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Generative  adversarial  networks  are  a  promising  tool  for  image  generation  in  the
astronomy  domain.  Of  particular  interest  are  conditional  generative  adversarial
networks (cGANs), which allow you to divide images into several classes according to
the value of some property of the image,  and then specify the required class when
generating new images. In the case of images from Imaging Atmospheric Cherenkov
Telescopes (IACTs), an important property is the total brightness of all image pixels
(image size), which is in direct correlation with the energy of primary particles. We
used a cGAN technique to generate images similar to whose obtained in the TAIGA-
IACT experiment. As a training set, we used a set of two-dimensional images generated
using the TAIGA Monte Carlo simulation software. We artificiallly divided the training
set into 10 classes, sorting images by size and defining the boundaries of the classes so
that the same number of images fall into each class. These classes were used while
training our network. The paper shows that for each class, the size distribution of the
generated images is close to normal with the mean value located approximately in the
middle of the corresponding class. We also show that for the generated images, the total
image size distribution obtained by summing the distributions over all classes is close to
the original distribution of the training set. The results obtained will be useful for more
accurate generation of realistic synthetic images similar to the ones taken by IACTs.
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1. Introduction

In  recent  years,  due  to  the  increase  in  the  power  of  computer  resources,  generative
adversarial networks or GANs [1] achieved amazing results in many tasks of image processing
and  generation.  In  particular,  GANs  are  increasingly  being  used  in  various  fields  of
astrophysics, both for generating synthetic images that are difficult to distinguish from real ones,
and for processing real images such as ones taken by ground and space telescopes.

GANs were  applied  to  generate  astronomical  images  of  galaxies  [2]  as  well  as  solar
images [3], to improve noisy astrophysical images [4], to perform simulations of cosmic web
[5], to produce realistic synthetic images from the Hubble Space Telescope [6], and to retrieve
exoplanetary atmospheres [7]. In the task of generating images, in most cases GANs are used to
bypass  detailed  direct  simulations  of  the  underlying  physical  processes  that  are  usually
computationally intensive, time consuming, and therefore expensive.

In our previous work [8, 9, 10], we used GANs to generate images similar to those taken
by Imagine Atmospheric Cherenkov telescopes (IACTs) in the TAIGA-IACT experiment [11].
IACTs capture the Cherenkov light emitted when an extensive air shower (EAS) appears after a
high-energy particle hits the atmosphere. During operation, each IACT records a set of images
of the air shower against the background light of the night sky. Each image is a set of pixels, and
the pixel values are given in photoelectrons.

In the TAIGA-IACT experiment, simulation images are used for comparisons to real data
and to estimate the performance of the detector setup [12]. Traditionally, event images for the
TAIGA-IACT project are modeled using special software for realistic Monte-Carlo simulations.
First,  the shower itself is simulated using the CORSIKA toolkit  [13], that performs detailed
direct simulation of EAS evolution. The response of the IACT system is simulated using the
special software [14] that performs a full  ray tracing of the Cherenkov photons through the
telescopes'  optics.  These programs,  when used together,  give very accurate results,  but  they
work quite slowly, specifically, they generate an average of 1000 images per hour. For some
analysis purposes such as synthetic minority oversampling [15], such simulation accuracy is
redundant, so that less complex and more efficient generation methods can be used. Previously,
we have shown that the adoption of the GAN technique accelerated the generation of images by
1500 times compared to the direct simulation method [8], while the quality of the generated
images  remained  very  high,  and  most  of  the  generated  images  were  statistically
indistinguishable from the images of the training set.

However, it should be noted that often for scientific applications, in addition to the quality
of each individual image, it is also very important to reproduce the statistical characteristics of
the reference data (real or model) in the sample of the generated images. When generating IACT
images, it is important to reproduce the distribution of images over the energy of the primary
particle. Simulated data that meet this requirement are not statistically different from actually
observed data. The use of such simulated data leads to a more accurate detector tuning and,
accordingly, to a more accurate identification of the observed events.

The images generated using GAN do not contain any information concerning the primary
particle, and restoring the energy of the original particle from the generated images is a separate
issue. That's why as a first approximation, instead of energy, it is convenient to use the total
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brightness of all image pixels called image size. The image size is the total sum of all image
pixel values in photoelectrons, and it's great advantage is that it can be easily calculated for any
arbitrary image. At the same time, this value is in direct correlation with the energy of a primary
particle [16].

In our previous work we have shown that the GAN was unable to fully reproduce the
statistical parameters of the training set as a whole [9], and when comparing the image size
distribution of the training set with one of the GAN output, we found a significant discrepancy.
While the shapes of the distributions were generally similar, the frequency of occurrence of rare
events (ones  with very low or very high image sizes)  was much less  for  the GAN output.
Solving the problem using classical GAN was difficult because this type of network does not
provide means for managing the properties of the generated images. The situation is different
for conditional generative adversarial networks or cGANs [17] that are an extension of GANs
for conditional sample generation. cGAN gives you control over the parameters of the generated
data. Namely, cGAN allows you to divide images into multiple classes according to the value of
some property of the image,  and then specify the required class when generating each new
image. Implementing cGAN helped us to significantly improve the image size distribution of
the generated sample and bring it closer to the distribution of the training set.

