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The kilonova AT2017gfo that resulted from the merger of two neutron stars has provided new
insights into the rapid neutron capture process that is responsible for producing many of the nuclei
that are heavier than iron. As with supernovae, progress in understanding kilonova spectra can be
achieved either by using simplified models to connect spectral features with particular elements,
or by attempting to construct detailed simulations that capture all of the relevant physics. In
the forward modelling approach, we require a theoretical simulations of the merger and ejection
physics, r-process nucleosynthesis, radioactive energy deposition, and radiative transfer. We
plan to calculate synthetic spectra for a three-dimensional merger and r-process nucleosynthesis
simulation using the ARTIS Monte Carlo radiative transfer code. Here, we describe current
progress in developing the code to handle energy deposition from 𝛽- and 𝛼-decay reactions and
thermalisation of decay particles.
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1. Introduction

The gravitational wave signal GW170817 from a merger of two neutron stars has been com-
plemented by a rich dataset of electromagnetic signals from the associated kilonova, AT2017gfo1,2.
Simple analysis of the luminosity decline rate of AT2017gfo indicates decaying material that has
undergone rapid neutron captures, a regime responsible for producing many of the elements beyond
Fe.

The time-series spectra of the kilonova in the first few days after the merger in principle provide
a high level of detail about the ejecta composition and physical conditions, if we have the tools to
interpret them. Detailed interpretation of these spectra requires knowledge of a large amount of
relevant atomic and nuclear data, and numerical modelling tools to make the connections between
the initial conditions, subsequent evolution, and the emitted spectra for comparison to observations.

2. NSM model and radiative transfer method

To produce synthetic light curves (in future, spectra), we compute radiative transfer for a
neutron star merger (NSM) simulation of two 1.35 M⊙ neutron stars. The NSM has been calculated
with a 3D general relativistic smoothed-particle hydrodynamics code that includes an advanced
neutrino treatment, ILEAS3 and the nuclear abundances are calculated as a post-processing step
with an advanced r-process network. Three-dimensional radiative transfer calculations for the same
NSM simulation have been published4. Here, we also use the Planck-mean opacities as a function
of electron fraction by Tanaka et al.5, but we enforce spherical symmetry on the model to simplify
the computational requirements while developing more advanced decay and thermalisation physics.

We use the Monte Carlo radiative transfer code ARTIS6–8, with extended capabilities to handle
kilonova ejecta. ARTIS handles energy deposition by tracking radioactive decay reactions that
follow from an initial snapshot of the composition and density throughout the model (in this work,
0.05 days after merger). The snapshot abundances are taken from a calculation with a detailed
nuclear network, as the complex nuclear reactions other than simple decays mostly take place
within the first few minutes after the merger. The density profile is taken from the hydrodynamic
model, after which which ejecta are assumed to evolve simply by homologous (ballistic) expansion.
This avoids the need for expensive calculations of hydrodynamics to be performed simultaneously
with the radiative transfer.

In contrast with thermonuclear supernovae, which require electron-capture and 𝛽+ decays from
just a few nuclei, treating the decays of the NSM material from 0.05 days requires thousands of 𝛼 and
𝛽− reactions. Models presented here use 2591 nuclides with 𝛼 and 𝛽− reaction data (gamma-decay
spectra and mean emitted particle kinetic energy) from ENDV/B-VII.19∗. This set of decays (and
the solution of the Bateman equation) series is able to maintain close tracking of the energy release
rates from the full network calculation (see Figure 1).

We use 𝛼 and 𝛽-particle loss rate approximations that are a constant factor of the density by
Barnes et al.10. The initial kinetic energy of each emitted 𝛼 and 𝛽-particle is set by the average
particle energy for the particular decay reaction that emitted the particle. It is assumed that magnetic
fields keep the particles from crossing significant fraction of the ejecta before losing their energy.

∗conveniently redistributed via https://github.com/hotokezaka/HeatingRate
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Radioactive decay power ARTIS vs full network
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but contribution is small
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Figure 1: Comparison of energy release rates of the ARTIS treatment versus the output of the full nuclear
network calculation. The tracking error remains small, and although fission reactions are not included, this
has a negligible effect on the total energy release rates during the simulation.

In our treatment, the 𝛽 and 𝛼 particles thermalise over time and deposit their energy locally at the
same location as they were emitted.

