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We develop a method to improve on the statistical errors for higher moments using machine
learning techniques. We present here results for the dual representation of the Ising model with an
external field, derived via the high temperature expansion and simulated by the worm algorithm.
We compare two ways of measuring the same set of observables, without and with machine
learning: moments of the magnetization and the susceptibility can be improved by using the
decision tree method to train the correlations between the higher moments and the second moment
obtained from an integrated 2-point function. Those results are compared in small volumes to
analytic predictions.
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1. Ising dual representation

The dual representation of the Ising model is derived by introducing bond variables and
integrating out the spin degrees of freedom [1–3]:

𝑍Ising =
∑︁
{𝑠}

𝑒−𝛽𝐻 (𝑠) , 𝐻 = −𝐽
∑︁
⟨𝑖, 𝑗 ⟩

𝑠𝑖𝑠 𝑗 + ℎ
∑︁
𝑖

𝑠𝑖

= (2 cosh(𝛽ℎ))𝑉 cosh(𝛽𝐽)𝐸
∑︁

{𝑛𝑏,𝑚𝑖 }
𝜕{𝑛𝑏 }={𝑚𝑖 }

tanh(𝛽𝐽)
∑

𝑏 𝑛𝑏 tanh(𝛽ℎ)
∑

𝑖 𝑚𝑖 , (1)

where the first line is the standard spin representation of the Ising model and the second line is its
dual representation derived by the high temperature character expansion in 𝛽 = 1/𝑇 , and ℎ is the
external magnetic field. The dual variables of that representation are the monomers 𝑚𝑖 ∈ {0, 1}
defined on the lattice sites 𝑖 and the dimers 𝑛𝑏 ∈ {0, 1} defined on the bonds 𝑏, which are nearest
neighbor pairs. Here, 𝑉 is the volume, 𝐸 is the number of bonds. Since spin summation only
gives non-trivial contributions if after the expansion the spin at every site is raised to an even
power, we obtain the constraint that the dimers form intersecting loops that are either closed or
form strings that connect two monomers: 𝜕{𝑛𝑏} = {𝑚𝑖}. The dual representation is well suited to
be simulated via Monte Carlo, in particular using the worm algorithm [1]. Then we can measure
the number of monomers 𝑀 =

∑
𝑖 𝑚𝑖 and its higher moments on each configuration obtained after

a worm update, but also so-called improved estimators, such as the 2-point correlation functions
during worm evolution [2]. It turns out that the averaged worm length is simply the connected
susceptibility obtained via the integrated 2-point function

⟨𝐺2⟩ =
1
𝑉2

∑︁
𝑥,𝑦

⟨𝐺 (𝑥, 𝑦)⟩ = ⟨𝜎2⟩ (2)

with 𝐺 (𝑥, 𝑦) = 𝐺 (𝑥 − 𝑦) due to translation symmetry.
The magnetization ⟨𝜎⟩ and the susceptibility 𝜒 can be written in terms of the total monomer

number 𝑀 as follows,

⟨𝜎𝑛⟩ = 1
(𝑁𝛽)𝑛

1
𝑍

𝜕𝑛𝑍

𝜕ℎ𝑛
= ⟨ 𝑓𝑛⟩ (3)

⟨𝜎⟩ = tanh(𝛽ℎ) + ⟨𝑀⟩
sinh(𝛽ℎ) cosh(𝛽ℎ) = ⟨ 𝑓1⟩ (4)

𝜒 = ⟨𝜎2⟩ − ⟨𝜎⟩2 =
1

𝑁 cosh2(𝛽ℎ)
− 1

𝑁

(
1

sinh2(𝛽ℎ)
+ 1

cosh2(𝛽ℎ)

)
⟨𝑀⟩

+ 1
(sinh(𝛽ℎ) cosh(𝛽ℎ))2

(
⟨𝑀2⟩ − ⟨𝑀⟩2

)
= ⟨ 𝑓2⟩ − ⟨ 𝑓1⟩2 . (5)

Here, we define 𝑓𝑛 to distinguish the observables written in terms of 𝑀 from the same observable
written in terms of the improved estimator 𝐺2. For example, 𝑓2 = 𝜎2(𝑀). Note that they are not
the same 𝑓2 ≠ 𝐺2 before ensemble averaging, as they have different distributions. We compare ⟨ 𝑓2⟩
and ⟨𝐺2⟩ with the exact solution in Fig. 1. The analytic solution is subtracted in Fig. 1(b) to see the
statistical errors and the deviations from the analytic result. Since ⟨𝐺2⟩ as a worm estimator has
better statistics and hence smaller error bars compared to ⟨ 𝑓2⟩ (see Fig 2(b)), also its mean value
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is closer to the analytic result, see Fig. 2(a). This advantage of improved estimators concerning
statistical errors is strong in particular at higher temperatures, including the vicinity of a critical
point, but it weaker at low temperatures as the worm algorithm is less efficient here, since the
average worm length is very large here.

