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1. Introduction

The question of estimating the functional dependence of a given function on its input parameters
is relevant for many areas, namely optimization problems and machine learning applications. In
many of these cases the object of focus is an expectation value

E𝑝𝜃 [ 𝑓 (𝜙; 𝜃)] , (1)

where 𝑝𝜃 (𝜙) is a (possibly unnormalized) distribution function. The distribution, and hence the
expectation value depends on the parameters 𝜃. Our interest is to determine the gradient of eq. (1)
w.r.t. the parameters 𝜃. In this work we will consider cases where the expectation values are
obtained through Markov chain Monte Carlo (MCMC) methods.

As examples of this general scheme, we can imagine eq. (1) as a lattice field theory expectation
value, determined through a MCMC average. The distribution 𝑝𝜃 is related to the action, and the
𝜃 may include the bare couplings of the theory. The gradient of eq. (1) w.r.t. the couplings gives
important information about the theory.

A similar case is the problem of Bayesian inference (BI). Bayesian predictions are also deter-
mined as expectation values of the form of eq. (1), with the posterior distribution depending, in
general, on some hyper-parameters, 𝜃. These represent the assumptions on the data and the model,
and it is of interest to study the sensitivity of the predictions under changes of the parameters.

Although there are some known solutions to the tackle changes in distribution functions, these
usually require the knowledge of the normalization factor, which rule out the use of MCMC methods.
Hence, particularly for MCMC methods, the question of estimating derivatives of expectation values
taken over possibly complicated distributions is unanswered.

For the general purpose of numerically estimating derivatives, the method of automatic dif-
ferentiation (AD) [1] is widely used. It is based on the premise that any deterministic function
amounts to the composition of basic operations and functions. In AD the differentiation of each
basic operation is explicitly coded and the derivatives of the composition follows by the chain rule.
The key factor is the deterministic character of these functions. Consequently, AD is not applicable
when a stochastic element, e.g. Monte Carlo integration, is included in the construction of the
function.

The idea of this work is to explore two approaches that extend AD to Monte Carlo processes.
First we use reweighting methods (importance sampling), that allow to evaluate an expectation value
w.r.t. a distribution using samples obtained from a different distribution function. Secondly, and
specifically for processes involving stochastic differential equations (Langevin equation, Hamilto-
nian Monte Carlo), we consider a technique inspired in numerical stochastic perturbation theory
(NSPT) [4, 5].

In order to extend AD to stochastic processes we also borrow some of its ideas. In this
work employ power series expansions around the parameter of interest. The introduction of series
expansion is, in a way, a generalization of the forward accumulation approach for AD that uses
dual-numbers [3]. When combined with the series expansions, the two methods introduced above
allow us to obtain the Taylor expansion of functions including stochastic elements, specifically,
Monte Carlo methods.
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After introducing the BI model, as well as the Hybrid Monte Carlo algorithm in section 2,
the numerical implementation of the power series is introduced in section 3. In sections 4 and 5
the reweighting and NSPT methods are introduced, with the respective results shown in section 6.
Finally, conclusions are drawn in section 7.

2. Toy model from Bayesian inference

In the BI paradigm a prediction starts with a dataset, 𝐷, assumed to be sampled from the
likelihood (a distribution function built from the product of the assumed sampling densities),
𝑝(𝐷 |𝜙), dependent on some variables 𝜙. In general, we are interested in modeling the dataset in
order to extract predictions. Following the introduction of a prior (a distribution function over the
variables 𝜙 modeling our assumptions about the data), 𝑝𝜃 (𝜙) , the posterior is obtained using Bayes
theorem up to a 𝜙, and 𝜃-independent normalization

𝑝𝜃 (𝜙|𝐷) ∝ 𝑝(𝐷 |𝜙) × 𝑝𝜃 (𝜙). (2)

This represents the probability distribution of the parameters 𝜙 given the observed data 𝐷. The
dependence on the hyper-parameters 𝜃 is written explicitly.

A prediction of the model is obtained through eq. (1) with 𝑝 being replaced by the posterior
𝑝𝜃 (𝜙 |𝐷). In addition to the normalization being, in general, unknown, the usual complexity of the
posterior distribution makes the possibly highly dimensional integral difficult to compute – MCMC
is a common solution.

