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Currently, the statistics on COVID-19 for many regions are accumulated for the time span of over
than two years, which facilitates the use of data-driven algorithms, such as neural networks, for
prediction of the disease’s further development. This article provides a comparative analysis of
various forecasting models of COVID-19 dynamics. The forecasting is performed for the period
from 07/20/2020 to 05/05/2022 using statistical data from the regions of the Russian Federation
and the USA. The forecast target is defined as the sum of confirmed cases over the forecast
horizon. Models based on the Exponential Smoothing (ES) method and deep learning methods
based on Long Short-Term Memory (LSTM) units were considered. The training data set included
the data from all regions available in the full data set. The MAPE metric was used for model
comparison, the evaluation of the effectiveness of LSTM in the learning process was carried out
using cross-validation on the mean squared error (MSE) metric. The comparisons were made
with the models from various literature sources, as well as with the baseline model "tomorrow as
today" (for which the sum of cases over the forecast horizon is supposed to be equal to the current
case number multiplied by the forecast horizon length). It was shown that on small horizons (up
to 28 days) the “tomorrow as today” model and ES algorithms show better accuracy than LSTM.
In turn, on longer horizons (28 days or more), the preference should be given to the more complex
LSTM-based model.
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Introduction Since the beginning of the coronavirus pandemic, several predictive models have
been proposed to determine the number of new cases [1]. Along with generally accepted approaches
motivated by modeling of the spread of the virus, such as SIR [2], SEIR [3] and their modifica-
tions [4, 5], various methods for analyzing one-dimensional data were applied to forecasting, such
as exponential smoothing [6], ARIMA [7] and others. A number of works demonstrated the ef-
fectiveness of neural network models based on Long Short-Term Memory layers (LSTM) [1, 6, 8].
A recent study [9] showed that the effectiveness of the existing methods applied to the COVID-19
dynamics forecasting is comparable to the estimates based on the “tomorrow as today” method,
which indicates the complexity of the task and the need for further improvement of predictive
methods. In our previous works [5, 7] it was shown that: 1) the accuracy of machine learning
models strongly depends on the number of training samples, 2) the usage of the models of this
type is inefficient on short prediction horizons (up to 28 days). Due to the fact that retrospective
data for 2 years of the development of the pandemic are currently available, including details for
individual regions and countries, this work is aimed at creating a model that takes into account the
newly-accumulated data sets. Here we evaluate our best-performing models from the last year [5, 7]
on this year’s data. In an ongoing work, we compare the “tomorrow as today” (Dummy) baseline
model, Exponential Smoothing (ES), and LSTM-based neural networks (NN) on the new data and
show that LSTM with the current data amount can outperform the baseline and ES in accuracy. The
paper explores the possibility of improving the accuracy of a neural network based on LSTM by the
use of combined training samples, including data from different countries (in this work, the USA
and the Russian Federation), and a representation of input samples divided into even and odd days.
The Data section describes how the data was processed, how the models were trained and tested.
The Methods section describes which models and hyperparameters were used. The Experiments
section shows the results obtained. The Discussion section is dedicated to the conclusions that
can be drawn from the experimental results. The Conclusion section gathers the discussion and
experiments into a short summary. Supplementary Materials contain models’ accuracies grouped
by folds and countries.

1. Data

In this work, historical data on confirmed cases of disease, death, and recovery published
in the JHU [10] and [11] projects was used. For the USA and Russia those projects contain
detailed information (daily changes in the cumulative values of confirmed cases, recovered patients
and deaths) about individual regions (51 states of America and 86 constituent entities of Russia),
motivating the choice of those countries for the conducted experiments. Only the data on confirmed
cases (Confirmed) were used in the work. The data set was pre-processed in the following way:

• A series of daily values was created (Confirmed_daily)(Daily difference of the cumulative
Confirmed cases);

• The values were normalized per 100 thousand population for the series of daily (Con-
firmed_daily) and cumulative (Confirmed) confirmed cases of the disease (as defined in
Eq. 1).

2



P
o
S
(
D
L
C
P
2
0
2
2
)
0
2
5

Accuracy of COVID-19 evolution models for different forecast horizons Saveliy Zavertyaev

𝑉norm =
𝑉 · 100000

𝑃
(1)

Here 𝑉 is the value of the current day, 𝑃 is the population of the region according to the data
from the [11] web-site for Russia and the data from the web-site [12] for the USA.

We used accumulative cross validation to run the experiments and to compare different models.
To do this, the entire data set was divided into 6 time intervals, with the subsequent formation of
5 pairs of training and test parts (folds) from them. The splitting was done in a data-accumulating
manner in the training part, as shown in Figure 1. The dates of splitting into subsets for the formation
of folds were fixed for all the considered regions of the countries: July 22, 2020; December 2, 2020;
April 14, 2021; August 25, 2021; January 5, 2022.