3. Results

The time evolution of thermalisation ratios in Figure 2 show reasonable agreement between
our model and the analytical approximation of Barnes et al10. One difference compared to the
analytical prediction is that we find a larger variation between the 𝛼 and 𝛽-particle thermalisation
ratios, with 𝛽-particles being more efficiently thermalised in our model.

The bolometric light curve of the model is shown in Figure 3. The luminosity initially declines
gradually in the optically-thick phase, followed by a change in slope near the transition to the
free-streaming regime (virtually no gamma deposition or photon trapping). Beyond this transition
point, the luminosity converges to the 𝛽-particle deposition rate.

The bolometric luminosity of our model is much lower than AT2017gfo, mainly because our
total mass (with only dynamical ejecta) of 0.005 M⊙ is about ten times lower than the estimated
mass of AT2017gfo1. It is interesting to observe the changes when simply multiplying the densities
by a factor of ten to obtain a total mass similar to that inferred for AT2017gfo. Figure 4 shows such
a model, and the transition to free-streaming now takes place at a later time is quite similar to the
change in slope of the AT2017gfo light curve.

4. Future work

The models presented here use a simple wavelength-independent (‘grey’) opacity as a function
of the electron fraction. We will soon present models that use a Sobolev treatment for tens of

3
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Thermalisation results and Barnes+ (2016) approximation

•Deposition time from average particle energy per 
nuclear decay and approximate loss rate (4e10*⍴/(g 
cm-3) [MeV/s] for beta, 5e11*⍴/(g cm-3) for alpha) particle 
deposition occurs after emission, but in the same 
location.

• Deposition is local (no escape). Assumed to be trapped 
by magnetic fields.

• (preliminary) Right: compare this to the Barnes+16 
analytical approximation (one-zone sphere and typical 
beta, alpha energy of 1, 5 MeV/decay)
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4.1. Analytic Estimates of Thermalization Timescales

The net thermalization of the energy from the radioactive
decay of r-process material depends on the relative importance
of each decay channel and on how efficiently the decay
products thermalize in the ejecta. Energy-loss rates depend on
the density of the medium, so thermalization is also a function
of Mej and vej. If we approximate the ejecta as a uniform density
sphere of mass Mej and kinetic energy =E M v 2k ej ej

2 , the
density is

r » ´ - - - -t M v t7.9 10 g cm , 1515
5 2

3
d

3 3( ) ( )
where again, = ´ -

M M M5.0 105 ej
3 and =v v c0.22 ej .

Thermalization becomes inefficient at a time, tineff, when the
timescale for a particle to thermalize becomes similar to the
ejecta expansion timescale, texp. The inefficiency time can be
compared to the peak of the kilonova light curve,

⎛
⎝⎜

⎞
⎠⎟

k
~ -t A

M

v c
M v4.3 days, 16peak

ej

ej

1 2

5
1 2

2
1 2 ( )

where κ is the opacity for optical/infrared light (we take
κ=10cm2g−1, appropriate for an r-process medium), and
A=0.32 is a scaling factor we estimate from kilonova
radiation transport simulations (e.g., Barnes & Kasen 2013).
If tineff<tpeak, thermalization will impact the kilonova light
curve significantly.

g-rays: γ-rays stop thermalizing efficiently when they can
escape the ejecta without undergoing any scatters or absorp-
tions. This occurs when the optical depth t rk» gRej falls
below unity. For g-rays with energies gE 1 MeV, the
relevant opacity is the Compton opacity, κC≈5×10−2 cm2

g−1 while the photoionization opacity, κPI  1 cm2 g−1,
dominates for lower energy photons. The ejecta becomes
transparent (τ< 1) to g-rays at a time
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In both cases, inefficiency sets in before the kilonova light
curve peaks,
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b-particles: The energy-loss rate for b-particles, modulo
mass density, has a fairly constant value

r´b
-E 4 10 MeV s10 1˙ over a broad range of energies

(see Figure 6). The thermalization time for b-particles is
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where bE ,0 is the initial b-particle energy.
Beta particles trapped in the ejecta fail to efficiently

thermalize when tth texp, which occurs at
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For a typical initial energy, tineff is comparable to the rise time
of the light curve,
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If the magnetic field is radial or only slightly tangled,
b-particles can escape the ejecta before they thermalize, and
escape will significantly reduce the thermalization efficiency.
The escape time is

l b



t

R t

v
, 22esc

ej

,

( ) ( )

where λRej is the coherence length of the magnetic field, b v , is
the component of the b-particle velocity parallel to the field
lines, and we have modeled the b’s motion in a random field as
a random walk of step size lRej. For a b-particle with

