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Surface wind is one of the most important atmospheric fields in climate research. Accurate 
prediction of high spatial resolution surface wind has a wide variety of applications, such as 
renewable wind energy and forecasts of extreme weather events. General circulation models 
(GCMs) study climate system on a global scale. Their main issues are the low resolution of the 
modeling results and high computational costs. One of the solutions to these problems is statistical 
downscaling. Statistical downscaling methods discover functional relationships avoiding 
computationally expensive high-resolution hydrodynamic simulations. Deep learning methods, 
including artificial neural networks (ANNs), are one of the typical machine-learning approaches 
approximating complex nonlinear relationships. In our study, we explored the capabilities of 
statistical 5x spatial downscaling of surface wind over the ocean in the North Atlantic region. 
Low-resolution input data and high-resolution validation data were provided by RAS-NAAD 40-
year hindcast. We applied several downscaling methods, including bicubic interpolation as a 
reference solution, various discriminative convolutional neural networks (CNNs) such as Linear 
CNN, Residual CNN, CNN with skip connections, and generative adversarial network (GAN) 
based on SR-GAN. We also compared downscaling results in terms of RMSE, PSNR and other 
quality metrics including the ones representing the reconstruction of extreme winds. We evaluated 
the computational costs and the quality of different methods and reference solution to identify 
advantages and lacks of machine-learning downscaling. As a result, both discriminative and 
generative ANN-based downscaling methods have not outperformed reference solution in 
downscaling quality. Nevertheless, for further research, we consider GANs as the most promising 
ANN architectures for surface wind downscaling based on their fine-structure modeling ability. 
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1 Introduction 

Climate change is one of the most serious problems of the modern world. Because of global 
warming, temperature rises and changes local precipitation patterns. In particular, these 
phenomena are explained by local changes of wind speed [1]. 

General circulation models (GCMs) are mathematical models describing physical processes 
and interactions in the Earth-atmosphere-ocean system. They study climate system on a global 
scale. The main problem of GCMs is the low resolution of the modeling results. In particular, the 
computational cells of GCMs are too large compared to the spatial size of the weather phenomena 
to be investigated. The low resolution of GCM outputs causes systematic errors and implausible 
future climate scenarios, especially for extreme weather events [2]. In addition, GCMs, including 
low-resolution numerical models, are computationally expensive [3]. 

One of the solutions to this problem is downscaling. This approach obtains high-resolution 
information about physical variables from low-resolution modeling outputs. The downscaling 
methods consist of two distinct groups: dynamical downscaling and statistical downscaling [4]. 

Dynamical downscaling applies both low-resolution and high-resolution numerical 
modeling. A coarser model calculates outputs in an entire modeling area. Then, these outputs are 
used as boundary conditions for a high-resolution model in particular subareas of the modeling 
area [5-6]. This approach significantly reduces computational costs because it does not 
simultaneously provide high-resolution modeling in all parts of the region. However, the 
performance of dynamical downscaling methods is still insufficient. 

Statistical downscaling techniques avoid high-resolution numerical simulation. In this group 
of methods, the functional relationship between low- and high-resolution data is approximated by 
training a statistical model on a special dataset. The quality of statistical downscaling is 
comparable to that obtained in dynamical downscaling [7–8]. Nevertheless, in practice, statistical 
methods are widely used because they have low computational costs. 

To date, a large number of statistical downscaling methods have been developed. The 
research has shown that the most promising group of statistical methods was statistical regression 
[9–10]. Its examples are multilinear regression [11–13], generalized linear models [14], quantile 
regression analysis [15]. 

Besides classical statistical approaches, statistical downscaling also includes methods that 
are more efficient and fast [16]. Some publications have discussed efficiency of nonlinear 
regression methods [17–18]. Recent considerable scientific interest has been generated by 
contemporary machine-learning techniques for statistical downscaling. For example, the 
Relevance Vector Machine (RVM) [19] and various types of artificial neural networks (ANNs), 
such as autoencoders [18], recurrent neural networks [20] and convolutional neural networks 
(CNNs) [1, 21], have been investigated. 

