of the basis G of MI in (9). This
analysis allows us to construct the following relation

Rb = lim
x→0

TG
����
O

(
x

0+aj ε
) (11)

where the right-hand side implies that, apart from the terms xaiε coming from (10), we expand
around x = 0, keeping only terms of order x0. Equation (11) allows us in principle to determine all
boundary constants b =

∑4
i=0 ε i b(i)0 .

To reduce the number of region-integrals involved in (11) we have investigated a different
approach. The idea is rather simple and straightforward. The pure basis elements can be written in
general as follows:

g = Ce2γE ε
∫

ddk1

iπd/2
ddk2

iπd/2
P

(
{Di} ,

{
Si j, x

})∏
i∈S̃

Dai
i

(12)

where Di, i = 1...11, represent the inverse scalar propagators, S̃ the set of indices corresponding to
a given sector, Si j, x the kinematic invariants, P is a polynomial, ai are positive integers and C a
factor depending on Si j, x. This form is usually decomposed in terms of FI, Fi,

g = C
∑

ci
({

Si j, x
})

Fi

with ci being polynomials in Si j, x. The limit x = 0, is then obtained, after IBP reduction, through
Feynman parameter representation of the individual MI, as described in the previous paragraphs.

An alternative approach, would be to build-up the Feynman parameter representation for the
whole basis element, by considering the integral in (12) as a tensor integral and making use of the
formulae from the references [39, 40], to bring it in its Feynman parameter representation. Then,
by using the expansion by regions approach [37, 38], we determine the regions2 in the limit x = 0.

2Only the corresponding scalar integral of (12) determines the regions.
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Rescaling the Feynman parameters by appropriate powers of x, keeping the leading power in x, we
then obtain the final result that can be written as follows:

b =
∑
I

NI

∫ ∏
i∈SI

dxi UaI

I Fbi
I ΠI

where I runs over the set of contributing regions, UI and FI are the limits of the usual Symanzik
polynomials, ΠI is a polynomial in the Feynman parameters, xi, and the kinematic invariants Si j ,
and SI the subset of surviving Feynman parameters in the limit. In this way a significant reduction
of the number of regions to be calculated is achieved, namely from 208 to 9 for the N3 family [33].
Notice that in contrast to the approach described in the previous paragraphs, only the regions x−2ε

and x−4ε contribute to the final result, making thus the evaluation of the region-integrals simpler.
Moreover, this approach overpasses the need for an IBP reduction of the basis elements in terms of
MI.

4. Integral representation

After obtaining all boundary terms in section 3 and constructing analytic expressions for
families N2 and N3 up to O(ε2) in terms of GPLs up to weight two, we will now introduce an
one-fold integral representation for O(ε3) and O(ε4). This representation will allow us to obtain
numerical results through direct numerical integration [26, 41].

Weight 3: The differential equation (6) can be written in the form:

∂xg
(3)
I =

∑
a

(
∂x log La

) ∑
J

caIJg
(2)
J (13)

where a runs over the set of contributing letters, I, J run over the set of basis elements, caIJ are
Q−number coefficients read off from the matrices Ma and g

(2)
J are the basis elements at weight 2,

known in terms of GPLs. Since the lower limit of integration corresponds to x = 0, we need to
subtract the appropriate term so that the integral is explicitly finite. This is achieved as follows:

∂xg
(3)
I =

∑
a

la
x

∑
J

caIJg
(2)
J,0 +

(∑
a

(
∂x log La

) ∑
J

caIJg
(2)
J −

∑
a

la
x

∑
J

caIJg
(2)
J,0

)
(14)

where g(2)
I,0 are obtained by expanding g

(2)
I around x = 0 and keeping terms up to order O

(
log(x)2

)
,

and la ∈ Q are defined through

∂x log La =
la
x
+ O

(
x0) . (15)

