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The derivation of hydrodynamics from Boltzmann equation in the Anderson-Witting relaxation
time approximation assumes the relaxation time to be independent of particle energy, and one is
restricted to work in the Landau frame to ensure macroscopic conservation laws. However, the
collision time scale typically depends on the microscopic interactions for any realistic system. We
present a framework for consistent derivation of relativistic dissipative hydrodynamics from the
Boltzmann equation with a particle energy dependent relaxation time by extending the Anderson-
Witting relaxation-time approximation, and derive first-order hydrodynamic equations. We show
that the obtained transport coefficients have corrections due to the energy dependence of relaxation-
time compared to what one obtains from the Anderson-Witting approximation of the collision term,
and discuss several interesting scaling features for the ratio of these transport coefficients.
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1. Introduction

Formulation of hydrodynamics from the relativistic Boltzmann equation in the relaxation
time approximation (RTA) of the collision term [1] requires the relaxation-time to be independent
of particle energy in order to ensure macroscopic conservation laws. However, the time scale of
collision for any realistic system depends on the microscopic interactions [2, 3]. In this proceedings,
we extend the Anderson-Witting relaxation-time approximation which allows for particle energy-
dependent relaxation time, and introduce a framework for consistent derivation of relativistic
hydrodynamics from the resulting Boltzmann equation [4]. Within this extended RTA framework,
we derive the first-order hydrodynamic equations and demonstrate that the modified transport
coefficients depends, in some cases rather dramatically, on the energy-dependence of the relaxation
time. We also discuss several interesting scaling features for the ratio of these transport coefficients.

2. Extended Relaxation time approximation

We consider the following modification of RTA approximation of the collision term [3]:

𝑝𝜇𝜕𝜇 𝑓 = − (𝑢 ·𝑝)
𝜏R(𝑥, 𝑝)

(
𝑓 − 𝑓 ∗eq

)
. (1)

We shall refer r.h.s. of the above equation as extended relaxation time approximation (ERTA). Here
𝑓 ∗eq ≡ [exp(𝛽∗(𝑢∗ · 𝑝) − 𝛼∗) + 𝑎]−1 is the local equilibrium distribution function, where 𝛽∗ ≡ 1/𝑇∗

is the inverse temperature, 𝛼∗ ≡ 𝜇∗/𝑇∗ is the ratio of chemical potential to temperature, and
𝑎 = 1, 0,−1 implies Fermi Dirac (FD), Maxwell Boltzmann (MB), Bose Einstein (BE) statistics
respectively. The out of equilibrium distribution relaxes to this distribution with a time scale
𝜏R(𝑥, 𝑝) in the local rest frame of 𝑢∗𝜇, with 𝑇∗ and 𝜇∗ being the corresponding thermodynamic
quantities.

2.1 Out-of-equilibrium correction to thermal distribution function

For an out of equilibrium fluid, temperature and chemical potential are auxiliary fields defined
in a particular choice of hydrodynamic frame using matching conditions. Therefore, we define a
local equilibrium distribution function 𝑓eq ≡ [exp(𝛽(𝑢 · 𝑝) − 𝛼) + 𝑎]−1, with auxiliary fields 𝑇 and
𝜇, which is reached in the fluid rest frame, 𝑢𝜇 = (1, 0, 0, 0). Employing Chapman-Enskog like
expansion around this equilibrium distribution, we obtain the first-order gradient correction as

𝛿 𝑓(1) = 𝛿 𝑓∗ −
𝜏R(𝑥, 𝑝)
(𝑢 · 𝑝) 𝑝𝜇𝜕𝜇 𝑓eq. (2)

Here, 𝛿 𝑓∗ ≡ 𝑓 ∗eq − 𝑓eq adds further gradient correction to 𝛿 𝑓(1) arising due to the difference
between the frame variables, and vanishes for a fluid in equilibrium. To obtain 𝛿 𝑓∗, the auxiliary
hydrodynamic variables 𝑢𝜇, 𝑇 and 𝜇 are first related to the corresponding variables 𝑢∗𝜇, 𝑇∗ and 𝜇∗,

𝑢∗𝜇 ≡ 𝑢𝜇 + 𝛿𝑢𝜇, 𝑇∗ ≡ 𝑇 + 𝛿𝑇, 𝜇∗ ≡ 𝜇 + 𝛿𝜇 . (3)