A problem of statistical downscaling of the surface wind was solved in [22–24]. A 
comparative analysis of various statistical downscaling methods for climatic variables was carried 
out in [18, 21, 25–26]. The authors of [18] have found that non-classical machine-learning 
approaches did not result in a better quality of climatic downscaling. The authors of [25] have 
concluded that machine-learning methods provided better downscaling of wind. In [21], 
convolutional neural networks were compared with the classical linear model. The study results 
have shown that CNNs downscaled variables more accurately. The authors of [26] have trained a 
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fully-connected artificial neural network (FCNN) to downscale wind speed in North America. 
They showed that the FCNN-based model had outperformed classical linear regression. 

Summing up, recent advances in artificial neural networks and the emergence of 
contemporary machine-learning techniques have led to a significant increase in the popularity of 
statistical downscaling. However, the insufficient number of publications does not allow to 
determine the quality of non-linear machine learning methods compared to classical ones. In 
addition, the results of the research on this topic are highly contradictory, and several questions 
remain relevant. Therefore, assessment of contemporary methods of statistical downscaling for 
the climate is still a task of current scientific interest. 

2 Initial data 

We used a retrospective NAAD dynamic model developed by Shirshov Institute of 
Oceanology (Russian Academy of Sciences) in collaboration with the Institut des Géosciences de 
l’Environnement. The model outputs were the atmospheric fields in the North Atlantic region 
[27]. 

NAAD uses the non-hydrostatic WRF 3.8.1 model [28]. The modeling area covers the North 
Atlantic region from 10⁰ N to 80⁰N and from 90⁰W to 5⁰E. The center of the area is at the point 
with the coordinates (45⁰N, 45⁰W). 

The initial and boundary conditions for the NAAD model, including the sea surface 
temperature, were taken from the ERA-Interim reanalysis [29]. In the HiRes experiment of the 
NAAD, the modeling area was a regular grid of 110×110 nodes. The distance between the nodes 
was approximately 14 km, and the lower level was 10–12 m above the ocean surface. The NAAD 
model also performed the LoRes experiment on a regular grid of 550×550 nodes, and the distance 
between them was 77 km. All NAAD experiments were carried out over a 40-year period from 
January 1979 to December 2018. 

We used the LoRes dataset of the NAAD model with a three-hour time resolution as the 
low-resolution input data for the statistical downscaling models. High-resolution target dataset 
was the NAAD HiRes dataset with the same time intervals. Our analysis was limited to a 38-year 
time period from January 1979 to December 2016. Both the low-resolution input variables and 
the high-resolution target variables consisted of two near-surface wind speed orthogonal 
horizontal components and the sea-level atmospheric pressure. 

We chose the bicubic interpolation as a reference solution to compare with artificial neural 
networks. 

3 Discriminative artificial neural networks 

In discriminative artificial neural networks used for downscaling, the low-resolution values 

of physical variables are outputs of rough numerical simulation. These results are an argument 𝑥 

for a certain function 𝑓. The value of the function 𝑧∗ = 𝑓(𝑥) should be, ideally, equal to a true 

high-resolution value 𝑧 of the desired physical variable. The functional relationship 𝑓 between 
low- and high-resolution data is approximated by training a discriminative ANN on a special 
dataset with low- and high-resolution data pairs. 

As an example of discriminative ANNs we used convolutional neural networks (CNNs) for 
wind downscaling. The CNNs are parametric mappings that optimize specific model parameters 
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during the model training. This approach identifies various abstract features of the input data that 
is important for climatic dataset. In CNNs, a fixed-size convolution kernel is sequentially applied 
to regular input data. For each convolutional layer, the convolution kernel is a set of trained 
parameters in the form of an array. 

We chose convolutional neural network Linear CNN [1] as the simplest CNN in this work. 
Linear CNN links low-resolution input data to high-resolution output without non-linear 
activation functions. This architecture consists of one branch (Fig. 1a), and we can describe Linear 
CNN as an autoencoder. The first layer is an encoder and the second layer is a decoder converting 
the hidden representation into an explicit array of three-dimensional vectors. 

Increasing depth of CNNs improves the quality of prediction and downscaling. However, 
such an increase leads to training instability of backpropagation algorithm. Learning becomes 
inefficient due to «vanishing gradients». This negative effect accumulates extremely small 
gradients of model parameters. As a result, the product of the gradient vector and the learning rate 
coefficient tends to zero, and the parameters updated at each optimization step remain constant. 
The effect of «vanishing gradients» remains a significant problem in ANNs. 

