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1. Introduction

While remarkable progress has been made in the last few decades concerning our knowledge of
hadronic structure, a number of open questions still remains. An example is the proton spin puzzle
[1–4], which represents our ignorance of how the spins and angular momenta of quarks and gluons
conspire to make the proton a spin-1/2 fermion. At the experimental level, one can gain insight
into the hadronic structure by scattering electrons off protons at high energies. It is instructive to
consider both inclusive processes, like inclusive deep-inelastic scattering (DIS), and exclusive ones,
like deeply-virtual Compton scattering (DVCS), as they provide access to different properties of
partonic interactions and distributions within hadrons. Experimental studies were performed e.g. by
HERA [5, 6] in the past, and will continue e.g. with the planned Electron Ion Collider [7, 8]. On the
theoretical side, the hadronic structure can be analyzed by studying matrix elements of composite
operators, as these are related to parton distributions. Well-known examples are the standard parton
distribution functions (PDFs) for inclusive processes and generalized parton distribution functions
(GPDs) for exclusive ones. These distributions are universal quantities, in the sense that they do not
depend on the specific process under consideration. Unfortunately, as the matrix elements are to be
taken with respect to hadronic states, they can not be calculated using perturbation theory. Hence
they have to be fitted to experimental data or studied using non-perturbative methods like lattice
QCD, see e.g. [4, 9–15] for recent progress. However, the scale dependence of the distributions can
be determined in perturbation theory as an expansion in the strong coupling UB, as it is controlled
by the anomalous dimensions of the operators which define them. These anomalous dimensions
are computed by renormalizing the partonic matrix elements of the operators.

Our focus will be on exclusive processes, for which the operator anomalous dimensions are
determined by renormalizing non-forward partonic operator matrix elements (OMEs), i.e. the
initial and final state partons have different momenta. This implies that the operators can mix under
renormalization with total derivative ones, for which a basis has to be chosen. This then leads to an
anomalous dimension matrix (ADM). While the diagonal elements of the ADM simply correspond
to the forward anomalous dimensions, which are well-known from the study of inclusive processes
[16–35], the off-diagonal elements only appear for exclusive processes and require a separate
calculation.

In the present article, we review the determination of the ADM for flavor non-singlet quark
operators in the leading-= 5 limit. For this, we follow the method introduced in [36], in which it was
shown that the entries of the ADM have to obey a consistency relation. This relation was derived
by analyzing the renormalization structure of the operators in the chiral limit, and can be used
to bootstrap the off-diagonal elements. Furthermore, we present a way to extract the leading-= 5
anomalous dimensions to all orders in perturbation theory. The method is based on exact conformal
symmetry near the Wilson-Fisher fixed point and extends previous calculations of the same type in
forward kinematics [21, 26].

The article is organized as follows. First we introduce the operators and their evolution under
scale variations. Next we briefly summarize the method to compute the off-forward anomalous
dimensions in the leading-= 5 limit. We then apply this method to three types of operators, which
are distinguished by their Dirac structure. The next section provides a way to generate all-order
expressions for the elements of the ADM, and we finish with concluding remarks in Section 6.
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2. Theoretical framework
We consider the renormalization of flavor non-singlet quark operators, which are defined as

O = Sk_UΓ�a1 . . . �a#k. (1)

Here �` = m` − 86B�` is the QCD covariant derivative and _U the generators of the SU(= 5 ) flavor
group. As we are interested in the leading-twist operators only, we symmetrize the Lorentz indices
and subtract the traces, which is denoted by S. Depending on the Dirac structure, generically
represented by Γ here, the operators in Eq.(1) describe different physical phenomena. Three cases
which are relevant for phenomenology are

• Γ = W` corresponding to Wilson operators,

• Γ = f`a ≡ 1
2 [W`, Wa] for transversity operators and

• Γ = W5W` in the case of polarization.

Depending on the kinematics of the process, hadronic matrix elements of the Wilson operators are
related to PDFs or GPDs. The first characterize the longitudinal momentum and polarization carried
by partons within hadrons, and are accessible e.g. in inclusive DIS. The latter provide information
on transverse distributions of the partons, and are accessible in exclusive processes like DVCS
[37, 38]. When considering a transversly polarized nucleon, the forward hadronic matrix elements
of the transversity operator measure the difference in probabilities of finding a parton within the
nucleon polarized in the same direction as the nucleon spin and finding a parton polarized in the
opposite direction. They are relevant for hadronic processes like the polarized Drell-Yan process
[20, 39–42]. The corresponding non-forward matrix elements are accessible e.g. in vector meson
production and are related to transverse distribution amplitudes (DAs), which measure the parton
distribution within the meson [38, 43]. Finally, matrix elements of polarized operators give rise
to polarized PDFs in forward kinematics and polarized GPDs and DAs in off-forward kinematics.
Examples of relevant processes are longitudinally polarized DIS [44] and WW∗ → c0 transitions
[45–48].