=bE 0.5 MeV,0 and pitch angle 1 ( =b bv v, ), tesc is less than tth
when


l

-

t
M v3.5

days. 235
1 2

2
1

1 2
( )

For radial fields (λ= 1), this is less than tpeak, so escape is
important for b-particle thermalization. In contrast, for
disordered fields there is a degree of randomness above which
b-particle escape cannot significantly impact the light curve.
This limit is defined by the condition tth(tpeak)<tesc(tpeak).
Again considering a 0.5 MeV b-particle, we find

l<  -t t t t v0.8 . 24th peak esc peak 2
1( ) ( ) ( )

Thus, high-energy b-particles are effectively trapped by even a
slightly tangled magnetic field.
α-particles and fission fragments: Fission fragments and

a-particles are emitted with greater energies than b-particles
( a E 6 MeV;,0 Eff,0 ; 100 MeV), but have higher energy-loss
rates ( r~ ´a aE E 5 10,0

11˙ ( ) MeV s−1; ~E Eff ff,0˙ ( )
r´5 1013 MeV s−1). The efficiency of a-particle therma-

lization is similar to that of b particles, while fission fragments
thermalize efficiently out to very late times:
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2
1
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( )

Unlike b-particles, both a’s and fission fragments have
velocities much lower than vej, and so in general cannot escape
the ejecta. However, because these particles are propagating
through a steep velocity gradient, their speed relative to the
background gas continually decreases. This reduces the kinetic
energy of the particles as measured in the co-moving frame.
Because the particles have a spiraling motion about magnetic
field lines, their motion is never completely frozen out in the
fluid frame. Still, these “frame-to-frame” effects can reduce
thermalization by 15%.

4.2. Summary of Thermalization Timescales

While low-energy b-particles, a-particles, and especially
fission fragments typically thermalize efficiently at t=tpeak,
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Barnes+16 analytical result

the thermalization at peak of high-energy b-particles and
g-rays is not robust. Figure 8 plots the ratio of the
thermalization time to the light curve peak for all particles as
a function of initial energy for a range of vej. For a- and
b-particles, we calculated tineff/tpeak from Equations (25) and
(21). The g-ray curve was calculated from Equation (18) for

gE 200 keV, (18) for gE 1 MeV, and a simple linear
interpolation for intermediate gE . For fission fragments, we
modified Equation (25) slightly to account for the positive
slope of Eff˙ in the range Eff=100–150MeV. This renders Eff˙
approximately constant, so the fission fragment curve is
essentially flat.

4.3. Analytic Thermalization Model

We develop an analytic expression for time-dependent
thermalization efficiencies of massive particles under the
following assumptions: first, that the radioactive energy-
generation rate evolves as h-t with h = 1.0 (close to the
expected values h = 1.1 1.4– ); second, that the density in the
ejecta is spatially uniform; third, that energy-loss rates are
independent of particle energy, and depend only on ρ; and
fourth, that all particles of a given type are emitted at a single
energy E0. Despite these simplifications, we find our model
agrees fairly well with the detailed numerical calculations to be
presented in Section 5.

The thermalization efficiency is defined as the ratio of energy
emitted by radioactive processes to energy absorbed by the
ejecta at any time t,

=f t
E t
E t

. 26th

rad
( ) ˙ ( )

˙ ( ) ( )

We approximate the radioactive energy-generation rate by
=E t trad 0 0˙ ˙ ( ) with  = M100

11
ej˙ ergs s−1 and =t 10 day.