A batch is a set of elements of the training dataset simultaneously processed by the model. 
After the model calculated the output data of a batch, the model parameters are updated, and the 
following batch is a next input for the model. Batch normalization is able to stabilize network 
learning and to correct output data distribution of the convolutional layer. 

Another effective way to solve the problem of learning instability is to add connections that 
skip the intermediate layers of the model. Such connections reduce the possibility of small 
gradients accumulation. An example is a residual connection when the output of an intermediate 
layer is added to the output of a later level. Residual connections allow the model to learn outputs 
from initial layers at the beginning of the network. 

We combined the advantages of deep CNNs, batch normalization and residual connections 
to study Residual CNN based on the EnhanceNet [1]. The proposed network included an input 
layer for extracting raw features, followed by a sequence of convolutional layers and residual 
blocks for processing the extracted features, and an upscaling block (Fig. 1b). 

 

  (a)       (b) 

Figure 1: (a) Linear CNN architecture; (b) Residual CNN architecture 
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Residual learning replaces part of the convolutional layers with residual blocks consisting 
of two branches. The first branch is an identical transfer of the data and the second branch is a 
sequence of two convolutional layers. The matrices obtained after both branches of the block are 
summed up. We also added parametric linear rectifier PReLU as nonlinear activation functions to 
approximate nonlinear relationships. 

Transposed convolution retards learning, and leads to «checkerboard» effect in the model 
output. To solve these problems, we provided an upsampling block with convolutional layers and 
«pixel shuffle». This transformation returns the required spatial size of the matrix. 

Another example of struggling with learning instability in deep neural networks is skip 
connections. In skip connections, two matrices of dimensions C1×W×H and C2×W×H are 
concatenated into a matrix of (C1+C2)×W×H dimension. The number of channels varies. 

For wind downscaling, we consider surface wind systems as the result of a complex 
interaction between large-scale atmospheric dynamics and processes in the atmospheric boundary 
layer on smaller horizontal scales. Thus, the correct interpretation of physical processes for 
different horizontal scales is an important aspect of the correct wind downscaling. 

Skip connections effectively extract functional dependencies corresponding to different 
spatial scales. We propose CNN architecture with different levels of abstraction to interpret data 
at several scales (Fig. 2). 

 

Figure 2: CNN with skip connections 
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The architecture of CNN with skip connections consists of two asymmetric branches and a 
convolutional block. The branches are linked by skip connections transferring information from 
the encoding branch to the decoding one. A large-scale data structure is extracted by small 5×5 
convolution kernels. At the decoding stage, the spatial size of the matrices rises while 
simultaneously reducing the number of channels. Skip connections ensure the direct transfer of 
information between layers in the encoding and decoding branches with the same resolution. 

4 Generative adversarial artificial neural networks (GANs) 

Unlike discriminative ANNs, adversarial models are trained by an adversarial process where 
two networks are trained simultaneously.  In the adversarial network architecture, the generator is 
opposed to the discriminator. The generator creates different outputs and learns to make them 
more plausible and similar to real output-like data. The discriminator learns to determine whether 
a certain element is taken from the distribution generated by the generator or from the true data 
distribution. 

This concept uses different types of models and learning algorithms for the generator and 
discriminator. In particular, if generative and discriminative models are ANNs, the network as a 
whole is a generative adversarial network (GAN). 

We studied the SR-GAN model [30] as an example of GAN-based downscaling. The 
architecture of the network we exploited is similar to the one presented in Figure 4 of the original 
paper [30] with the following correspondence: we use LoRes NAAD data snapshots as Input of 
the Generator network; HiRes NAAD snapshots correspond to HR reference data in SR-GAN; 
high-resolution statistically downscaled snapshots correspond to SR data in SR-GAN scheme 
[30]. 

The deep convolutional generator was similar to Residual CNN. The discriminator 
contained convolutional blocks, non-linear activation LeakyReLU (leaky rectified linear unit) and 
batch normalization. The resulting value of the discriminator was from 0 to 1. We interpreted the 
output value of the discriminator as the probability that the element was taken from the true data 
distribution. 