The scale dependence of the distributions is determined by the scale dependence of their
defining operators, which is set by their anomalous dimension,

d[O]
d ln `2 = W [O] . (2)

The square brackets denote renormalized operators. Such operator anomalous dimensions can be
calculated perturbatively in the strong coupling 0B = UB/(4c),

W ≡ 0BW (0) + 02
BW
(1) + . . . , (3)

by renormalizing the partonic matrix elements of the operators in Eq.(1). For exclusive processes,
these matrix elements are non-forward, i.e. the initial and final state parton have different momenta.
This means that the operators in Eq.(1) mix under renormalization with total derivative ones. A
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basis then has to be selected for these additional operators. In this paper we exclusively use the total
derivative basis [36, 49–53], in which the operators are generically written as

OD?,@,A = (Δ · m) ?
{
(Δ · �)@k (Δ · Γ) (Δ · �)Ak

}
. (4)

We have contracted the operators with a tensor Δ`1 . . .Δ`#+1 whose components are lightlike,
Δ2 = 0, to select the leading-twist contributions. The renormalization of the operators in Eq.(1),
including total derivatives, then follows

OD
:,0,# =

#∑
9=0

/D# ,#− 9 [O
D
:+ 9 ,0,#− 9] . (5)

In the chiral limit, operators of the form OD
:,# ,0 renormalize with exactly the same /-factors, i.e.

OD
:,# ,0 =

#∑
9=0

/D# ,#− 9 [O
D
:+ 9 ,#− 9 ,0] . (6)

The elements of the anomalous dimension matrix are then defined as

WD
# ,:

= −(/D# , 9)
−1

d /D
9 ,:

d ln `2 . (7)

The diagonal elements, : = # , correspond to the forward anomalous dimensions. They determine
the scale dependence of forward distributions through the DGLAP equation [54–56]

d 5NS(G, `2)
d ln `2 =

∫ 1

G

dH
H
%NS(H) 5NS

( G
H
, `2

)
. (8)

Here 5NS denotes a generic forward distribution and %NS the corresponding splitting function, which
is related to the operator anomalous dimension by a Mellin transform

W# ,# = −
∫ 1

0
dG G# %NS(G). (9)

Note that we can omit the superscript D here, as the diagonal elements do not depend on the
basis chosen for total derivative operators. Similarly, the off-diagonal elements WD

# ,:
with : ≠ #

determine the scale dependence of off-forward distributions through the ERBL equation [57–60]

dq(G, `2)
d ln `2 =

∫ 1

0
dH + (G, H)q(H, `2) (10)

with q a generic non-forward distribution. The kernel+ (G, H) is related to the anomalous dimensions
through [61]

#∑
:=0

WD
# ,:

H: = −
∫ 1

0
dG G# + (G, H). (11)
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3. Method
It was shown in [36] that, in the chiral limit, the anomalous dimensions have to obey the

following consistency relation

WD
# ,:

=

(
#

:

) #−:∑
9=0
(−1) 9

(
# − :
9

)
W 9+:, 9+: +

#∑
9=:

(−1):
(
9

:

) #∑
;= 9+1
(−1);

(
#

;

)
WD
;, 9
. (12)

This is valid to all orders in 0B and allows one to reconstruct the off-diagonal part of the ADM
based on the knowledge of the forward anomalous dimensions and the last column WD

# ,0. The latter
was shown in [36] to be related to the bare matrix elements of the operators in Eq.(1).

We now focus our attention on the leading-= 5 limit, which leads to some important simplifica-
tions. First, only harmonic sums with positive indices appear in the expressions for the anomalous
dimensions, which makes the sums in Eq.(12) easier to handle1. Second, when the order in the
strong coupling is increased by one, the maximum weight of the leading-= 5 term also just increases
by one. It turns out that, because of these simplifications, the majority of terms in the !-loop
anomalous dimensions can be predicted from the structure of the (!−1)-result. For example, when
the !-loop anomalous dimension has a term proportional to 1

#+2 , the corresponding expression at
the (! + 1)-loop level will have a term 10

(#+2)2 with 10 =
2
3= 5 . A more complete set of such rules

can be found in [36]. Only a small number of unknowns then remains, which can be fixed by the
consistency relation in Eq.(12).