2. Image size distribution of the input sample

As a training set, we used a sample of two-dimensional images obtained using TAIGA
Monte Carlo simulation software. This software performs direct simulations of EAS evolution
[13] and IACT system response [14] and generates a set of images similar to those actually
detected. The training set contains 35000 gamma event images. By a gamma event we mean a
detected Cherenkov light that occurs in an EAS induced by a high-energy gamma ray. During
the training process, the training set was fed to the input of our neural networks.

Figure 1. Image size distribution for the training set
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If we look at the image size distribution (see Figure 1) for the training set, we can see that
this distribution is very uneven and asymmetric. Namely, the distribution has one maximum for
a relatively small image size value, while the number of images with very small and very large
image sizes is not too big and decreases with distance from the maximum.

First,  we  generated  images  using  classical  GAN,  and  compared  the  image  size
distributions for the training set and for the GAN-generated sample. We found that these two
distributions  differ  significantly,  with  the  chi-square  test  statistic  being  about  4900.  The
corresponding graphs are shown in Figure 2.

Figure 2. Image size distribution for the training set (green) and for the GAN-generated
sample (red)

As you can see from the graph, GAN mainly generates images from the range that most
input  images fall  within.  This behavior can be explained as follows.  The neural  network is
trained by examples. There is an uneven number of examples with different image sizes in the
training set. This leads to the fact that the neural network is better trained to generate images
similar to those that appear more often in the training set. Therefore, the image size distributions
for the training set and for the GAN-generated sample are very different. To address this issue,
we propose to use a cGAN instead of a classical GAN to control the image size values of the
generated images.

3. Conditional Generative Adversarial Network for TAIGA-IACT images

3.1 cGAN and artificial classes for IACT images

cGAN is a modification of a classical GAN that involves the conditional generation of
images by a  generator  model.  Like any GAN, a  cGAN consists  of  two neural  networks:  a
generator and a discriminator that are trained together on real images in a zero-sum game.

4



P
o
S
(
D
L
C
P
2
0
2
2
)
0
0
4

Using a cGAN for IACT Data Analysis Julia Dubenskaya et al.

To train a cGAN, you first  need to manually prepare a set  of  training images labeled
according to the following rules:

• Images are separated into several mutually exclusive classes based on the value of some
image property.

• Each image is assigned a label corresponding to its class number.
• The number of classes (N) is a positive integer.
• There are no images without a class label.
• The training set contains images from each class.

Then a cGAN is trained on the set prepared in this way. A set of labeled images is passed
to the discriminator. The discriminator is trained to distinguish whether an image is real or fake
given a class label. The generator attempts to create fake images of the requested class that the
discriminator would consider real.

A cGAN do very well when images from different classes differ significantly. As a striking
example,  consider  images  of  handwritten  digits.  Each  digit  can  always  be  attributed  to  a
particular class. Totally there are 10 classes, and there is no transition digits between classes, for
example between 7 and 8. In this case, a cGAN easily learns to generate images of the specified
class. For images from the TAIGA Cherenkov telescopes the situation is quite different. Given
that we want to control the image size, we need to separate images into classes based on the
image size values, which can be any real number. Furthermore, the image size distribution is
uneven and asymmetric with a single maximum, so we can only separate classes artificially.
Keeping in mind that the uneven number of examples in the training set leads to a distortion of
the output distribution, we applied an artificial separation of the images of the training set into
10 classes, sorting the images by size and defining the boundaries of the classes so that the same
number of images fall into each class. Thus, for our training set, we got 3500 images in each
class. We hoped that with this approach, we would not lose rare events, and the training would
become more balanced and stable.

The input image size distribution and class boundaries are shown in Figure 3.

Figure 3. Image size distribution for the training set (green) and class boundaries (orange)
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Thus, each image of the training set was labeled with a class number according to its size.
Additionally,  as  with  a  classical  GAN,  for  a  cGAN,  before  training  each  image  must  be
transformed  as  follows.  The  TAIGA-IACT  telescope  cameras  consist  of  arrays  of
photomultipliers arranged in a hexagonal grid, and each photomultiplier produces one image
pixel. Accordingly, the IACT images are also hexagonal. However, current high performance
cGAN  implementations  are  designed  for  square  grids.  Therefore  we  had  to  convert  the
hexagonal images to square ones by transition to an oblique coordinate system. As a result, we
got images of 32 by 32 pixels. Then, the pixel values were scaled to the range [0, 1] to match the
output of the generator model. Unlike many other image types, the pixel value of which lies in a
fixed range (for  example,  from 0 to 256),  the  pixel  value in  photoelectrons is  theoretically
unlimited from above. Therefore, when moving to the range [0, 1], we calculate the maximum
pixel value for our training set, which we keep in mind and use later to reverse convert the
generated  images.  This  is  how  we  get  a  square  grayscale  image  which  we  feed  to  the
discriminator input.

An example of the original image and the image after preprocessing is shown in Figure 4.