Assuming charged particle thermalization depends only on
mass density (which declines like -t 3 in a homologous flow),

the energy loss is

⎛
⎝⎜

⎞
⎠⎟yr=
-

E t
t
t

, 27part 0
0

3˙ ( ) ( )

where r0 is the density at t0, and ψ is a scaling factor such that
yr = E t0 part 0˙ ( ), which will be unique to each particle type. The
rate at which energy is thermalized, E tth˙ ( ), is given by the
number of live particles N multiplied by the rate at which they
lose energy,

⎛
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⎞
⎠⎟yr= ´
-

E t N t
t
t

. 28th 0
0

3˙ ( ) ( ) ( )

At any time t, the oldest live particle originates from an earlier
time ti, defined by
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E t E
t
t
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t

t
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which is satisfied by
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. 30i
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The number of live particles at time t is then

⎡
⎣
⎢⎢
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
= +N t
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E

t
t2

ln 1 2 310 0

0 ineff

2

( ) ˙ ( )

where tineff is the inefficiency timescale defined in the previous
section.
It is now straightforward to calculate the ratio fp of

thermalized to emitted energy for a massive particle of type p,

⎡
⎣⎢

⎤
⎦⎥

= =
+

f t
E
E

ln 1 2

2
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t
t
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2

2
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( )
( )( ) ˙

˙ ( )

Equation (32) can be used to estimate the thermalization
efficiencies of massive particles, where the relevant timescales
tineff,p are given by Equations (21) (b-particles), (25)
(a-particles), and (25) (fission fragments).
For g-rays, the thermalization efficiency is approximately

equal to the interaction probability: » -g
t-f t e1 .( ) We can

estimate the optical depth t rk» gRej using kg¯ , the g-ray
opacity averaged over the emission spectrum. Optical depth is
related to gtineff, by

⎜ ⎟
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Figure 9 shows our analytic thermalization functions for
= ´ -

M M5 10ej
3 , and =v c0.2ej , using the expressions for

tineff derived in Section 3. For massive particles, we used

Figure 8. Ratio tineff/tpeak for all particles, for vej in the range 0.1c–0.3c. Fission
fragments, and to a lesser extent a-particles and low-energy b -particles,
thermalize efficiently out to late times. Higher energy b’s and g -rays are
expected to become inefficient on kilonova timescales. The width of the curves
is due to the range of vej considered, since tineff/tpeak varies inversely with vej.
Curves for the fiducial velocity vej=0.2c are overplotted in dotted black lines.
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4.1. Analytic Estimates of Thermalization Timescales

The net thermalization of the energy from the radioactive
decay of r-process material depends on the relative importance
of each decay channel and on how efficiently the decay
products thermalize in the ejecta. Energy-loss rates depend on
the density of the medium, so thermalization is also a function
of Mej and vej. If we approximate the ejecta as a uniform density
sphere of mass Mej and kinetic energy =E M v 2k ej ej

2 , the
density is

r » ´ - - - -t M v t7.9 10 g cm , 1515
5 2

3
d

3 3( ) ( )
where again, = ´ -

M M M5.0 105 ej
3 and =v v c0.22 ej .

Thermalization becomes inefficient at a time, tineff, when the
timescale for a particle to thermalize becomes similar to the
ejecta expansion timescale, texp. The inefficiency time can be
compared to the peak of the kilonova light curve,

⎛
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M v4.3 days, 16peak

ej

ej

1 2

5
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2
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where κ is the opacity for optical/infrared light (we take
κ=10cm2g−1, appropriate for an r-process medium), and
A=0.32 is a scaling factor we estimate from kilonova
radiation transport simulations (e.g., Barnes & Kasen 2013).
If tineff<tpeak, thermalization will impact the kilonova light
curve significantly.

g-rays: γ-rays stop thermalizing efficiently when they can
escape the ejecta without undergoing any scatters or absorp-
tions. This occurs when the optical depth t rk» gRej falls
below unity. For g-rays with energies gE 1 MeV, the
relevant opacity is the Compton opacity, κC≈5×10−2 cm2

g−1 while the photoionization opacity, κPI  1 cm2 g−1,
dominates for lower energy photons. The ejecta becomes
transparent (τ< 1) to g-rays at a time
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In both cases, inefficiency sets in before the kilonova light
curve peaks,
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b-particles: The energy-loss rate for b-particles, modulo
mass density, has a fairly constant value

r´b
-E 4 10 MeV s10 1˙ over a broad range of energies

(see Figure 6). The thermalization time for b-particles is
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where bE ,0 is the initial b-particle energy.
Beta particles trapped in the ejecta fail to efficiently

thermalize when tth texp, which occurs at
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For a typical initial energy, tineff is comparable to the rise time
of the light curve,
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If the magnetic field is radial or only slightly tangled,
b-particles can escape the ejecta before they thermalize, and
escape will significantly reduce the thermalization efficiency.
The escape time is

l b



t

R t

v
, 22esc

ej

,

( ) ( )

where λRej is the coherence length of the magnetic field, b v , is
the component of the b-particle velocity parallel to the field
lines, and we have modeled the b’s motion in a random field as
a random walk of step size lRej. For a b-particle with