Figure 1: An example of splitting the data into folds with accumulation of the training part. The data and
the dates are presented for Russia and the USA.

2. Target Series

We considered new cases for the selected period (FH - Forecast Horizon) as the prediction
target. 3 FH were considered: 14, 28 and 42 days.

Since the number of examples for different horizons differs from the number of total cumulative
values (there are fewer examples for FH days, see Fig. 2 and Eq. 2) and fold dates are fixed, the
number of examples in the test part of the last fold was different for different FH.

TargetValue = Confirmed(t3) − Confirmed(𝑡2), 𝑡3 = 𝑡2 + FH (2)

3. Methods

3.1 Dummy models

In the current work, the “tomorrow as today” (Dummy) model was chosen as the baseline.
This model takes the last day from a known sample and multiplies it by the duration of the Forecast
Horizon.
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Figure 2: Splitting the data into History and Future parts

3.2 Statistical approach

The Holt-Winters exponential smoothing method from [13] with damped additive trend, box-
cox normalization and no seasonality was used, which proved itself efficient on the data from the
first year of the pandemic [5, 7]. The output of the prediction consisted of the new daily cases for the
FH days ahead. Confirmed_daily values from the training part were used as input, and the number
of new cases for the FH was used as the prediction target. The predicted values were subsequently
summed up (this process is referred to further as Exponential Smoothing (ES));

3.3 Neural Network models

In this paper, 2 models based on LSTM cells were considered, see Fig. 3 and Fig. 4. The
historical data (daily values of Confirmed_daily_100k series) for 28 days was used as the models’
input, while the output corresponded to the sum of cases over the FH.

The main difference between the two neural networks considered in this paper is in the input
data received: NN receives historical data for 28 days, while NN_odd additionally splits it into even
and odd days and learns from all three series separately and independently.

Each of these models also had 3 versions (USA, Ru, USA + Ru), depending on the data (regions)
of which country it was trained and tested on: separately on the data from the USA, separately on
the data from the Russian Federation, or using the information from both countries.

Model hyperparameters were optimized using the [14] to minimize Mean absolute percentage
error (MAPE, see Eq. 3) of the 2nd fold for the Moscow region. Both models had 8 neurons with
hyperbolic tangent (tanh) activation function in the fully-connected layer, batch size equal to 200,
learning rate equal to 0.003 and Adam optimizer. An LSTM layer with 2 neurons was used for the
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Figure 3: A neural network designed to forecast the sum of confirmed Covid-19 cases in FH (NN)

Figure 4: A neural network with even/odd input splitting (NN_odd)

NN model. Regarding the NN_odd model, an LSTM layer with 4 neurons was utilized to process
the complete history, with 2 neurons for even days and 2 for odd ones. The dropout rate was set to
0.01.

4. Experiments

The described approaches were used to determine the level of accuracy on different Forecast
Horizons. As mentioned above, MAPE was used as the target metric:

𝑀𝐴𝑃𝐸 =
100
𝑛

𝑛∑︁
𝑡=1

| 𝐴𝑡 − 𝐹𝑡

𝐴𝑡

|, (3)

Here n is the number of days in the testing part, 𝐴𝑡 and 𝐹𝑡 are the true and predicted values of
the time series for the day t (the total increase in the number of cases from the prediction date to the
forecast date was used). Tables 3, 4 and 5, 6 present the results for the USA and Russia averaged
over folds and horizons. The values in the table were obtained by averaging the country-wide
MAPE scores for each individual region.
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Figure 5: A prediction example for different models for Moscow region (vertical lines are fold borders)

Table 1: MAPE with averaging over folds and all regions of the USA and Russia excluding countries as a
whole.

Country Dummy ES
NN
(one

country)

NN
(USA+Rus)

NN_odd
(one

country)

NN_odd
(USA+Rus)

Average (Russia) 32,9 32,7 32,6 38,4 32,7 41,2
Average (USA) 73,1 53,3 63,2 48,6 49,7 45,5
Average (both) 48 40,4 44 42,2 39 42,8

5. Discussion

The proposed neural network model and the ES method demonstrate comparable accuracies
on average for all prediction horizons for Russian regions: 32.6 and 32.7 MAPE (see Table 1).
Considering prediction horizons with lengths equal to 28 and 42 days, the neural network model
trained on the regions of Russia with splitting into even/odd days (NN_odd(Rus)) demonstrates
accuracies of 30.4 and 40.7. These results outperform ES by 1.5 and 6.9 MAPE and Dummy by
2.6 and 5.2 MAPE, respectively (see Table 6). The analysis of Tables 4 and 3 (see Supplementary
Material) for the USA shows that splitting the data into even/odd days and combining the data from
both countries in the training data improves the accuracy compared to Dummy by 17.7 MAPE. The
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Table 2: Comparison with the literature sources [15, 16].

