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The study of autocorrelation times of various meson operators and the topological charge revealed
the presence of hidden harmonic oscillations of the autocorrelations (for the HMC). These modes
can be extracted by smoothing the observables with respect to the Monte Carlo time. While this
smoothing procedure removes the largest share of the operator’s signal, it can not be excluded
that physically relevant contributions remain coupled to the oscillations. Furthermore, common
statistical error analysis relies on binning and, thus, is not suited to remove non-decaying forms
of autocorrelation. I present a new error analysis framework that is based on defining an effective
number of independent measurements via the ratio of the entropy of the correlated data distribution
excluding autocorrelation and the entropy of the distribution including autocorrelation. This
framework is used to show that the autocorrelation oscillations are significant. I argue that
the oscillations could be understood in terms of a 5D theory involving the Molecular dynamics
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FA might control the modes and suppress their impact on the simulated physics.
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Oscillating Autocorrelation and the HMC Algorithm Falk Zimmermann

1. Introduction: autocorrelation field of correlator fluctuations

For any two correlation functions 𝑐𝑎 (𝑡, 𝜏), 𝑐𝑏 (𝑡, 𝜏), that are given at lattice configurations
enumerated by 𝜏, one can define their mutual, ensemble-wide correlation via:

corrfc [𝑐𝑎, 𝑐𝑏] =

∑𝑁
𝜏=1

∑𝑇
𝑡=1(𝑐𝑎 (𝑡, 𝜏) − ⟨𝑐𝑎⟩𝜏 (𝑡)) · (𝑐𝑏 (𝑡, 𝜏) − ⟨𝑐𝑏⟩𝜏 (𝑡))

𝑇𝑁𝜎𝑎𝜎𝑏

(1)

where 𝑇 is the time-like extend of the lattice and 𝑁 the number of configurations. In order to com-
pute meaningful corrfc for different physical correlation functions 𝑐𝑎/𝑏 (𝑡), the mean value ⟨𝑐𝑎/𝑏⟩(𝑡)
must be subtracted for each 𝑡, respectively: The remaining fields 𝑐(𝑡, 𝜏) − ⟨𝑐⟩𝜏 (𝑡) consist of (quan-
tum) noise, fluctuations accounting for variations of the underlying physical context (topological
charge...), and possible lattice artefacts. The second and third kinds of fluctuations may contribute
to both fields 𝑐𝑎/𝑏 and will then result in a non-zero corrfc ∈ [−1, 1]. In this proceeding, we focus
on the artefacts that produce harmonic oscillations of the autocorrelation (AC) field:

Γ[𝑐𝑎, 𝑐𝑏] (𝑡,Δ𝜏) =

∑𝑁−Δ𝜏
𝜏=1 (𝑐𝑎 (𝑡, 𝜏) − ⟨𝑐𝑎⟩𝜏 (𝑡)) · (𝑐𝑏 (𝑡, 𝜏 + Δ𝜏) − ⟨𝑐𝑏⟩𝜏 (𝑡))

(𝑁 − Δ𝜏)𝜎𝜏 [𝑐𝑎] (𝑡)𝜎𝜏 [𝑐𝑏] (𝑡)
(2)

1.1 Smoothed correlation functions

While the Hybrid Monte-Carlo algorithm traverses the QCD configuration space, certain
excitations prove to be more resilient to that updating procedure than others. Smoothing correlators
with respect to the iteration number 𝜏 removes much noise and uncovers the resilient features. For
example it has been used to study the topological charge in the past.

𝑐IR_
(𝑡, 𝜏) ≡

𝑁∑︁
𝜏′=1

𝑐(𝑡, 𝜏′) 1
√

2𝜋_2
𝑒
− (𝜏−𝜏′ )2

2_2 (3)

This smoothed function might be called the IR part of 𝑐 = ¯̄𝑐 − ⟨ ¯̄𝑐⟩𝜏 concerning the chosen scale
_. In the following, we need to deal only with 𝑐IR_

(𝑡, 𝜏) made from two-point functions ¯̄𝑐�̂�𝑎 �̂�𝑏=𝑎 ,
having the same lattice operator 𝑜𝑎 at source and sink. Hence, in order to simplify the notation, we
will just write 𝑐�̂� for IR-smoothed fluctuation corresponding to 𝑜.