For the proof of concept a linear model was considered. The dataset 𝐷 = {𝑥𝑖 , 𝑦𝑖 , 𝜎𝑖}20
𝑖=1, shown

in fig. 1, was taken from a third order polynomial, 𝑦(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3, with Gaussian noise for
the mean and the variance. The assumed probability distributions are normal, 𝑁 (𝑦𝑖 | 𝑓 (𝑥𝑖 , ®𝜙), 𝜎𝑖),
and the likelihood becomes

𝑝(®𝑦 |𝑥, ®𝜙) =
𝑁∏
𝑖=1

𝑁 (𝑦𝑖 | 𝑓 (𝑥𝑖 , ®𝜙), 𝜎𝑖), (3)

where the mean value is assumed to be a third order polynomial 𝑓 (𝑥, ®𝜙) = 𝜙0 + 𝜙1𝑥 + 𝜙2𝑥
2 + 𝜙3𝑥

3.
The prior is taken as an uncorrelated normal distribution 𝑝𝜃 ( ®𝜙) = 𝑁 ( ®𝜙| ®𝜇,Σ), Σ𝑝 = 1𝜎2

𝑝 with
the parameter 𝜎𝑝 representing the ‘confidence’ in the model. The hyper-parameters of the model
are 𝜃 = { ®𝜇, 𝜎𝑝}.

A given prediction for a quantity 𝑔( ®𝜙; 𝑠) is obtained by an average over the probability distri-
bution 𝑝𝜃 ( ®𝜙 |𝐷)

〈𝑔(𝑠)〉 =
∫ ∏

𝑖

𝑑𝜙𝑖𝑔( ®𝜙; 𝑠)𝑝𝜃 ( ®𝜙|𝐷). (4)

MCMC follows by generating samples { ®𝜙𝑖} from the probability distribution 𝑝𝜃 ( ®𝜙|𝐷) and the
integration is replaced by a finite average. We used Hybrid Monte Carlo (HMC) [6] where the
samples are obtained by solving the equations of motion from a fictitious Hamiltonian 𝐻 ( ®𝜙, ®𝜋) =
®𝜋2

2 − log
(
𝑝( ®𝜙|𝐷)

)
. ®𝜋 is the fictitious momentum conjugated to ®𝜙 which is randomly updated at each

integration cycle. A final accept/reject Metropolis step is added to account for energy violations,
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Figure 1: Randomly generated dataset {𝑥, 𝑦, 𝜎} from a third order polynomial 𝑦(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥3 with
Gaussian noise.

Δ𝐻 ≠ 0, due to errors in the numerical integration. For the case at hand, the precise form of the
equations of motion is

¤𝜙 𝑗 = 𝜋 𝑗 , (5)

¤𝜋 𝑗 = − 1
𝜎2
𝑝

(𝜙 𝑗 − 𝜇 𝑗) +
𝑁∑
𝑖=0

1
𝜎2
𝑖

(
𝑦𝑖 − 𝑓 (𝑥𝑖 , ®𝜙)

)
(𝑥𝑖) 𝑗 . (6)

By iterating the above procedure a Markov chain is obtained, which is then used to generate a
prediction. This is done for a given set of input hyper-parameters, 𝜃 = { ®𝜇, 𝜎𝑝}, but we are interested
in estimating the functional dependence of the results on said parameters. This means that we want
to know the derivatives of the predictions with respect to 𝜃, i.e., its Taylor expansion. For simplicity,
we chose 𝜇𝑖 = 1, 𝑖 = 0, 1, 2, 3 (the same value as the one used to generate the dataset) and thus we
focus solely on the 𝜎𝑝 dependence. In the following we take 𝜃 = 𝜎𝑝.

3. Numerical power series expansions

Being interested in numerically evaluating an expansion around a definite value𝜎∗
𝑝 for a general

function 𝑓 (𝜙), we start by defining the power series up to a given order 𝛿𝑁+1,

𝜙 = 𝜙0 + 𝜙1𝛿 + 𝜙2𝛿
2 + ... + 𝜙𝑁 𝛿𝑁 , (7)

where 𝛿 = (𝜎𝑝 − 𝜎∗
𝑝). Subsequent operations (addition/subtraction/multiplication/division) of

series elements are defined by neglecting all contributions O(𝛿𝑁+1).
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By the Taylor theorem, a function evaluated at 𝜙 = 𝜙0 + 𝛿 gives the Taylor expansion around
𝜎∗
𝑝

𝑓 (𝜙) = 𝑓 (𝜙0) + 𝑓 ′(𝜙0)𝛿 +
1
2
𝑓 ′′(𝜙0)𝛿2 + ... (8)

If the variables of the functions are replaced by power series, and computations done order by order,
the Taylor series of a general function is easily obtained.

For a numerical implementation this is done automatically by overloading all basic operations,
(+, ∗, ...), and basic functions (sin, log, ...). In this way all operations can be carried in a natural
way. Notice that the expansion parameter, 𝜎∗

𝑝, may appear explicitly in the equations and thus it also
requires to be written as an expansion. Its expansion coefficients are (𝜎∗

𝑝, 1, 0, 0, ...), and further
powers of the parameter follow by the product rule.