5 Quality metrics 

We considered various quality metrics to compare models in terms of downscaling quality. 
We used the root mean-squared error (RMSE) of the wind speed as the simplest downscaling 

quality metric in this work: 

𝑅𝑀𝑆𝐸 = ඨ ଵ
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where 𝑈௜,௝ and 𝑉௜,௝ are HiRes wind speed components, 𝑈௜,௝
∗  and 𝑉௜,௝

∗  are downscaled wind 

components on 550×550 grid. 
RMSE showed standard deviation of the downscaled wind from the true values. The 

disadvantage of the RMSE quality metric was that it did not determine the quality of downscaling 
of strong winds usual for open-water regions. 

We needed to resolve powerful near-surface flows over the ocean strongly localized in space. 
Because of these considerations, we introduced a new quality metric, RMSE-95. This metrics was 
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similar to RMSE but calculated errors only for wind values that were higher than 95-th percentile 
of the wind speed. Consequently, RMSE-95 showed standard deviation of the extremely strong 
downscaled wind. 

Peak signal-to-noise ratio (PSNR) is another quality metric frequently used in image 
downscaling: 

𝑃𝑆𝑁𝑅 = 10 log ቀ
ெ஺௑మ

ெௌா
ቁ

ଶ

, 

where 𝑀𝐴𝑋 is maximum normalized value between 3 downscaled variables on 550×550 grid, 

𝑀𝑆𝐸 is mean-square error of 3 normalized downscaled variables. 
This metric relates to the perceived quality of the downscaled image. The value of the peak 

signal-to-noise ratio tends to infinity when the RMSE approaches zero. Higher PSNR value 
indicates a higher image quality. As the maximum value of the variables (signal) increases, the 
peak signal-to-noise ratio also increases. An increase in the signal, and, consequently, an increase 
in PSNR results in better visual perception of the downscaled climatic variables. 

6 Downscaling results 

Fig. 3a shows true HiRes wind W. The reference solution is bicubic interpolation W* 
(Fig. 3b). As an example, we select data at 00:00, 1 January 2010. This point of time is in the 
validation dataset. We choose the winter period due to stronger winds in the North Atlantic region 
to check model ability to resolve high-speed values. 

 

(a)     (b) 

Figure 3: Wind speed (00:00, 1 Jan 2010), m/s: 

(а) NAAD HiRes; (b) Bicubic interpolation 

The difference (W*−W) defines RMSE quality metric. If this wind difference is calculated 
only for wind exceeding the 95-th percentile, it defines the RMSE-95 quality metric. 

Fig. 3b shows that the bicubic interpolation is inaccurate. The interpolated wind greatly 

differs from its true values. The wind difference averaged over the entire region ⟨W*−W⟩ is close 
to zero (0.05 m/s) indicating that the interpolation equally smoothed both extremely low and 

extremely high values. The averaged difference ⟨W*−W⟩95 for extremely strong winds is −1.39. 
The negative sign proves a strong smoothing of extremely high values. 

We present quality metrics for bicubic interpolation in Table 1. 
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 RMSE, m/s RMSE-95, m/s PSNR ⟨W*−W⟩, m/s ⟨W*−W⟩95, m/s 
00:00 
1 January 2010 

1.56 2.71 35.79 0.05 −1.39 

Validation dataset 1.44 1.90 35.16 0.05 −0.55 

Table 1: Bicubic interpolation quality 

In general, quality metrics for the entire validation dataset show values that do not differ 
much from the specific data selected as an example. The relatively high values of RMSE-95 for 
the selected example are explained by the winter period and, as a result, stronger winds. 

The simplest CNN studied in this paper is Linear CNN. Fig. 4a shows the same values for 
Linear CNN as Fig. 3b. Fig. 4a shows the noising «checkerboard» effect specific for linear 
architectures. The «checkerboard» effect is caused by transposed convolution increasing the 
image resolution. We move away from this resolution increase method in other CNNs studied in 
this work. 

The downscaled wind in Linear CNN differs significantly from the NAAD HiRes wind. 

⟨W*−W⟩ averaged over the entire region is far from zero (−1.46 m/s), which differs from the 
bicubic interpolation. A bias towards smoothing high values of wind speed is specific for Linear 

CNN. This architecture greatly underestimates extremely strong winds: ⟨W*−W⟩95 = −5.69. 
We present the quality of the Linear CNN model in Table 2. 