1.2 Normalisation with respect to the physical time

Quark-disconnected fields 𝑐disc(𝜏, 𝑡) and those made from topological correlation functions
usually do not require a 𝑡-dependent normalisation - the standard deviation does not alter notice-
ably with respect to 𝑡. The quark-connected fluctuation fields 𝑐conn possess a standard deviation
𝜎𝜏 [𝑐conn] (𝑡) ∝ 𝑒−𝑚𝑡 which is most easily normalised by

𝑐(𝑡, 𝜏) ≡ 𝑐(𝑡, 𝜏) − ⟨𝑐⟩𝜏 (𝑡)
𝜎𝜏 [𝑐] (𝑡)

. (4)

As an immediate consequence, we end up with a noise field with a variance homogeneous in 𝑡 and
𝜏. Note that for _ = 0, 𝑐 still contains almost all information. Now it is possible to define the last
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version of the fluctuation field, where we remove the time average on a per-configuration basis1:

𝑐(𝑡, 𝜏) ≡ 𝑐(𝑡, 𝜏) − ⟨𝑐⟩𝑡∈[𝑡0,𝑇 ] (𝜏) (5)

1.3 Data sets and considered latticed operators

The analysis has been carried out by focusing on three ensemblesof the ETM Collaboration [1]:

B55.32 (L=32, T=64, N≈4900), A40.24 (L=24, T=32, N≈1100), A60.24: (L=24, T=32, N≈1250)

Because of the constrained length of this work, we will only show results for the ensemble with the
highest statistic (B55). The fluctuation fields have been created from two-point functions with the
same lattice operator at source and sink. We group them into tuples:

• Neutral operators used to build light quark-connected correlators (twisted mass basis):

�̂�𝑙 ≡
(
scalar = 𝛾5, 𝛾0𝛾5, [̂𝑙,conn = 1, 𝛾𝑖𝛾0, 𝛾𝑖 , 𝛾𝑖𝛾0𝛾5, 𝛾0, 𝛾𝑖𝛾5

)
(6)

• Further operators related to the pseudoscalars [/[′:

�̂�[ ≡
(
[̂𝑠,conn, [̂conn, [̂

′
conn, [̂, [̂

′, [̂8,conn, [̂1,conn, [̂8,disc, [̂1,disc, [̂8, [̂1
)

(7)

• Operators evaluated within the Distillation analysis framework:

�̂�Dist ≡
(
�̂�+full, �̂�

+
full

)
(8)

• Eventually, there are a few operators dedicated to the topological charge density. Using an
improved version of 𝑞 ∝ 𝑡𝑟 [�̃�`a𝐹`a] means that 𝑞 is a gauge field-based variant of the charge.
The indices indicate the number of HYP-smearing steps.

�̂�q ≡ (𝑞5, 𝑞10, 𝑞30, 𝑞50) (9)

The set �̂�U consists of "unique" correlators (operators) that are considered to be statistically
sufficiently independent from each other. Later, it is used to extract features of Γ[𝑐�̂�𝑖 , 𝑐�̂� 𝑗

] (𝑡),
characteristic of the ensemble.

�̂�𝑈 =

(
�̂�𝑙, [̂𝑠,conn, �̂�Dist, [̂8,conn,Dist, [̂1,conn,Dist

)
(10)

2. Entropy and the effective number of measurements

As depicted in fig. 2, the fluctuation fields possess long and involved AC functions. In particular,
there are significant waves resembling harmonic oscillations; the AC does not seem to decay for
large Δ𝜏. Here, standard statistical analysis methods can not be applied anymore: the method by
U. Wolff [2] requires the estimation of the integrated AC time; in general, the variance is expected
to be 𝜎2 = 2𝜏intΓ(0)/𝑁 . The Madras-Sokal formula [3] can only be applied to so-called stationary
stochastic processes. However, the existence of AC oscillations clearly implicates a dependence