2. Machine learning strategy

The important observable to determine the critical temperature is the susceptibility
𝜒 = ⟨𝜎2⟩ − ⟨𝜎⟩2. The pseudo-critical temperature can be determined from its peak via finite
size scaling. Whereas ⟨𝜎2⟩ can be determined by ⟨𝐺2⟩, there is no improved estimator for ⟨𝜎⟩, and
it has to be determined by ⟨ 𝑓1⟩, which is less accurate. While 𝛿⟨𝐺2⟩ is small, the dominant error
of the susceptibility comes from 𝛿(⟨ 𝑓1⟩2). The goal of our machine learning strategy is to reduce
the statistical error of the susceptibility by predicting a new observable ⟨𝐺̃1⟩, which corresponds
to ⟨𝜎⟩, with a reduced error. To obtain the general mapping of the distributions of the means ⟨𝜎2⟩
and ⟨𝜎⟩, we consider as training data the correlation of bootstrap samples (𝑛 = 1000) between
⟨ 𝑓2⟩ and ⟨ 𝑓1⟩. With this, we train the machine this correlation on a 4 × 4 lattice with the external
field ℎ = 0.2, as presented in Fig. 3(a). In Fig. 3(b), we present the machine learning prediction
⟨𝐺̃1⟩. We obtain this mapping by applying the decision tree regression method from the scikit-learn
library [4]. The decision tree regression method is used to select the closest data point of the input.
The blue points are selected by the decision tree from the input of ⟨𝐺2⟩. The red and blue crosses
indicate the statistical error of ⟨ 𝑓2⟩, ⟨ 𝑓1⟩ and ⟨𝐺2⟩, ⟨𝐺̃1⟩. Comparing with the analytic solution,
the green star, the machine learning prediction ⟨𝐺̃1⟩ has smaller statistical error and deviation than
⟨ 𝑓1⟩.

The distribution of the bootstrap samples is Gaussian. In Fig. 4(a), we have shown that both
⟨ 𝑓2⟩ and ⟨𝐺2⟩ are Gaussian distributions and ⟨𝐺2⟩ has smaller statistical error. Here, the purple line
is the analytic result. After applying the decision tree regression, the machine learning prediction
has also Gaussian distribution in Fig. 4(b).
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(a) The second moment ⟨𝜎2⟩
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Figure 1: Left: Comparison of ⟨ 𝑓2⟩ and ⟨𝐺2⟩ with analytic solution on a 4 × 4 lattice and the external field
ℎ = 0.2. Right: Subtracting the exact solution from ⟨ 𝑓2⟩ and ⟨𝐺2⟩.
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Figure 2: Left: Ratio of the deviations from analytic solution on a 4x4 lattice for ℎ = 0.2. Right: Ratio of
the statistical errors of ⟨ 𝑓2⟩ and ⟨𝐺2⟩

The magnetization ⟨𝐺̃1⟩ obtained by machine learning for temperatures from𝑇 = 1.5 to𝑇 = 4.0
are presented in Fig. 5. In Fig. 6(a) and Fig.6(b), we compare the deviation and statistical error of
⟨𝐺̃1⟩ and ⟨ 𝑓1⟩. As a result, machine learning predictions are more accurate and closer to the true
result. The statistical errors are reduced by about 40%.

The susceptibility can be obtained by subtracting ⟨ 𝑓1⟩2 or ⟨𝐺̃1⟩2 from ⟨𝐺2⟩. In Fig. 7, we
compare two ways of calculations. When the machine learning prediction ⟨𝐺̃1⟩2 is subtracted,
the results are closer to the analytic result. The reduction of deviations and statistical errors are
presented in Fig. 8(a) and Fig. 8(b). The statistical errors are reduced by about 20-70% depending
on the temperature.
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(b) Estimation by decision tree regression

Figure 3: Left: Correlation between the bootstrap samples of ⟨ 𝑓2⟩ and ⟨ 𝑓1⟩ at 𝑇 = 2.5 and ℎ = 0.2. Right:
blue points are the decision tree regression prediction for ⟨𝐺2⟩ input. Green point is the analytic solution.
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(a) Histogram of ⟨ 𝑓2⟩ and ⟨𝐺2⟩
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Figure 4: Left: histogram of ⟨ 𝑓2⟩ and ⟨𝐺2⟩ at 𝑇 = 2.5 and ℎ = 0.2. Right: histogram of ⟨ 𝑓1⟩ and ⟨𝐺̃1⟩ at
𝑇 = 2.5 and ℎ = 0.2.