The equilibrium distribution 𝑓 ∗eq is then Taylor expanded about 𝑢𝜇, 𝑇 and 𝜇 to obtain

𝛿 𝑓∗ =

[
−
𝑝𝜇𝛿𝑢

𝜇

𝑇
+ (𝑢 · 𝑝 − 𝜇)𝛿𝑇

𝑇2 + 𝛿𝜇
𝑇

]
𝑓eq 𝑓eq + O

(
𝛿2
)
, (4)
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where 𝑓eq ≡ 1 − 𝑎 𝑓eq. Using above expression in Eq. (2), 𝛿 𝑓(1) simplifies to

𝛿 𝑓(1) =

[
𝜏R(𝑥, 𝑝)

{(
𝛽(𝑢 ·𝑝) (𝜒𝑏 − 1/3) + 𝛽 𝑚2

3(𝑢 ·𝑝) − 𝜒𝑎
)
𝜃 + 𝛽

𝑢 ·𝑝 𝑝
𝜇𝑝𝜈𝜎𝜇𝜈 +

(
𝑛

E+P − 1
𝑢 ·𝑝

)
𝑝𝜇∇𝜇𝛼

}
− 𝛽 𝑝 ·𝛿𝑢 + 𝛽2 (𝑢 ·𝑝 − 𝜇) 𝛿𝑇 + 𝛽 𝛿𝜇

]
𝑓eq 𝑓eq . (5)

Here E, P, and 𝑛 represents the energy density, equilibrium pressure, and the net number density.
The projection operator Δ𝜇𝜈 = 𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈 is orthogonal to the hydrodynamic four-velocity 𝑢𝜇,
∇𝛼 = Δ𝜇𝛼𝜕𝜇 represents the space-like derivatives, 𝜃 ≡ 𝜕𝜇𝑢

𝜇 is the expansion scalar and 𝜎𝜇𝜈 ≡
1
2 (∇

𝜇𝑢𝜈 + ∇𝜈𝑢𝜇) − 1
3𝜃Δ

𝜇𝜈 is the velocity stress tensor. We work with the Minkowskian metric
tensor 𝑔𝜇𝜈 ≡ diag(+,−,−,−). The dimensionless quantities 𝜒𝑎 and 𝜒𝑏 in Eq. (5) are defined as

𝜒𝑎 ≡
(E+P)𝐽−2,0 − 𝑛𝐽

+
3,0

𝐽+3,0𝐽
+
1,0 − 𝐽

−
2,0𝐽

−
2,0

, 𝜒𝑏 ≡
(E+P)𝐽+1,0 − 𝑛𝐽

−
2,0

𝛽(𝐽+3,0𝐽
+
1,0 − 𝐽

−
2,0𝐽

−
2,0)

. (6)

The integrals 𝐽±𝑛,𝑞 appearing in the above expressions, and 𝐾±
𝑛,𝑞, 𝑦±𝑛,𝑞 appearing in the expression

of coefficients (9) below, can be found in Ref. [4].

2.2 Hydrodynamic frame and matching conditions

We determine the quantities 𝛿𝑇 , 𝛿𝑢𝜇 and 𝛿𝜇 appearing in Eq. (5) by imposing the Landau
frame conditions: 𝑢𝜈𝑇 𝜇𝜈 = E𝑢𝜇 and the matching conditions: E = Eeq and 𝑛 = 𝑛eq at first-order in
gradients, i.e., with 𝑓 = 𝑓1 ≡ 𝑓eq + 𝛿 𝑓(1) ,

𝛿𝑢𝜇 = C1
(∇𝜇𝛼)
𝑇

, 𝛿𝑇 = C2 𝜃 , 𝛿𝜇 = C3 𝜃 . (7)

The expressions of dimensionless variables C1, C2 and C3 can be found in Ref. [4]. The coefficients
C1, C2 and C3 vanishes when the relaxation time is particle energy independent, which in turn leads
to vanishing of 𝛿𝑢𝜇, 𝛿𝑇 , and 𝛿𝜇, and the first order viscous correction 𝛿 𝑓(1) reduces to what is
obtained from RTA approximation.