1Removing the time-average on a per-configuration basis often leads to improved visibility of AC oscillations or
uncovers different features like other modes. The connected pseudoscalar fluctuation fields are dominated by time-like
averages ⟨𝑐⟩(𝜏). The averages may be related to non-zero topology 𝑄 ≠ 0 - analogously to 𝑄≠0 contributions to
disconnected fields.
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Figure 1: 𝜏 decay of the amplitudes (𝜎𝜏,𝑡 [𝑐_]/𝜎𝜏,𝑡 [𝑐_=0]) (LHS) of fields 𝑐�̂�,_ as a function of the
𝜏-smoothing scale: this characterizes the fraction of the remaining signal at _. The set of light-connected
correlators �̂�𝑙 (6) is depicted by black lines. The correlator corresponding to [̂𝑙 (solid purple) is (among) the
correlators maintaining high levels of their original signal. [𝑠 (dashed purple) loses significantly more. The
[- & [′-connected correlators (green) also hold a relatively high fraction of the signal. The disconnected
contributions of full (physical) [(′) correlators seem to promote signal loss (further emphasized for 𝑐, not
shown). For fields 𝑐 (5), the reduced signal loss of [𝑙 , [, [′ is emphasized (not shown). The scalar connected-
correlator is equally resistant (highest black line). Grey lines correspond to topology-amplitudes of �̂�𝑞 (9).
The AC oscillations shown in fig 2 correspond to amplitudes at the 2nd vertical line (_ = 34).
Multiple iterations of the algorithm for determining the resolutions of histograms (RHS). As long as
there is a significant difference between the entropy of a histogram with 𝑛𝑖 classes produced, from data set A
with an artificially restricted resolution (𝑛0 ≤ 𝑛𝑖 classes), and the entropy of a histograms (also 𝑛𝑖 classes) of
the true data distribution B, the resolution 𝑛0 must be increased. If the 𝑛0 classes would contain no additional
information, 𝑛𝑖 could be raised indefinitely without finding a difference.

on the iteration number 𝜏 and, thus, renders the process which generated 𝑐�̂� non-stationary2. A
possible way out could be to define an effective number of independent DOF (measurements) by
relating the amount of information contained in a data set without AC to a corresponding set with
AC. This can be achieved by considering the entropy H :

𝑁eff [𝑐] ∝ H [𝑝 [𝑐𝑎] (𝑣; 𝑡, 𝜏)] ,

where 𝑝 represents the probability distribution of values 𝑣 from the image of 𝑐𝑎 (𝑡, 𝜏) and 𝑡, 𝜏
expresses 𝑝’s dependence on those variables. Both aspects are described sufficiently by autocorre-
lation & covariance between 𝑐𝑎 (𝑡, 𝜏) and 𝑐𝑎 (𝑡+Δ𝑡, 𝜏+Δ𝜏) (if 𝑝 [𝑐𝑎] ∝ (multi) normal distribution.)
Let C be this correlation matrix3. The Shannon entropy then becomes:

H[𝑐] = log
(√

2𝜋 det(C)
)
+ length(C)/2 , (11)

2While the HMC algorithm might be non-stationary in a strict sense, for physical observables, AC oscillations are
dominated by exponentially decaying AC, and the HMC can, thus, effectively be considered stationary.

3C is a block matrix: there are 𝑁 × 𝑁 blocks. Each block describes the 𝑡-dependence & has size 𝑇/2 × 𝑇/2. For this
work, it is sufficient just to consider one time-slice, then C reduces to 𝑁 × 𝑁 .
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which reduces to the well-known Shannon entropy of 𝑚 ≡ length(C) normal distributions

H[N(𝑥, `, 𝜎)] = log
(√

2𝜋𝜎
)
+ 1/2 (12)

if C diagonal. The 2nd part of the definition of 𝑁eff consists of normalising (11) with this AC-free
version of C. Thanks to the normalisation we do not need to worry about units of information (bits,
nats):

𝑁eff [𝑐] ≡ 𝑁 H[C]
H [diag𝜏 (C)]

= 𝑁

log
(√︃

(2𝜋)𝑚 det2(C)
)
+ 𝑚/2

log
(√︃

(2𝜋)𝑚 det2𝑡 (diag𝜏 (C))
)
+ 𝑚/2

(13)