3. Higher moments

This method is applicable to higher moment, for instance, ⟨𝜎3⟩ or ⟨𝜎4⟩. The effect of the
statistical error reduction depends on how strong the correlation is, which can be quantified by the
Pearson coefficient. In Fig. 9(b), we show the dependence of statistical error reduction with respect
to Pearson coefficient of the correlation between ⟨ 𝑓2⟩ and ⟨ 𝑓𝑛⟩, where 𝑛 = 1, 3, 4. In the case of
⟨ 𝑓1⟩, it is clear that the statistical error reduction is more effective at strong correlations. However,
in the case of higher moments, 𝑛 = 3, 4, the statistical errors are smaller but not as much as for
the magnetization. The reason is that the accuracy of the input data affects the error reduction. In
Fig. 2(b), the input data is less accurate at lower temperatures. Hence the error reduction is less
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Figure 5: Left: Comparison of ⟨ 𝑓1⟩ and ⟨𝐺̃1⟩ with analytic solution on 4 × 4 lattice with external field
ℎ = 0.2. Right: subtracting analytic solution from ⟨ 𝑓1⟩ and ⟨𝐺̃1⟩.
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Figure 6: Left: Comparison of ⟨ 𝑓1⟩ and ⟨𝐺̃1⟩ with analytic solution on 4 × 4 lattice. Right: Ratio of the
statistical errors of ⟨ 𝑓1⟩ and ⟨𝐺̃1⟩
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Figure 7: Comparison of 𝜒 = ⟨𝐺2⟩ − ⟨ 𝑓1⟩2 and 𝜒 = ⟨𝐺2⟩ − ⟨𝐺̃1⟩2 with analytic solution on 4 × 4 lattice.

effective despite the Pearson coefficient is larger than 0.9. The two data points in Fig. 9(b) for 𝑛 = 3
with largest Pearson coefficient correspond to rather low temperatures 𝑇 = 1.5, 2.0. Their Pearson
coefficients are close to one but the error reduction is not large, about 30%. On the other hand,
the data for 𝑛 = 1 with largest Pearson coefficient correspond to high temperature which has very
accurate input data. Despite of accurate input data at high temperatures, the small error reduction
for the other data is due to the weak correlation, as seen in Fig. 9(a) for 𝑛 = 3, 4 and 𝑚 = 2. The
Pearson coefficient for the correlation between ⟨ 𝑓3⟩ and ⟨ 𝑓4⟩ is large even at high temperatures.
Hence, if we have the accurate input ⟨𝐺4⟩, ⟨𝐺̃3⟩ can be evaluated by our machine learning method
precisely. ⟨𝐺4⟩ can be sampled by introducing a second worm: sampling the Ising model with such
a two-worm algorithm [5], the four-point function 𝐺 (𝑥, 𝑦, 𝑧, 𝑤) and its integrated expectation value
⟨𝐺4⟩ can be directly measured as an improved estimator. Then the correlation between ⟨ 𝑓3⟩ and
⟨ 𝑓4⟩ can be learned from the input ⟨𝐺4⟩, resulting in an error reduction for ⟨𝐺̃3⟩.
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Figure 8: Left: deviation from the analytic solution. Right: Statistical error reduction by machine learning
method for susceptibility.
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Figure 9: Pearson coefficient of the correlation between 𝑓𝑛 and 𝑓𝑚, where 𝑚 = 2, 4. Statistical error
reduction with respect to Pearson coefficient.

4. Conclusion

We developed an error reduction strategy using the decision tree method. We have tested this
method for the Ising model in its dual representation and found that the error of the magnetization
⟨𝜎⟩ is reduced about 40%. Moreover, for the susceptibility, the mean value of the machine
learned prediction is closer to the analytic result. Applying this method to higher moments is
less efficient because of the weak correlation of the worm estimator with the higher moments in
terms of monomers. A two-worm algorithm with external field is required for its improvement,
and is currently under investigation. We also plan to test this method for larger volumes and higher
dimensions and determine observables for finite size scaling, such as the Binder cumulant, with
reduced statistical error form the decision tree method. Finally, we aim is to apply this method to
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strong coupling lattice QCD in the dual representation [6]. Here, we may benefit for improving on
chiral and nuclear observables, to pinpoint the QCD phase diagram in the strong coupling regime.
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