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Axion-like particles (ALPs) are light, pseudoscalar particles that are a beyond-the-standard-model
generalization of the axion. Consequently, they are expected to couple to photons in external
magnetic fields to compensate for spin difference. This coupling would induce modifications
to the gamma-ray spectra of astrophysical sources, such as blazars, via ALP-photon oscillations
in external fields near the source and in the Galactic magnetic field. In this contribution, we
explore ALP-photon oscillation effects in the spectrum of the blazar Markarian 421. This work
was performed using observations of an exceptional gamma-ray flare state from VERITAS and
Fermi-LAT. Using these observations, we investigate constraints on the two parameters defining
the ALP, namely its mass and coupling constant.
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1. Introduction

Axions are a consequence of the CP violating term added to the QCD Lagrangian in Peccei-
Quinn theory as a proposed solution to the strong CP problem. In numerous theories beyond the
standard model, including in string theory, generalized versions of the axion appear, termed "axion-
like particles" (ALPs). ALPs are light, pseudoscalar particles, and like the axion, they are expected
to couple to photons in the presence of an external transverse field component (e.g. a magnetic
field), to necessarily compensate for the photon/ALP spin difference [1]. However, unlike with the
axion, this coupling (𝑔𝑎𝛾) is not related to mass (𝑚𝑎) and thus, ALP parameters are significantly
less theoretically constrained. Certain ranges of ALP mass and coupling strength have the potential
to induce modifications to the gamma-ray spectra of astrophysical sources, such as blazars, via
ALP-photon oscillations in external fields near the source and in the Galactic magnetic field. A
unique consequence is that very-high-energy (VHE; > 100 GeV) gamma rays could circumvent
annihilation with the extragalactic background light (EBL; see, e.g., [2]) by traversing cosmic
distances as oscillated ALPs, leading to reduced opacity. In this work, we use gamma-ray data from
VERITAS and Fermi-LAT of the great Markarian (Mrk) 421 flare of 2010 [3] to search for these
signatures, and to set preliminary constraints on ALP mass and coupling constants. Numerous
studies of this type have been pursued recently [4], including for this source [5].

2. Mrk 421 flare of 2010

Mrk 421 is a high synchrotron-peaked BL Lac (HBL) blazar located at a redshift of 0.031.
During the month of February 2010, an extraordinary flare of ∼ 27 Crab Units above 1 TeV was
measured with the VERITAS observatory (Figure 1), the highest flux state for Mrk 421 ever observed
in VHE gamma rays [3]. Fermi-LAT and VERITAS combined are sensitive in the energy range
0.1 GeV – 30 TeV, and favorably for this flare, exceptional data in the high-energy portion of the
VERITAS spectrum was collected.

Figure 1: Mrk 421’s 2010 flare as seen across several X-ray and gamma-ray instruments, adapted from [3].
The blue shaded date range is the time period selected for use in this study.
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Table 1: Representative blazar jet parameters for Mrk 421 during the 2010 flare, from a one-zone synchrotron
self-Compton model of Mrk 421 adopted for this flaring state by [11], used also in [5]. They are defined
as follows: 𝑟VHE is the distance of the VHE emission site to the central black hole in the jet frame, 𝐵0 the
magnetic field strength at 𝑟VHE, 𝛿D the doppler factor, 𝑛0 the electron density at 𝑟VHE, also in the jet frame,
and 𝜃obs the angle between the jet axis and the line of sight.

𝑟VHE (1017 cm) 𝐵0 (G) 𝛿D 𝑛0 (103 cm−3) 𝜃obs (°)
1 0.092 17 0.825 1.3

3. Data collection and methods

Flare data from both Fermi-LAT and VERITAS was pre-processed in their respective analysis
packages [6, 7] and imported into the gammapy [8, 9] gamma-ray analysis package for a joint spectral
analysis. The null hypothesis models the intrinsic spectrum (Φ𝑖𝑛𝑡 ) as an exponentially cut-off power
law, and includes EBL effects such that Φ𝑜𝑏𝑠,𝑛𝑢𝑙𝑙 (𝐸, 𝑧) = 𝑒−𝜏 (𝐸,𝑧)Φ𝑖𝑛𝑡 (𝐸), where 𝜏(𝐸, 𝑧) is the
EBL optical depth from [2]. The ALP effect is naturally subject to the conditions at the source
environment as well as the choice of 𝑔𝑎𝛾 and 𝑚𝑎. For the alternative hypothesis, the photon survival
probability (𝑃𝛾𝛾), which includes both the ALP effect and the EBL attenuation, can be modelled
using the gammaALPs [10] software package using the blazar jet parameters specified in Table 1,
yielding Φ𝑜𝑏𝑠,𝑛𝑢𝑙𝑙 (𝐸, 𝑧) = 𝑃𝛾𝛾Φ𝑖𝑛𝑡 (𝐸).