The DE (14) can now be integrated from x = 0 to x = x̄, and the result is given by

g
(3)
I = g

(3)
I,G
+ b(3)I +

∫ x̄

0
dx

(∑
a

(
∂x log La

) ∑
J

caIJg
(2)
J −

∑
a

la
x

∑
J

caIJg
(2)
J,0

)
(16)

with b(3)I being the boundary terms at O(ε3) and

g
(3)
I,G
=

∫ x̄

0
dx

∑
a

la
x

∑
J

caLJg
(2)
J,0

�����
G

(17)
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with the subscript G, indicating that the integral is represented in terms of GPLs (see ancillary files
of reference [33]), following the convention

x̄∫
0

dx
1
x
G

©­­«0, ...0︸︷︷︸
n

; x
ª®®¬ = G

©­­«0, ...0︸︷︷︸
n+1

; x̄
ª®®¬ . (18)

Weight 4: At weight 4, the differential equation (6) can be written in the form:

∂xg
(4)
I =

∑
a

(
∂x log La

) ∑
J

caIJg
(3)
J (19)

which after doubly-subtracting, in order to obtain integrals that are explicitly finite as in (14), is
written as

∂xg
(4)
I =

∑
a

∂x(log La − LLa)
∑
J

caIJg
(3)
J +

∑
a

∂x(LLa)
∑
J

caIJ (g
(3)
J − g

(3)
J,0) +

∑
a

la
x

∑
J

caIJg
(3)
J,0

(20)
where LLa are obtained by expanding log(La) around x = 0 and keeping terms up to order
O

(
log(x)

)
, and

g
(3)
I,0 = g

(3)
I,G
+ b(3)I . (21)

Now, by integrating by parts and using (14) we can write the final result as follows:

g
(4)
I =g

(4)
I,G
+ b(4)I +

(∑
a

log La

∑
J

caIJg
(3)
J

)
−

(∑
a

LLa

∑
J

caIJg
(3)
J,0

)
−

∫ x̄

0
dx

∑
a

(log La − LLa)
∑
J

caIJ
∑
b

lb
x

∑
K

cbJKg
(2)
K,0

−

∫ x̄

0
dx

∑
a

log La

∑
J

caIJ

(∑
b

(∂x log Lb)
∑
K

cbJKg
(2)
K −

∑
b

lb
x

∑
K

cbJKg
(2)
K,0

)
(22)

with a, b running over the set of contributing letters, I, J,K running over the set of basis elements,
b(4)I being the boundary terms at O(ε4) and

g
(4)
I,G
=

∫ x̄

0
dx

(∑
a

la
x

∑
J

caIJg
(3)
J,0

)�����
G

(23)

where the subscript G indicates that the integral is represented in terms of GPLs (see ancillary files
of reference [33]), following (18).

Numerical results concerning all planar and hexabox families based on the SDE can be found
in references [22, 33].

5. Conclusions

The frontier of precision calculations at NNLO currently targets 2 → 3 scattering process
involving massless propagators and one off-shell external particle. At the level of FI, all planar two-
loop MI have been recently computed through the solution of canonical DE both numerically [18],

7



P
o
S
(
L
L
2
0
2
2
)
0
2
1

Progress in two-loop Master Integrals computation

via generalised power series expansions, and analytically in terms of GPLs up to weight 4 [22], using
the SDE approach [24]. More recently, results in terms of Chen iterated integrals were presented
and implemented in the so-called pentagon functions [25].

Concerning the two-loop non-planar topologies, these can be classified into the three so-
called hexabox topologies and two so-called double-pentagons, see figure 1. One of the hexabox
topologies, denoted as N1 in figure 1, was calculated numerically a few years ago using an approach
which introduces a Feynman parameter and uses analytic results for the sub-topologies that are
involved [32]. More recently, pure bases for the three hexabox topologies satisfying DE in d log
form were presented in reference [19] and solved numerically using the same methods as in [18].

In this presentation we addressed the calculation of the three two-loop hexabox topologies,
N1, N2, N3 in figure 1, using the SDE approach [33].. For the N1 family results up to weight 4 in
terms of GPLs are obtained. For the N2 and N3 families we have established an one-dimensional
integral representation involving up to weight-2 GPLs. This allows to extend the scope of the SDE
approach when non-factorizable square roots appear in the alphabet [33]. We have also introduced
a new approach to compute the boundary terms directly for the basis elements, that significantly
reduces the complexity of the problem. With these new developments, we hope to complete the full
set of five-point one-mass two-loopMI families in the near future and provide a solid implementation
for their numerical evaluation.
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