 RMSE, m/s RMSE-95, m/s PSNR ⟨W* − W⟩, m/s ⟨W* − W⟩95, m/s 
00:00 
1 January 2010 

3.30 7.35 35.93 1.46 5.69 

Validation dataset 2.85 5.32 27.68 0.79 2.25 

Table 2: Linear CNN quality 

For the entire validation dataset, ⟨W*−W⟩ is smaller in absolute value than for the chosen 
point of time. All four seasons are included and averaged in the dataset. In this case, the negative 
sign is important because it indicates the smoothing of extremely high values. In general, Linear 
CNN shows poorer results than bicubic interpolation. 

The next model studied in this paper is Residual CNN. It has deeper architecture and residual 
connections. An example of Residual CNN downscaling (Fig. 4b) shows no «checkerboard» in 
downscaled wind. We explain it by the replacement of the transposed convolution with an 
upsampling block. 

In general, the downscaled wind looks too smooth and does not resolve the fine-scale 
structure of the wind (Fig. 4b). The smoothing of extremely low and extremely high values is not 
as strong as in Linear CNN. In addition, Fig. 4b has fewer areas where the downscaled wind is 
close to the true one, and more areas with extremely large errors that confirm the downscaling 
quality improvement. 

The Residual CNN model still underestimates wind values over the 95-th percentile, but the 
error of such values is smaller. 

Residual CNN quality metrics are in Table 3. Comparison of Table 3 and Table 2 shows the 
advantage of Residual CNN over Linear CNN for all quality metrics. 
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(a)     (b) 

Figure 4: Wind speed (00:00, 1 Jan 2010), m/s: 

(а) Linear CNN downscaling; (b) Residual CNN downscaling 

 RMSE, m/s RMSE-95, m/s PSNR ⟨W* − W⟩, m/s ⟨W* − W⟩95, m/s 
00:00 
1 January 2010 

1.63 3.13 34.67 0.39 1.92 

Validation dataset 1.42 2.21 32.87 0.19 0.25 

Table 3: Residual CNN quality 

The next complication of CNN in this paper is skip connections. CNN with skip connections 
contains residual blocks and batch normalization. Fig. 5a shows an example of CNN with skip 
connections downscaling. 

Fig. 5a shows a significant downscaling improvement over the continents. We explain this 
result by more stable structure of the wind over land caused by orographic reasons. As a result, 
the model learns to properly downscale wind fields over continents rather than over water where 
the wind is stronger and subject to temporal variability. This implies the absence of fine-scale 
information in the downscaled wind fields over the Atlantic Ocean. 

Fig. 5a shows that the downscaling error over land is smaller than over the Atlantic Ocean. 
CNN with skip connections underestimates the wind values at points where the wind exceeds the 
95-th percentile. 

The quality metrics of CNN with skip connections are in Table 4. 

 RMSE, m/s RMSE-95, m/s PSNR ⟨W* − W⟩, m/s ⟨W* − W⟩95, m/s 
00:00 
1 January 2010 

1.40 2.43 36.44 0,08 1,41 

Validation dataset 1.32 1.97 34.46 0,02 0,72 

Table 4: CNN with skip connections quality 

CNN with skip connections outperforms Residual CNN in all quality metrics. Better 
downscaling over the continents provides this. The only significant improvement is the value of 
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⟨W*−W⟩, which is closer to zero than all previous models are. This architecture smoothes very 
low and very high wind values equally, slightly changing the statistical distribution of wind speed 
in a modeling area. 

Generative adversarial network (GAN) differs from previous discriminative CNN 
architectures because it consists of two models trained simultaneously in an adversarial process. 
GAN generator is based on Residual CNN and SR-GAN [30]. Fig. 5b shows an example of GAN 
generator downscaling. 

 

(a)     (b) 

Figure 5: Wind speed (00:00, 1 Jan 2010), m/s: 

(а) CNN with skip connections downscaling; (b) GAN generator downscaling 

Fig. 5b shows the result different from previous discriminative models. Unlike 
discriminative CNNs, GAN generator allows getting a fine-scale structure of wind fields over the 
ocean. For example, the generator downscales the sequence of eddies in the south and southeast 
parts of the modeling area without smoothing. In addition, the structure in the center of the region 
is transferred correctly. 