2.1 Entropy of continuous distributions

The naive generalisation of H from discrete to continuous 𝑝 distributions is flawed: this can
be easily seen by making (12) negative via setting 𝜎2 < 1/2𝜋𝑒. Jaynes [4] suggested fixing the
issues by introducing a reference distribution 𝑟 (𝑥), which could be understood as resolution of 𝑝:

H ≡ −
∫

𝑝(𝑥) log
𝑝(𝑥)
𝑟 (𝑥) d𝑥 , 𝑟 (𝑥) uniform distribution. (14)

We briefly description of an algorithm that scans for the minimal entropy of 𝑟 (𝑥) in fig. 1. The
term will appear in the numerator & denominator of (13) and increases 𝑁eff . It is included in the
further analysis but one may argue very well in favour of dropping the term: the effective number of
measurements must not depend on the amount of information learned from a single measurement.
The computation of det (𝐶) is challenging. It must be repeated for each Δ𝜏 in order to obtain
Γ(Δ𝜏)’s error, but can be accelerated by making use of C being a Toeplitz matrix.

3. Oscillating autocorrelation and space-time modes

Fig. 2 depicts the autocorrelation Γ[𝑐�̂�, 𝑐�̂�] (𝑡,Δ𝜏)(2) for 𝑜 = [̂𝑙,conn as well as for 𝑜 = [̂𝑠,conn.
Both correlators feature a harmonic AC oscillation, but 𝑐 [̂𝑙 is way more affected. Both oscillations
are significant according to the error bands defined by the standard deviation divided by

√
𝑁eff

(13). The [̂𝑙,conn-plot additionally shows the standard statistical error (lighter band): it is ill-
defined because of requiring the AC to decay to zero. However, the standard error can be formally
computed by assuming the Γ(Δ𝜏) = 0 for all Δ𝜏 > min𝜏 (Γ(𝜏) ≤ 0). Now, if the error is believed to
be underestimated because of the truncated AC, one already has implicitly recognized significance
of the depicted AC beyond the first extrema. There are plenty of other hints in favour of the
oscillations being real. For example, the autocorrelation matrix C virtually consists of the depicted
AC oscillations. If (𝐶) is truncated as described before, the determinant of C often turns out
to be < 0. This contradicts the fact that correlation matrices are positive-definite by definition.
Furthermore, figs. 4 indicate that AC oscillations are space-time dependent: they seem to go
along with time-like modes which leads chequerboard-like patterns becoming visible when plotting
matrices ΓΔ𝜏 (𝑡1, 𝑡2) ∝ ⟨𝑐(𝜏, 𝑡1) · 𝑐(𝜏 + Δ𝜏, 𝑡2)⟩𝜏 for fixed Δ𝜏 > 0.
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0 1000 2000 3000 4000 0 1000 2000

Figure 2: Autocorrelation Γ(Δ𝜏) of [𝑙,conn (LHS) for various 𝜏-smoothing scales _ and time-slices (stacked
plots): each cell has a height of one, the lowest graph corresponds to 𝑡 = 0 and 𝑡 increases by four when
going one graph up.) The green graphs correspond to the autocorrelations of 𝑡-averaged fields. The black
line (LHS, t=8) is a cos-function fitted to the [𝑙,conn-AC (t=8). It is mirrored by the grey bands to allow
for easy frequency comparisons. RHS: the same but for [𝑠,conn. The frequency of [𝑠,conn appears to be
≈ 5/3 𝑓 ([𝑙,conn), 𝑓 (𝑞10) ≈ 7/3 𝑓 ([𝑙,conn). Most observables ∈ �̂�𝑙∪�̂�[∪�̂�Dist∪�̂�𝑞 seem to show oscillations
for some _, but there are no obvious frequency relations between them.