4. Reweighting method

Having samples {𝜙𝑖} from a distribution 𝑝(𝜙), used for MC integration, we can compute
expectation values w.r.t. a different distribution, 𝑞(𝜙), using a weighted average

〈 𝑓 (𝑠)〉𝑞 =

〈
𝑓 (𝑠) 𝑞 (𝜙)𝑝 (𝜙)

〉
𝑝〈

𝑞 (𝜙)
𝑝 (𝜙)

〉
𝑝

, (9)

where the subscript 𝑝, 𝑞 indicates the distribution used for the average. If the distributions are
characterized by hyper-parameters, 𝜃, a change in its values defines a different distribution 𝑝(𝜙) =
𝑝𝜃 (𝜙), 𝑞(𝜙) = 𝑝𝜃′ (𝜙).

When performed with normal variables the weighted average gives the total effect of the varia-
tion of the parameter. This is, in fact, one of the currently used methods to estimate electromagnetic
(QED) corrections to hadronic (QCD) observables [7]. Since the simulation of the full theory
(non-zero QED coupling and non-degenerate quark masses) presents additional complications, the
MCMC samples are obtained from a pure QCD action with degenerate quark masses, 𝑚𝑢 = 𝑚𝑑 ,
and decoupled from the electromagnetic theory, 𝑒 = 0. Reweighting provides expectation values for
𝑚𝑢 ≠ 𝑚𝑑 and 𝑒 ≠ 0. Recently, this type of importance sampling was also used as an improvement
for variational inference in Bayesian methods [2]

If, however, the method is combined with a series expansion in the parameter, it can be used
to obtain the derivatives of the average with respect to the parameter. This is done by replacing the
weight term (quotient of the distribution functions) by a power series through the introduction the
variables in eq. (7). Consequently, the reweighting average is correctly propagated at each order,
and we obtain the Taylor expansion of the averages – the derivatives with respect to 𝜎𝑝.

While the reweighting average is exact, its practical success is, in general, dependent on how
similar the two distributions are. In an explicit diagrammatic approach such as [7] this involves
delicate cancellations from the disconnected terms between the numerator and the denominator
which increases the noise in the computation.
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5. Numerical stochastic perturbation theory based approach

Another method to estimate the functional dependence on the parameters is based on NSPT.
In stochastic quantization [4], a stochastic differential equation in a fictitious time, 𝑡, is introduced
such that its stationary solutions reproduce a given quantum field theory. In the context of lattice
theory NSPT identifies Euclidean quantum field theory as the equilibrium of a statistical system
coupled to a heat reservoir.

Within this scheme observables are computed through an average over the noise configurations
entering the stochastic equations and the physical results are obtained for large times. In practice,
assuming ergodicity, the stationary average is replaced by a time average over a single noise
configuration. For our application the key connection is that stochastic differential equations are a
typical form of sampling from a distribution function (e.g. HMC introduced in section 2). In this
sense, the MCMC average is nothing but a stochastic time average, where the Markov chain time is
identified with the integration time of the equations of motion.

To extend AD for this cases, we start by replacing the variables entering the equations of motion
by expansions in 𝛿. In the toy model, the parameters 𝜙 become expansions

𝜙𝑖 (𝜎∗
𝑝 + 𝛿) =

∑
𝑛

𝜙 (𝑛)
𝑖 𝛿𝑛 =

∑
𝑛

1
𝑛!

𝜕𝑛𝜙𝑖
𝜕𝜎𝑛

𝑝

����
𝜎𝑝= ®𝜎∗

𝑝

𝛿𝑛. (10)

The stochastic evolution is combined with the series expansion by plugging the expansion variables
into the stochastic differential equation. By solving this tower of coupled equations of motion
at each order, the MCMC samples also become expansions in 𝛿. Following this, all the ensuing
analysis, if carried properly at each order, carries the Taylor expansion of the whole computation.

While the overloading implies minimal changes to the usual HMC algorithm, some details are
important. For the case of HMC, the random momentum update assumes the role of the stochastic
noise and although 𝜋𝑖 also becomes an expansion, its refreshment is done only at zeroth order, due
to the way it enters the Hamiltonian. The stochastic character of the equations is propagated to
higher orders by the mixed order terms.

Additionally, it is not possible to carry out the usual Metropolis step to correct for the numerical
integration errors. While conservation of energy should still be ensured by the equations of motion,
this correspondence cannot be made at each order and thus the results should be extrapolated to
vanishing step-size of the integrator.

6. Results

For the model introduced in section 2 we performed the expansions around 𝜎∗
𝑝. Due to

the linearity of the model and the numerical choice for the prior mean, ®𝜇, only the variance of
observables are affected by a change in variance of the prior 𝜎𝑝. In the following we analyze the
variance of the parameters of the polynomial model 𝛿𝜙 𝑗 =

〈
𝜙2
𝑗

〉
−
〈
𝜙 𝑗

〉2, as well as the variance
for a prediction of a new point 〈𝛿𝑦(𝑥𝑛)〉.