The largest GAN downscaling errors are over land. GAN discriminator prevents the model 
from overfitting typical for CNN with skip connections. On the contrary, GAN generator is trained 
so that it computes plausible high-resolution wind without smoothing the extreme values. Fine-
scale downscaled structure is similar to the NAAD HiRes input, but pixel-by-pixel error is 
significant. That is an important disadvantage of GAN compared to discriminative models.  

The quality metrics for GAN generator are shown in Table 5. 

 RMSE, m/s RMSE-95, m/s PSNR ⟨W* − W⟩, m/s ⟨W* − W⟩95, m/s 
00:00 
1 January 2010 

2.40 4.73 37.59 0.35 3.28 

Validation dataset 1.88 3.30 33.99 0.22 1.72 

Table 5: GAN generator quality 

GAN is worse than discriminative CNN methods studied in this work, in terms of quality 
metrics. However, GAN architecture is the most promising downscaling method. In this study, 
the GAN model is the only one detecting the fine-scale wind structure over the North Atlantic. 
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The summary of downscaling quality is in Table 6. The best values of every quality metric 
are bold. 

Method RMSE, m/s RMSE-95, m/s PSNR ⟨W*− W⟩, m/s ⟨W*− W⟩95, m/s 
Bicubic 
interpolation 

1.44 1.90 35.16 0.05 –0.55 

Linear CNN 2.85 5.32 27.68 −0.79 −2.25 

Residual CNN 1.42 2.21 32.87 −0.19 −0.25 

CNN with skip 
connections 

1.32 1.97 34.46 −0.02 −0.72 

GAN 1.88 3.30 33.99 −0.22 −1.72 

Table 6: Downscaling quality (bold – best value of quality metric) 

7 Discussion 

This study does not suggest that neural-network downscaling methods will be used directly 
for operational prediction based on coarse-grid data. The results show that the resulting 
downscaling quality of discriminative and generative models is not competitive in terms of the 
spatial resolution compared to the existing dynamical methods. Nevertheless, GAN can give a 
promising basis for further development of statistical climate downscaling methods.  

One of the problems to be solved is the required number of training predictors for a model. 
Datasets with a large number of climate variables and static predictors will allow the model to be 
trained more efficiently. 

There are many applications of statistical downscaling techniques requiring more accurate 
local wind speed predictions. These include local distribution of air pollutants, sailing, etc. In 
cases where mean speed predictions are important, as for renewable energy, computationally 
cheap neural-network downscaling methods will be widely used. For precise values of extreme 
wind speeds, additional studies are required. For example, model training time can be insufficient, 
and downscaled forecasts will be smoothed. 

Furthermore, including temporal information into the process of model building or model 
training could be an interesting direction for future research. The time-series coherence in 
predictions for given sites is necessary to be comparable to time-series coherence in the training 
data. The current time-independent approach is good in that it might preserve frontal passage 
wind-shifts at grid points, but on the other hand this may cause other unexplainable temporal 
shifts in wind speed. 

We also find promising directions for further improvements of statistical downscaling 
approaches that imply additional regularizations restricting a network during training. In our 
study, no physics-based constraints are applied. At the same time, conservation laws can be 
injected into loss function. In addition, wind statistics or spectral characteristics can be used as 
regularization terms. 



P
o
S
(
D
L
C
P
2
0
2
2
)
0
2
3

Approximation of HR surface wind speed in the North Atlantic V. Y. Rezvov 

12 

8 Conclusion 

In this study, we analyzed artificial neural networks for downscaling of wind fields on 
extended North-Atlantic spatial domain. We went from a simple Linear CNN to deeper and more 
elaborate nonlinear discriminative models. After that, we analyzed generative adversarial model. 
We investigated how the network complexity affects downscaling performance and quality. 

We demonstrated that deeper and more complex network models were not fully able to 
discover skillful wind mappings. We found that nonlinear discriminative models of our study 
demonstrated either no improvement or minor improvement compared to reference bicubic 
interpolation. 

We strongly believe that the demonstrated performance of generative network for 
downscaling tasks should motivate further research towards the use of such non-classical 
architectures for predictive tasks. 

In conclusion, we should note that the emergence of new methods for the problem of wind 
speed downscaling increases the scope of the forecasts obtained in this way, that is especially 
important for regions with complex topography. In turn, further research on neural-network 
methods will improve the quality by expanding their application in addition to numerical weather 
forecasting. 
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