4. A scoring system for oscillations

When we increase _, more pronounced but lower-frequency modes replace noisy high-
frequency modes. It is rather difficult to assess objectively by eye how much the AC function
of a correlator is dominated by harmonic oscillations. Furthermore, a simple score would help to
compare AC oscillations of different correlators. One of the simplest possibilities is the integrated
absolute AC Īo : oscillations do not decay for large Δ𝜏, so they contribute much to Io . A more so-
phisticated version is based on the Fourier transform F𝜏 [Γ[𝑐_]] ( 𝑓 ), which yields a vector: indices
correspond to frequencies and the values of elements are the frequencies’ amplitude. Then, the
Fourier score can be defined as the ratio of 𝐿𝑝=1 and 𝐿𝑝=2 norms:

F̄o [𝑐_] ≡
|| F [Γ[𝑐_]] | |2𝑝=1

| | F [Γ[𝑐_]] | |2𝑝=2
(15)

The quantity becomes larger if the spectrum of the autocorrelation F [Γ] is dominated by fewer
frequency spikes and is low for a densely populated spectrum. Hence,

Γ[𝑐𝑜] oscillates more than Γ[𝑐𝑜′] :⇔ Fo [𝑐𝑜] > Fo [𝑐𝑜′] .

The dependence on _ can be integrated out using the amplitudes 𝐴_ (fig. 1a):

Io ≡ ⟨𝐴2
_Īo _⟩_∈Ω_

, Fo ≡
〈
𝐴2
_F̄o _

〉
_∈Ω_

with Ω_ = {1; 3, 6, 9, ... , 120} (16)

From fig. 3 follows that the pseudoscalar channel [𝑙,conn and scalar channel are most affected.
In order to cross-check the findings, we generate random datasets that imitate our real ensem-

bles, from those, compute a synthetic Fo distribution and, eventually, estimate the likelihood of to
draw the real Fo -distribution (of the "unique" operators �̂�𝑈 (10)) - or a distribution that scores even
higher. In slightly more detail, we:
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(a) Fo and Io of for various 𝑐�̂�𝑖 �̂� 𝑗

(b) Distributions of 𝑐�̂��̂� (𝑡) for 𝑜 = scalar (top),
𝑜 = 𝛾0𝛾5(tm) (bottom),

Figure 3: Oscillations scores (LHS): Fo -scores (lower right triangle) and Io (upper triangle) for physical
2pt-correlators made from the operators Ô𝑈 (10): Fo [𝑜𝑖 (0)𝑜 𝑗 (𝑡), 𝑜 𝑗 (0)𝑜 𝑗 (𝑡)] defines the 𝑖> 𝑗-element ( and
the same for Io if 𝑖≤ 𝑗 ) via the i-th operator in Ô𝑈 . The plot is divided into sections corresponding to
the operator tuples. Of most importance is the inner sector (white line) associated with light, connected
correlators from �̂�𝑙 . The key insight is that scalar and pseudoscalar connected correlators (1phys, [̂𝑙,conn)
have the highest scores among the connected correlators. Within the group of [-related operators Ô[ ,
(7), the connected correlators stand out: the principal connected correlators (2nd,3rd) and the connected
octet/singlet correlators (6th,7th). Note that the disconnect correlators score lower. Operator �̂�± (evaluated
with Distillation) indicates that not only [-related channels are affected (Distillation may promote oscillations:
the QCD spectrum is approximated by eigenmodes of the Laplacian, which are waves too.
Distributions of connected 𝑐�̂��̂� (RHS): with 𝑜 = 1Phys (scalar, top) and 𝑜 = 𝛾0𝛾5 (twisted basis, bottom),
_=132. The smoothing (3) deforms the Gaussian distr. of the scalar 𝑐 (pseudoscalar looks similar) into a
discrete spectrum. From a pure harm. AC oscillation one would expect accumulation at 𝑐’s extrema. The
accumulations form continuous functions over 𝑡 ∈ [0, 𝑇/2] (𝑥-axis), some being waves other being more
const. Those might be the reason why (5) collapses the spectrum of the 𝑐 (very RHS). The distr. of typical
connected 𝑐,𝑐 (represented by 𝑜 = 𝑖𝛾0𝜏3) remain Gaussian-like for _ > 0 and 𝑐.