4. Simulations and data analysis

Using gammapy, we fit the joint observed spectrum and obtain a WStat fit statistic𝑊 = −2 log 𝐿.
The likelihood 𝐿 is defined to be

𝐿
(
𝑛on, 𝑛off, 𝛼; 𝜇sig, 𝜇bkg

)
=

(
𝜇sig + 𝜇bkg

)𝑛on

𝑛on!
exp

(
−
(
𝜇sig + 𝜇bkg

) )
×

(
𝜇bkg/𝛼

)𝑛off

𝑛off!
exp

(
−𝜇bkg/𝛼

)
where 𝑛on is the number of counts in the on region, 𝑛off is the number of counts in the background
region, 𝛼 is the ratio of acceptances in the on region to the off region, 𝜇sig is the predicted signal
counts, and 𝜇bkg is the predicted background counts1. Following [5], in order to set exclusion
regions on the ALP parameter space, a threshold value 𝑊𝑡ℎ must be defined:

𝑊𝑡ℎ = 𝑊𝑚𝑖𝑛 + Δ𝑊 (1)

where 𝑊𝑚𝑖𝑛 is the minimum best-fit in the 𝑚𝑎 − 𝑔𝑎𝛾 plane, and Δ𝑊 corresponds to a particular
confidence level (CL). Given that the spectral modifications depend nonlinearly on the ALP param-
eters, we derive the value of Δ𝑊 from 400 event count simulations generated from the best-fit null
hypothesis model with fermipy and gammapy. Here, we make the assumption that the probability
distribution of the alternative hypothesis is approximated with the probability distribution of the
null hypothesis [5, 12]. An example of fitting to simulated data is seen in Figure 2, and the Δ𝑊 can
be derived from the 𝑇𝑆 distribution shown in Figure 3, where 𝑇𝑆 = 𝑊𝑛𝑢𝑙𝑙 − 𝑊̂𝑤/𝐴𝐿𝑃𝑠 , and 𝑊𝑛𝑢𝑙𝑙

and 𝑊̂𝑤/𝐴𝐿𝑃𝑠 are the fit statistics of the null and best fit ALP models respectively.

1https://docs.gammapy.org/dev/user-guide/stats/wstat_derivation.html
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Figure 2: Best fit models with and without ALPs to simulated Fermi-LAT and VERITAS spectral data.

Figure 3: TS distribution for 400 simulated and analyzed datasets, fit by a non-central 𝜒2 distribution with
4.7 degrees of freedom and a non-centrality parameter of 0.39. Δ𝑊 for the 95% and 99% confidence levels
are extracted from the cumulative density function (CDF) of the fitted distribution.

5. Results

As shown in Figure 3, we find the 95% and 99% confidence levelΔ𝑊 values to be 11.5 and 15.7
respectively. 𝑊𝑚𝑖𝑛 for the parameter space examined is found to be 37.6. Thus, using Equation 1,
the 95% and 99% 𝑊𝑡ℎ are determined to be 49.1 and 53.3 respectively. From these, we are able
to preliminarily exclude certain regions of the 𝑚𝑎 − 𝑔𝑎𝛾 space, as shown in Figure 4, where the
95% and 99% 𝑊𝑡ℎ confidence levels discussed above have been traced out as contours. The 95%
limits on axion-photon interactions set by CAST at 𝑔𝑎𝛾 < 0.66 × 10−10GeV−1 are also shown as a
reference point, and may be easily compared to the figures shown in [13].
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Figure 4: The 𝑊 fit statistic shown in 𝑚𝑎 − 𝑔𝑎𝛾 space with the 95% and 99% CL contours demarcating the
preliminary exclusion regions.
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6. Summary

The extremely high flux state of Mrk 421’s February 2010 flare makes this dataset potentially
impactful. However, many sources of uncertainty affect this calculation, including the uncertainty
of high energy flux points with VERITAS, uncertainty of EBL models in this energy range, and
uncertainties in the magnetic field of the blazar jet. Until these can be properly considered in
continued studies, these results must necessarily be considered preliminary. Nevertheless, we note
that the preliminary results are consistent with the findings of previous analyses to date [13].
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