=bE 0.5 MeV,0 and pitch angle 1 ( =b bv v, ), tesc is less than tth
when


l
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t
M v3.5

days. 235
1 2

2
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1 2
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For radial fields (λ= 1), this is less than tpeak, so escape is
important for b-particle thermalization. In contrast, for
disordered fields there is a degree of randomness above which
b-particle escape cannot significantly impact the light curve.
This limit is defined by the condition tth(tpeak)<tesc(tpeak).
Again considering a 0.5 MeV b-particle, we find

l<  -t t t t v0.8 . 24th peak esc peak 2
1( ) ( ) ( )

Thus, high-energy b-particles are effectively trapped by even a
slightly tangled magnetic field.
α-particles and fission fragments: Fission fragments and

a-particles are emitted with greater energies than b-particles
( a E 6 MeV;,0 Eff,0 ; 100 MeV), but have higher energy-loss
rates ( r~ ´a aE E 5 10,0

11˙ ( ) MeV s−1; ~E Eff ff,0˙ ( )
r´5 1013 MeV s−1). The efficiency of a-particle therma-

lization is similar to that of b particles, while fission fragments
thermalize efficiently out to very late times:

⎜ ⎟

⎜ ⎟

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

aa
-

-

-
-

t
t

E
v

E
v

1.8
6 MeV

particles

3.9
125 MeV

fiss. fragments.

25ineff

peak

,0
1 2

2
1

ff,0
1 2

2
1

‐
( )

Unlike b-particles, both a’s and fission fragments have
velocities much lower than vej, and so in general cannot escape
the ejecta. However, because these particles are propagating
through a steep velocity gradient, their speed relative to the
background gas continually decreases. This reduces the kinetic
energy of the particles as measured in the co-moving frame.
Because the particles have a spiraling motion about magnetic
field lines, their motion is never completely frozen out in the
fluid frame. Still, these “frame-to-frame” effects can reduce
thermalization by 15%.

4.2. Summary of Thermalization Timescales

While low-energy b-particles, a-particles, and especially
fission fragments typically thermalize efficiently at t=tpeak,
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the thermalization at peak of high-energy b-particles and
g-rays is not robust. Figure 8 plots the ratio of the
thermalization time to the light curve peak for all particles as
a function of initial energy for a range of vej. For a- and
b-particles, we calculated tineff/tpeak from Equations (25) and
(21). The g-ray curve was calculated from Equation (18) for

gE 200 keV, (18) for gE 1 MeV, and a simple linear
interpolation for intermediate gE . For fission fragments, we
modified Equation (25) slightly to account for the positive
slope of Eff˙ in the range Eff=100–150MeV. This renders Eff˙
approximately constant, so the fission fragment curve is
essentially flat.

4.3. Analytic Thermalization Model

We develop an analytic expression for time-dependent
thermalization efficiencies of massive particles under the
following assumptions: first, that the radioactive energy-
generation rate evolves as h-t with h = 1.0 (close to the
expected values h = 1.1 1.4– ); second, that the density in the
ejecta is spatially uniform; third, that energy-loss rates are
independent of particle energy, and depend only on ρ; and
fourth, that all particles of a given type are emitted at a single
energy E0. Despite these simplifications, we find our model
agrees fairly well with the detailed numerical calculations to be
presented in Section 5.

The thermalization efficiency is defined as the ratio of energy
emitted by radioactive processes to energy absorbed by the
ejecta at any time t,

=f t
E t
E t

. 26th

rad
( ) ˙ ( )

˙ ( ) ( )

We approximate the radioactive energy-generation rate by
=E t trad 0 0˙ ˙ ( ) with  = M100

11
ej˙ ergs s−1 and =t 10 day.