4. Results
For the Wilson operators, the leading-= 5 anomalous dimensions were calculated in [36] to

order 04
B by combining a Feynman diagram calculation with the consistency relation in Eq.(12).

The Z# -independent part, with Z# the Riemann-zeta function with argument # , of the five-loop
expression was then determined using the method described above. However, the same method
also applies to terms proportional to Z# . As illustration, consider the four-loop Z3 term, which was
calculated in [36] to be

W
D, (3)
# ,:

����
Z3

=
32
27
=3
5 �� Z3

(
1

# + 2
− 1
# − :

)
. (13)

We then expect the corresponding five-loop expression to be of the form

W
D, (4)
# ,:

����
Z3

=
32
27
=4
5 �� Z3

{
2
3

1
(# + 2)2

+ 2
3
[(1(#) − (1(:)]

(
1

# + 2
− 1
# − :

)}
+ =4

5 �� Z3

(
01
# + 2

+ 02
# + 1

+ 03
# − :

) (14)

with 08 ∈ Q a priori unknown. They can easily be determined however using the consistency
relation Eq.(12). With the five-loop expression for the forward anomalous dimension of [21] we

1The sums can generically be evaluated using concepts of symbolic summation, which are nicely implemented e.g. in
the Mathematica package Sigma [62].
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find

W
D, (4)
# ,:

����
Z3

=
32
27
=4
5 �� Z3

{
2
3

1
(# + 2)2

+ 2
3
[(1(#) − (1(:)]

(
1

# + 2
− 1
# − :

)
− 22

9
1

# + 2
+ 4

3
1

# + 1
+ 10

9
1

# − :

}
.

(15)

Finally, the coefficient of the five-loop Z4 term will be of minimal weight. This means that the
consistency relation combined with the forward anomalous dimension of [21] is enough to fix the
corresponding off-diagonal part and we quickly find

W
D, (4)
# ,:

����
Z4

=
32
27
=4
5 �� Z4

(
1

# + 2
− 1
# − :

)
. (16)

Eqs.(15) and (16) are new results.
Next, the one-loop anomalous dimensions for the transversity operators are extracted from

a Feynman diagram calculation, combined with Eq.(12). The higher-order results can then be
determined using the method described above. This has been applied to order 04

B in [63].
Finally, in the leading-= 5 limit, the forward anomalous dimensions of theWilson operators and

the polarized ones coincide. The corresponding off-forward matrices will then also be the same,
such that the results presented in [36] and above can simply be reused.

5. All-order results
In [21] and [26] the all-order expressions for the Wilson and transversity forward anomalous

dimensions in the leading-= 5 approximation were computed2. The calculation relied on exact
conformal symmetry at the Wilson-Fisher critical point [67], in which case propagators in the
model simply have a power law structure. The anomalous dimensions calculated this way are then
functions of the spacetime dimension � and = 5 . Here we extend this programme to the computation
of the off-diagonal elements of the ADM. Defining

` =
�

2
= 2 − Y (17)

and
[ =

1
= 5

(` − 2) (2` − 1)Γ(2`)
Γ2(`)Γ(` + 1)Γ(2 − `)

(18)

the general expression from which the anomalous dimensions can be extracted is3

WO(I1, I2) =
`(` − 1)

2(` − 2) (2` − 1) [
{ ∫ 1

0
dU

U`−1

U
(2[O(I1, I2)] − [O(IU12, I2)] − [O(I1, I

U
21)])

− (` − X)2
∫ 1

0
dU

∫ U

0
dV (1 − U − V)`−2 [O(IU12, I

V

21)] +
` − 1
`
[$ (I1, I2)]

}
.

(19)

2An independent computation in G-space, based on summation of renormalon-chain insertions, was performed in
[64–66].

3We thank A. Manashov for useful discussions on this subject.
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Here IU12 = I1U + I2U and U = 1 − U. The parameter X in Eq.(19) depends on the Dirac structure
of the operators. Specifically we have X = 1 for Wilson operators and X = 2 for transversity ones.
Note that the operators in Eq.(19) are non-local, i.e. they depend on the two spacetime points I1
and I2. The Y-parameter is understood to be the Wilson-Fisher one, i.e.