Figure 4. An example of an input image from the training set (the original image and the
same image after preprocessing)

3.2 Proposed cGAN architecture

Since  a  cGAN  consists  of  a  discriminator  and  a  generator,  we  next  describe  the
architecture of each of these networks in turn.

The discriminator architecture is shown in Figure 5. The discriminator is a small network
consisting of a convolutional layer with 3x3 filters followed by a dense (fully connected) layer
with 64 neurons in it. The convolutional layers use a leaky ReLU function with alpha=0.2 as the
activation function. The output layer uses a sigmoid as the activation function.

The architecture of the generator is  shown in Figure 6.  The generator takes a random
vector and a class label as input, and then uses transpose convolution to upsample until it gets an
image with the desired number of pixels. All layers except the output layer use 3x3 filters and a
leaky ReLU function with alpha=0.2 as the activation function. The output layer has one 5x5
filter and uses a hyperbolic tangent as the activation function.
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Figure 5. Architecture of the discriminator for TAIGA-IACT images

Figure 6. Architecture of the generator for TAIGA-IACT images

3.3 Training results

We used the above mentioned ten artificial classes while training our cGAN. We have
implemented the network with the proposed architecture using the TensorFlow [18] software
package. Network training at the GPU Tesla P100 with a batch size of 128 images and 500
epochs took about 8 hours. After training, generation of 10000 events (of any class) takes about
12 seconds.

After training, we used the generator to create images of each class. We generated 3500
images per each class, and this number was exactly equal to the number of images in each of the
training set classes. The mean image size and a standard deviation for each class according to
the class boundaries are shown in Figure 7.
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Figure 7. A mean image size (blue dots) and a standard deviation for each class

We have got that for each class, the image size distribution is close to normal with an
average value located approximately in the middle of the corresponding class. This can be seen
in more detail on the example of one of the classes. Here is the distribution for the class number
two (see Figure 8).

Figure 8. Image size distribution for the cGAN output for class #2 (blue), and lower (red)
and upper (purple) class boundaries

As you can see on the graph, the image size distribution for the generated images is close
to normal with the mean located approximately halfway between the class boundaries. Also you
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can see that the distribution goes beyond the class boundaries. Going beyond the boundaries is
not very good when we want to generate an image of a particular class, but this feature is very
useful  for  the  total  distribution.  The total  image size  distribution obtained by summing the
distributions over all classes is shown in Figure 9.

Figure 9. Image size distribution of the training set (green), image size distribution for the
ten cGAN-generated classes (blue), and the total image size distribution for the ten classes (red)

The ten blue bells on the graph correspond to the ten image classes. Note that the bells
overlap,  causing  the  resulting  total  distribution  to  be  in  good  agreement  with  the  original
distribution of the training set. If we had ten separate networks, each for its own class, they
would only generate images within their class boundaries and their sum would not be so similar
to the original distribution.

When we compared the image size distributions for the training set and for the cGAN-
generated sample,  we found that  the  chi-square  test  statistic  is  949 while  the  critical  value
corresponding for a 5% significance level with 100 degrees of freedom is 124,34. Although the
chi-square  test  still  shows  that  the  difference  is  significant,  the  value  of  this  criterion  has
decreased five times compared to the GAN results, and the resulting total distribution is much
closer to the input one than the distribution for the classical GAN.

We checked the quality of the cGAN-generated images with a third-party software that is
used for classification in the TAIGA-IACT project [19] and that determines the probability that
an image is a gamma event image. The check showed that over 98% of the generated gamma
images are recognized as valid gamma images with a probability of more than 90%. About 1%
of the images are recognized as valid gamma images with a probability of 50% to 90%. And
another 1% of the images have a probability below 50%, which means that these images are
misinterpreted as the non-gamma images. These results turned out to be even better than the
results of our classical GAN, for which the percentage of correct recognition was about 95%
[10]. The examples of the generated images are shown in Figure 10.
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Figure 10. Examples of the gamma images generated by the cGAN

The generated images can be easily converted back to a hexagonal form. For example, it
takes 3 seconds to back convert a batch of 10,000 images.

4. Conclusion

Summarizing the above, we can conclude that a conditional generative adversarial network
generates images for the TAIGA-IACT experiment with a very good degree of accuracy with
over 98% of the generated gamma images being recognized as valid ones by the third-party
software.

Our  cGAN generates  images with a  size  value that  falls  within the  boundaries  of  the
requested  class  with  a  high  degree  of  probability.  Most  of  the  rest  images  fall  within  the
boundaries of the two nearest neighboring classes.

Compared to a classical GAN, the cGAN generates an output sample of images with an
image size distribution that is much closer to that of the training set. The chi-square test statistic
still shows that the difference is significant, but the value of this criterion has decreased five
times compared to the GAN results.

The rate of image generation using cGAN is very high and is similar to the rate of image
generation using GAN.

The results obtained will be useful for data augmentation and more accurate generation of
realistic  synthetic  images  similar  to  the  ones  taken  by  Imaging  Atmospheric  Cherenkov
Telescopes.
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