3. First order transport coefficients

The first-order correction to the equilibrium distribution function is completely determined by
Eq. (5) together with Eq. (7). Using this, the relativistic Navier-Stokes expression for dissipative
quantities is obtained to be

𝜋𝜇𝜈 = 2 𝜂 𝜎𝜇𝜈 , Π = −𝜁 𝜃, 𝑛𝜇 = 𝜅𝑛∇𝜇𝛼. (8)

where the transport coefficients are given by,

𝜂 =
𝐾+

3,2

𝑇
, 𝜁 = −C2

(
E + P − 𝜇 𝑛

𝑇

)
− C3 𝑛 + 𝑦+3,1 , 𝜅𝑛 = C1

𝑛

𝑇
+
( 𝑛

E + P

)
𝐾−

2,1 − 𝐾
+
1,1 . (9)

We now discuss the behavior of the transport coefficients by considering a power-law parametriza-
tion for the energy dependence of the relaxation time [2, 5, 6], i.e., 𝜏R(𝑥, 𝑝) = 𝜏eq(𝑥)

( 𝑢·𝑝
𝑇

)ℓ . Here
𝜏eq(𝑥) only depends on the space-time coordinates and ℓ is a constant.
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Figure 1: Scaling behavior of ratio of transport coefficients with ℓ for different equilibrium statistics. Figures
adapted from [4].

Dissipation in a nonconformal plasma (𝑚 ≠ 0) in absence of chemical potential (𝜇 = 0) is due
to the shear stress as well as the bulk stress. Therefore, it is instructive to study the behavior of the
ratio of bulk to shear viscous coefficients, 𝜁/𝜂, with the conformality measure, 1/3 − 𝑐2

𝑠. In small
𝑚/𝑇 limit, the quantity 𝜁/𝜂 has the leading behavior,

𝜁

𝜂
= Γ

(
1
3
− 𝑐2

𝑠

)2
(10)

for both MB and FD statistics. The scaling relation also holds for BE statistics for ℓ ≳ 2. However,
for ℓ (< 2), the scaling is more subtle as the soft momenta governs the behavior in small mass
limit [7]. The behavior of Γ as a function of ℓ in this ultrarelativistic limit is shown in Fig. 1(a). We
observe a non-monotonic behavior of Γ as a function of ℓ with a minimum at ℓ ≈ 2.5. The strong
dependence of the relaxation rate on the particle energy

(
𝜏R ∝ (𝑢 · 𝑝)ℓ

)
results in Γ → 15 for large

ℓ (irrespective of equilibrium statistics), as can be seen in Fig. 1(a).
For a conformal system (𝑚 = 0) with conserved charges (𝜇 ≠ 0), the dissipation is due shear

stress and charge conduction. In Fig. 1(b), we show the scaling behavior of the ratio of the coefficient
of charge conductivity 𝜅𝑛 to the coefficient of shear viscosity 𝜂 for MB statistics as a function of ℓ.

The scaling of the ratio of coefficient of thermal conductivity 𝜅𝑞 = 𝜅𝑛

(
E+P
𝑛𝑇

)2
to 𝜂 with ℓ for FD

statistics is shown in Fig. 1(c). The ratios in both small and large 𝜇/𝑇 limits scale as

𝜅𝑛

𝜂
= ΛMB

1
𝑇
,

𝜅𝑞

𝜂
= ΛFD

𝜋2𝑇

𝜇2 . (11)

From Figs. 1(b) and 1(c), it can be seen that these ratios tend to constant values in both small and
large 𝜇/𝑇 limit. In Fig. 1(b), it is interesting to note the monotonous decrease of ΛMB with ℓ in
the 𝜇/𝑇 → 0 limit (solid blue curve), starting from ΛMB = 5/12 for ℓ = 0 and approaching zero
as ℓ → ∞. Similar behavior is observed in Fig. 1(c) for FD statistics (solid blue curve). The
constant red dashed line in Fig. 1(c) corresponds to ΛFD = 5/3 at large 𝜇/𝑇 , indicating that the
ratio becomes ℓ-independent in this limit. In contrast, a non-trivial behavior of ΛMB in the large
𝜇/𝑇 limit is observed in Fig. 1(b) (red dashed curve).

The present formulation can be extended to derive higher-order hydrodynamic equations.
Further, the framework provides freedom to specify the nature of interactions through the energy
dependence of relaxation time (which can be any general function of particle energy/momentum),
and can therefore be used to study the bulk properties of the evolving nuclear matter formed in
heavy-ion collisions. We leave these interesting studies for future work.
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