Y → Y∗ = −0BV0

����
= 5

=
2
3
= 5 0B . (20)

At present only the $ (0B) term is needed. The forward anomalous dimensions are extracted from
Eq.(19) by replacing

[O(I1, I2)] → (I1 − I2)#−1. (21)

The resulting expressions agree with those in [21, 26]. To extract the off-forward anomalous
dimensions, we use that the non-local operators act as generating functions for local ones [68],

[O(I1, I2)] =
∑
<,:

I<1 I
:
2

<! :!
[k(G) (

←
� ·Δ): (Δ · Γ) (Δ·

→
�)<k(G)] ≡

∑
<,:

I<1 I
:
2

<! :!
[O:,<] . (22)

Here Δ is an arbitrary lightlike vector, Δ2 = 0. Note that the local operators in the right-hand side
can be written as

[O:,<] = [OD0,:,<], (23)

cf. Eq.(4). We now want to rewrite this in terms of operators in which covariant derivatives act
only on the k field as we know how these renormalize, cf. Eq.(6). This can be done by using the
following operator identity4

OD0,#−:,: = (−1):
:∑
9=0
(−1) 9

(
:

9

)
OD
9 ,#− 9 ,0. (24)

In the following we omit the last index on the operators in the right-hand side, abbreviating

OD
9 ,#− 9 ,0 ≡ O

D
9 ,#− 9 . (25)

A simple calculation then leads to the following form for the non-local operator in Eq.(22)

[O(I1, I2)] =
#∑
:=0

:∑
9=0
(−1) 9+:

(
:

9

)
I#−:1 I:2

:!(# − :)! [O
D
9 ,#− 9] . (26)

After substituting into Eq.(19), the resulting integrals can be computed for fixed values of # . Next,
we take the #-th derivative with respect to I1 and take I1, I2 → 0. The expression then takes on
the form

WO(I1, I2) = W# ,# [OD0,# ] + W
D
# ,#−1 [O

D
1,#−1] + W

D
# ,#−2 [O

D
2,#−2] + · · · + W

D
# ,0 [O

D
# ,0], (27)

from which the all-order expressions for WD
# ,:

with : = 0, 1, . . . , # can be read off. We have
checked that we reproduce the correct forward anomalous dimensions computed in [21, 26]. For

4There is a small typo in [36]; Eq.(2.25) there should be replaced by Eq.(24) here.
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the off-forward anomalous dimensions, we agree with our previous calculations presented above
and in [36, 63]. As a non-trivial example, we present here the off-diagonal elements for the spin-four
operators, i.e. WD3,: . Defining

F (0B, = 5 ) = −
23−40B= 5 /3

9c3/2= 5

Γ(5/2 − 20B= 5 /3) sin(2c0B= 5 /3)
Γ(6 − 20B= 5 /3)

(28)

we find

WD3,2 = −4(0B= 5 − 3) [36 + 0B= 5 (20B= 5 − 15)]F (0B, = 5 ), (29)

WD3,1 = 9[18 + 0B= 5 (20B= 5 − 11)]F (0B, = 5 ), (30)

WD3,0 = −24(0B= 5 − 3)F (0B, = 5 ) (31)

for the Wilson operators and

W
D,)
3,2 = (3 − 0B= 5 ) [135 + 80B= 5 (0B= 5 − 6)]F (0B, = 5 ), (32)

W
D,)
3,1 = 9[15 + 0B= 5 (20B= 5 − 7)]F (0B, = 5 ), (33)

W
D,)
3,0 =

−3
20B= 5 − 3

[45 + 40B= 5 (40B= 5 − 9)]F (0B, = 5 ) (34)

for the transversity ones.

6. Conclusion and outlook
We have reviewed the computation of the anomalous dimensions of flavor non-singlet quark

operators, including mixing with total derivative ones, in the large-= 5 limit. This was done in
the total derivative basis, in which the anomalous dimensions have to obey a consistency relation.
The origin of this relation lies in the renormalization structure of the operators in the chiral limit.
Combined with the simple functional form of the leading-= 5 expressions, this then allows one to
recursively construct the anomalous dimension matrices order per order in perturbation theory.

We also presented a way to generate the all-order expressions for the leading-= 5 anomalous
dimension matrices, based on exact conformal symmetry at the Wilson-Fisher fixed point. This
extends previous calculations of the same type by J. Gracey for the forward anomalous dimensions.

It should be noted that the large-= 5 anomalous dimensions are, by themselves, not particularly
useful for phenomenology. However, such results are still important, since (a) they do contribute
to the full expressions in QCD and (b) they can teach us about the structure of the anomalous
dimensions. Moreover, the leading-= 5 calculations can be regarded as proofs-of-concept for the
method based on the consistency relation between off-forward anomalous dimensions. A possible
continuation would then be to apply themethod in the leading-color limit, which typically provides a
good approximation to the full result and hence is phenomenologically relevant. Finally, the method
used for computing the all-order expressions could also be generalized to obtain subleading-= 5
contributions. These aspects are left for future studies.
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