Model
2020 year (Month-Day) 2021 year (Month-Day)

11-15 11-22 11-29 12-06 12-13 12-20 12-27 01-03 01-10
Google SEIR 27,9 43,5 43,1 26,6 32,9 38 28,6 31,8 93,9
NN (USA) 48,1 43,3 42 29,3 30,6 39,2 51,2 25,9 24,8

NN
(USA+Rus)

53,1 54,2 46,8 32,7 33,8 43,9 56,5 26,7 26,3

NN_odd
(USA)

49,9 48,2 33,5 28,2 27,3 31,6 48,8 32,8 14,8

NN_odd
(USA+Rus)

50,2 46 27,5 24,3 20,8 19,9 34,9 22,8 21,6

CovidHub
baseline

29,8 29,8 31,2 32 32 20,8 16,6 17,8 62,3

resulting accuracy is 45.5 MAPE, which is higher than ES and Dummy by 7.8 and 27.6 MAPE,
respectively. On prediction horizons of 28 and 42 days, the difference from ES is equal to 9.5 and
6.5 MAPE, and the difference from Dummy is equal to 28.6 and 31.3 MAPE in favor of the neural
network model NN_odd(USA+Rus) (see Table 4).

Neural networks and LSTM-based neural networks in particular require large datasets to
demonstrate good performance. The effect of the dataset size on the models’ performance can be
seen in Tables 3, 5 from Supplementary Material section (on Fold#0).

Additionally, a comparison to publicly-available accuracies for the USA [15, 16] was carried
out. For comparison the following two models were chosen:

• Google-SEIR(Suspended-Exposed-Infected-Recovered)-like population dynamics model [15]
that includes such factors as mobility, census, healthcare supply etc.

• COVIDhub-baseline: Extrapolation with the condition that the median prediction at all future
horizons is equal to the most recently observed incidence.

The obtained results (see Table 2) demonstrate that the proposed NN_odd(USA+Rus) model is
more effective than the Google-SEIR model (by 10.9 MAPE) and is comparable to the COVIDhub-
baseline: 29.8 vs 30.3 MAPE.

6. Conclusion

In this paper, the feasibility of combining data at the regional level into a single training set
that is used to train a predictive neural network model for determining the number of cases was
investigated. The conducted study presents the results of comparative analysis of the proposed model
with regards to a number of previously-proposed approaches and the baseline model "tomorrow as
today". It is shown that the proposed neural network outperforms the baseline methods (Exponential
Smoothing and "tomorrow as today") by 1.6-9.5 MAPE on the task of forecasting the dynamics of
the COVID-19 disease for 28 and 42 days. In future, the proposed approach will be tested on the
extended dataset containing more countries.
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8. Supplementary Material

Table 3: Average MAPE by folds (averaged across all US states)

Fold# Dummy ES NN
(USA)

NN
(USA+Rus)

NN_odd
(USA)

NN_odd
(USA+Rus)

0 38,6 34,4 40,6 38,8 48,3 40,5
1 47,6 40,2 27,2 25,4 36,8 23,9
2 68,2 58,5 133,8 48,5 56,2 52,2
3 68,6 60,9 30,6 31,2 40,5 30,9
4 142,3 72,6 83,6 99,1 66,6 80,1

Av. 73,1 53,3 63,2 48,6 49,7 45,5

Table 4: Average MAPE by horizons (averaged over all US states)

Horizon
(days)

Dummy ES NN
(USA)

NN
(USA+Rus)

NN_odd
(USA)

NN_odd
(USA+Rus)

14 60,1 44,9 37,1 40,5 35,2 37,5
28 72,1 53 49,8 47,3 46,5 43,5
42 86,9 62,1 102,5 58,1 67,3 55,6

Table 5: Average MAPE by folds (averaged over all regions of the Russian Federation)

Fold# Dummy ES NN
(Rus)

NN
(USA+Rus)

NN_odd
(Rus)

NN_odd
(USA+Rus)

0 22,1 22,4 30,5 39,3 30,8 41,4
1 22,9 20,4 34,9 42,1 32,1 48,3
2 20,7 21,4 20,8 23,7 21,7 34,3
3 20,8 20,7 15,7 18,1 15,5 18,1
4 78 78,3 60,8 68,7 63,3 63,9

Av. 32,9 32,7 32,6 38,4 32,7 41,2
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Table 6: Average MAPE by horizons (averaged over all regions of the Russian Federation)

Horizon
(days)

Dummy ES NN
(Rus)

NN
(USA+Rus)

NN_odd
(Rus)

NN_odd
(USA+Rus)

14 19,8 18,5 24,6 26,7 26,9 32,1
28 33 31,9 31,6 38 30,4 38,5
42 45,9 47,6 41,5 50,4 40,7 53
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