Reweighting requires a conventional Markov chain obtained at 𝜎∗
𝑝 from which we obtain the

Taylor expansion through the procedure introduced in section 4. In the case of NSPT the simulation
provides the MC samples as expansion variables. With these components the Taylor expansion is

6
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Figure 2: Variance of 〈𝜙0〉 for multiple simulations using different values of 𝜎𝑝 with conventional MC
integration (blue points). The curves correspond to three orders of Taylor reconstruction around 𝜎∗

𝑝 = 0.3
from either the reweighting or NSPT approach.

reconstructed. It is important to notice that all computations and error propagation needs to be done
correctly order by order for secondary observables – this is done automatically using the numerical
implementation of the expansion variables, eq. (7), together with the Γ-method [11]. In order to
test both methods we also obtained results for different 𝜎𝑝 from independent simulations with the
conventional methods (i.e. the result for 𝜎∗

𝑝).
The results are summarized in fig. 2 for 𝛿𝜙0 with only the results for the NSPT being shown due

to the similarity with reweighting. The matching between the points from independent simulations
and the Taylor series reconstruction show that with a single simulation we are able to estimate the
functional dependence of an observable on a hyper-parameter of the model.

Although the precision slightly decreases with increasing orders (the equations for a given
order are coupled with the lower orders) the third order approximation spans a considerable range
of 𝜎𝑝. In fact, the range where the expansion matches the correct value is only limited by the radius
of convergence for the chosen observable – this is a property of the underlying function only, and
not the method used. The method itself reproduces the exact Taylor expansion, within the precision
associated with the computational investment.

Both reweighting and NSPT results match and show the same level of precision. This may
lead to the conclusion that the methods are equivalent. However, it is important to relate this with
the choice of a variance as the observable. While an advantage of NSPT is the fact that it does
not require the computation of disconnected terms coming from the denominator of eq. (9), the
variance inherently includes the subtraction of such factors,

〈
𝜙 𝑗

〉2. This eliminates the advantage
of NSPT and both methods provide the same level of precision. For a different choice of observable
the disconnected contribution in the reweighting method becomes noticeable.

The same procedure can be obtained for secondary quantities. Considering a new point,
𝑥𝑛 = 0.5, the associated prediction is given by 𝑦(𝑥𝑛) = 𝑓 (𝑥𝑛, ®𝜙), according to the model assumption.

7
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Figure 3: 〈𝛿𝑦(0.5)〉 for multiple simulations using different values of 𝜎𝑝 with conventional MCMC integra-
tion (blue points). The curves correspond to five different orders of Taylor reconstruction around 𝜎∗

𝑝 = 0.4
from either the reweighting or NSPT approach.

The prediction is given by the MC average over the chain. The results for its variance 〈𝛿𝑦(𝑥𝑛)〉 are
shown in fig. 3 again for independent simulations and the Taylor expansion up to five orders around
𝜎∗
𝑝 = 0.4. The matching spans a large range, extending close to vanishing 𝜎𝑝 where the variance

necessarily vanishes (this means we are certain that the model perfectly describes the data). The
decrease in precision for larger orders is also noticeable.

7. Conclusion

With a simple model based on Bayesian inference we show that it is possible to determine the
Taylor expansion for functions involving Monte Carlo processes. The proper implementation of
numerical series expansions allows to reconstruct the Taylor expansion up to a given order in the
input parameter. Combined with the power series, both reweighting and NSPT give direct access
to the functional dependence on a hyper-parameter or a coupling. It is important to notice that, in
principle, this can be simultaneously applied to various parameters.

Reweighting is, in general, applicable for MCMC integration disregarding the theory. However,
it may suffer from slightly larger errors due to the terms coming from the denominator of eq. (9).
It should be possible to avoid the introduction of these terms by using NSPT, where the sampling
algorithm operates directly on the series expansions. This is not visible in the current results due to
the choice of observable.

A possible drawback of the NSPT method relates to the convergence of the solutions of the
stochastic differential equations for higher orders. In the case at hand, the convergence of the equa-
tions of motion is guaranteed given that the drift term is negative for all orders. While convergence
can be shown for this simple model, the same is not necessarily true for more complicated theories.
For these cases the convergence should be confirmed numerically.
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Within lattice field theory, although NSPT has been used for computing perturbative corrections
[8–10], the applications have still been limited. In the context of QED corrections to QCD, the
commonly used reweighting does not require to simulate the complete theory. However, it involves
the computation of noisy disconnected diagrams which create, in general, uncontrolled systematic
errors if ignored.

Finally, for machine learning these methods are important for testing the robustness of the
assumptions (i.e. the sensitiviy of the prediction on the input parameters), for choosing optimal
hyper-parameters, and to possibly estimate systematic errors.
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