Assuming charged particle thermalization depends only on
mass density (which declines like -t 3 in a homologous flow),

the energy loss is

⎛
⎝⎜

⎞
⎠⎟yr=
-

E t
t
t

, 27part 0
0

3˙ ( ) ( )

where r0 is the density at t0, and ψ is a scaling factor such that
yr = E t0 part 0˙ ( ), which will be unique to each particle type. The
rate at which energy is thermalized, E tth˙ ( ), is given by the
number of live particles N multiplied by the rate at which they
lose energy,

⎛
⎝⎜

⎞
⎠⎟yr= ´
-

E t N t
t
t

. 28th 0
0

3˙ ( ) ( ) ( )

At any time t, the oldest live particle originates from an earlier
time ti, defined by

⎛
⎝⎜

⎞
⎠⎟ò yr= -
¢

¢ =
-

E t E
t
t

dt 0, 29
t

t

part 0 0
0

3

i

( ) ( )

which is satisfied by

⎛
⎝⎜

⎞
⎠⎟

yr
yr

=
+

t
t t

E t t2
. 30i

0 0
3 2

0
2

0 0
3

1 2

( )

The number of live particles at time t is then

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
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
= +N t

t
E

t
t2

ln 1 2 310 0

0 ineff

2

( ) ˙ ( )

where tineff is the inefficiency timescale defined in the previous
section.
It is now straightforward to calculate the ratio fp of

thermalized to emitted energy for a massive particle of type p,

⎡
⎣⎢

⎤
⎦⎥

= =
+

f t
E
E

ln 1 2

2
. 32

t
t

t
t

p
th

rad

2

2

ineff,p

ineff,p

( )
( )( ) ˙

˙ ( )

Equation (32) can be used to estimate the thermalization
efficiencies of massive particles, where the relevant timescales
tineff,p are given by Equations (21) (b-particles), (25)
(a-particles), and (25) (fission fragments).
For g-rays, the thermalization efficiency is approximately

equal to the interaction probability: » -g
t-f t e1 .( ) We can

estimate the optical depth t rk» gRej using kg¯ , the g-ray
opacity averaged over the emission spectrum. Optical depth is
related to gtineff, by

⎜ ⎟
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so

⎡
⎣
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⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥= - -g

g

-

f t
t

t
1 exp . 33

ineff,

2

( ) ( )

Figure 9 shows our analytic thermalization functions for
= ´ -

M M5 10ej
3 , and =v c0.2ej , using the expressions for

tineff derived in Section 3. For massive particles, we used

Figure 8. Ratio tineff/tpeak for all particles, for vej in the range 0.1c–0.3c. Fission
fragments, and to a lesser extent a-particles and low-energy b -particles,
thermalize efficiently out to late times. Higher energy b’s and g -rays are
expected to become inefficient on kilonova timescales. The width of the curves
is due to the range of vej considered, since tineff/tpeak varies inversely with vej.
Curves for the fiducial velocity vej=0.2c are overplotted in dotted black lines.
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Figure 2: Thermalisation ratios over time for gamma-rays, 𝛽− , and 𝛼 particles in ARTIS versus the analytical
approximation of Barnes10.

2022-05-23 | Luke Shingles (GSI)

1D grey-opacity light curve
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Figure 3: Bolometric (combined ultraviolet, optical, and infrared) luminosity, deposition rate from gamma
rays, emission and deposition rates for 𝛽− particle kinetic energy, and the inferred bolometric light curve for
AT2107gfo1. The lighter blue parts of the ARTIS light curve may be underestimated due to light travel time
effects and the simulation start and end time cutoffs.
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10x density test (0.04 Msun) vs AT2017gfo
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Figure 4: Similar to Figure 3 except for an ARTIS model in which the densities have been multiplied by ten.
The total ejecta mass is 0.05 M⊙ .

millions of individual transition lines (with data from the Japan-Lithuania database5 and new
calculations from our collaborators). ARTIS can also compute the radiative transfer in three-
dimensions, although this greatly increases the computing time and memory requirements. Through
new performance optimisations and a large investment of computing resources, we have recently
calculated angle-dependent spectra for a 3D LTE (local thermodynamic equilibrium) model of the
dynamical NSM ejecta at around one day after the merger, which we intend to publish soon. It
may eventually also be possible to extend these models to include non-LTE effects that become
important at later times, although this might require us to work in only one or two dimensions, or
limit the full non-LTE treatment to particular elements.
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