[𝑙 [𝑠 [𝑙,disc [𝑠,disc 𝑞50

(a) Δ𝜏 = 0

[𝑙 [𝑠 [𝑙,disc [𝑠,disc 𝑞50

(b) Δ𝜏 = 99

[𝑙 [𝑠 [𝑙,disc [𝑠,disc 𝑞50

(c) Δ𝜏 = 540

_
=

8
_
=

16
_
=

32
_
=

68
_
=

136
_
=

306

[𝑙 [𝑠 [𝑙,disc [𝑠,disc 𝑞50

(d) Δ𝜏 = 615

Figure 4: Time-like correlationΓΔ𝜏 (𝑡1, 𝑡2) for variousΔ𝜏. The colour range is ( black-yellow↔ [−0.2, +0.2])
for all Δ𝜏 = 0 and fixed to ↔ [−0.4, +0.4] for Δ𝜏 > 0. ΓΔ𝜏 returns to high levels of autocorrelation on a
regular basis. Those peaks often occur in combination with an (anti-) diagonal pattern and the chequerboard
pattern. The AC-oscillation is faster for smaller _. The Δ𝜏 = 0 case shows that 𝑡=0 and 𝑡=𝑇/2 are strangely
correlated. (In [5] such an observation was attributed to low statistics, which it does not seem to be.)
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Figure 5: Sample averages of the synthetic AC spectrum (LHS) and of the lattice AC spectra (RHS) :
Synthetic spectra imitating B55 (_ = 68) are shown on the LHS for various combinations of the steps 4 for
reducing finite-data artefacts. Steps I+II+III result in the narrow spectrum (bold magenta), which is used
for fScore computation. The spectrum broadens moderately without cut-off averaging (I+III, bold blue).
When the signal ends abruptly (no I), a wide range of artificial frequencies emerges (orange). For 𝑓 < 20,
the standard deviations (dotted lines) are of the same order as the spectra themself. Without smoothing
individual samples (step III), even the average remains noisy (thin graphs).
The synthetic spectra of B55, A60 & A40 are compared on the RHS. The existence of the peaks (3 ≲ 𝑓 ≲ 13)
means that our AC-analysis of fluctuations tends to produce wave-like contributions randomly. Those
contributions turn out to be insufficient to explain the AC oscillations from real data. Decreasing the amount
of IR-smoothing _=68 → _=32 broadens the spectra of B55, A40 & A60 consistently. B55’s deviating
behaviour of the t=0 time slice hints at a noisy extraction of typical fluctuation lengths.

1. Choose a IR-smoothing length _.
2. For the set made of interpolating fields �̂�𝑈: fit the exponential model 𝐴 exp[−𝜏2/(𝜖2 +_2)] +
𝐵 exp[−(𝜏 − `)2/(𝜖2 + _2)] to the ACs (the last term helps to fit the 1st minimum, which
supposedly belongs to the AC oscillation, and prevents the underestimation of 𝜖 , thereby.) →
A set of 13 values {𝜖𝑜} characterizing the lengths of the assumed Gaussian AC fluctuations.

3. For each 𝜖𝑜, create synthetic samples: Gaussian bells with 𝜎 = 𝜖𝑜 placed at random positions
𝜏 with discrete random amplitudes (because of fig. 3b).

4. We perform the AC analysis on the samples of the synthetic data set.
5. Fourier transform the results to obtain the synthetic frequency distribution 𝑝 [Fo ].
6. From Fourier transforms of the 𝑇/2 ACs of the 13 operators ∈ �̂�𝑈 we obtain the few (416)

frequency graphs containing presumably real oscillations.
7. Compute the likelihood of drawing 416 samples from the synthetic Fo -distribution that score

equal or higher.

For B55, A40 & A60, those likelihoods turn out to be almost zero. Plot 6 shows that the real data’s
Fo -values overlap with the synthetic distribution widely, but a couple of higher scores lead to the
vanishing probability. Because of the finite length of our data sets, naive Fourier transforms are
plagued by artefacts. The following steps resulted in a noticeable improvement (see fig. 5).

I. In order to make the signal ends fade out, they are folded with half of a Gaussian bell over the
length of 𝑙 ≡ 2𝜎 ≈ 1

3 · data set length 𝑁 . This step provides most of the artefact reduction.
II. The previous step tends to introduce high-frequency modes into the frequency space itself.

Averaging the spectra corresponding to multiple values of length 𝑙 ∈ [ 1
2 ,

1
3 ] · signal length 𝑁
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Figure 6: Synthetic fScore distributions (blue) compared to fScores of lattice data (magenta, orange): the
distribution of fScores for a collection of correlators that are considered sufficiently unique 𝑂𝑈 (magenta)
and the distribution of an extended set, containing many [(′)-related correlators (orange), are compared with
the fScore-distribution of synthetic data. The synthetic data was modelled to contain fluctuation of the same
length as their lattice equivalent but scores lower: Hence, the likelihood of the real lattice data’s harmonic
AC oscillations being a random artefact turns out to be tiny. (The lattice data graphs have been rescaled for
better visibility. There are not enough unique correlators for computing their histograms reliably.) Using
time slice 𝑡 = 0 only (left) and increased IR-filtering (right) seem to promote AC oscillations.

reduces the issue thanks to destructive interference.
III. Remaining high frequencies are filtered out by smoothing the resulting spectra with a Gaussian

bell with 𝜎 = 𝑁/512.

5. Conclusions

There is plenty of evidence in favour of AC oscillations. The Fourier scoreFo andIo suggest that
pseudoscalar and scalar connected meson correlators contain the most articulated AC oscillations,
which can also be confirmed by visual inspection of the AC. Nevertheless, oscillations can be found
for most of the investigated channels (for oscillating topology see the talk slides & an upcoming
paper.) This suggests that it is not a single physical phenomenon that is responsible but the HMC
algorithm itself. The canonical momenta used by the Molecular Dynamics (MD) step to propose
updated fields for 𝜏 + 1 enhance the 4D QCD dynamics in the 𝜏-dimension. In conjunction with
a potential term, contributed by the QCD Lagrangian, harmonic oscillations become possible.
Indeed, the Fourier Acceleration (FA) [6] approach assumes that the evolution speed of fields can
be assessed by assuming modes (with respect to 𝜏): the idea is to determine associated mass terms
from the Lagrangian and to equalize those by manipulating the kinetic MD term. Consequently,
modes oscillate with similar frequencies and critical slowing-down is suppressed. Recently, a
FA project has shown that oscillations are produced by their simulation algorithm [7], but it was
assumed that those waves are connected to free fermionic modes and that Landau gauge fixing is
a prerequisite. Lüscher’s analysis [8] deals with the 5D Φ4 theory of the HMC. Most notably, the
corresponding EOM (17) can be solved via a kernel function (18):

𝜕2
𝜏𝜙(𝑥, 𝜏) = − 𝛿

𝛿(𝑥, 𝜏) 𝑆[𝜙(𝑥, 𝜏)] − 2`0𝛿𝜏𝜙(𝑥, 𝜏) + [(𝑥, 𝜏) , (17)

𝐾GHMC(𝑥, 𝜏) = \ (𝜏)
∫

d4𝑞
𝑒𝑖𝑞𝑥

(2𝜋)4 𝑒
−`0𝜏

sin(𝜖𝑞𝜏)
𝜖𝑞

, 𝜖𝑞 =

√︃
𝑞2 + 𝑚2

0 + `
2
0 . (18)
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Here, we already have 𝜏-oscillations, though they are suppressed exponentially. I believe this
approach is a promising ansatz towards understanding of observed AC oscillations. It is noteworthy
that the scalar and pseudoscalar channels with the largest oscillation contributions, can be described
by Klein-Gordon fields and thus Φ4 theory. Christ and Wickenden [9] have extended the work [8]:
they show that in a Fourier accelerated Φ4 theory, the above AC modes (18) decouple from their
space-time contributions. Hence, when FA could be made to remove the observed coupling from
LatticeQCD (fig. 4a), we would gain strong evidence that the AC oscillations are explained by (18).
In closing, I would like to give three ideas on how motions in 𝜏 could survive the randomization of
MD momenta at the beginning of each trajectory. In theory, this step and the Metropolis test should
maintain ergodicity, however:

1. The 2nd law of thermodynamics also holds for the MC time 𝜏. For example, pair-created excitations
with few updates spatially separated are not likely to wander on top of each other again.

2. If the motion is linked to spatially extended excitations, local momentum randomization may
cancel globally.

3. The 5D MD forces might bring the system into a state of high potential energy at the end of each
trajectory, which in turn restarts the MD motions at the beginning of the next trajectory.
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