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1. Introduction

The smearing method known as distillation [1] is often used in hadron spectroscopy due the
numerous advantages it has. In the case of mesons it has been been shown to give clear access
to different quantum numbers 𝐽𝑃𝐶 of interest via local and derivative-based operators. But it also
does so with a fixed, although considerable, computational cost [1–3]. This cost mainly comes from
solving multiple linear systems with the Dirac operator and a number 𝑁𝑣 of eigenvectors of the
3D covariant Laplace operator corresponding to the eigenvalues with smallest absolute value. The
solutions to these linear systems are used to build low-dimensional all-to-all propagators known as
perambulators which can be stored and used multiple times since they are independent from the
operators that define the different symmetry channels. The different operators that can be used give
rise to the elementals, also low-dimensional matrices, which can then be appropriately combined
with the perambulators to calculate the relevant correlation functions. The explicit entries of the
perambulators are given by

𝜏[𝑡1, 𝑡2]𝑖 𝑗𝛼𝛽 = 𝑣𝑖,𝛼 [𝑡1]†𝐷−1𝑣 𝑗 ,𝛽 [𝑡2], (1)

where 𝐷 is the Dirac operator and 𝑣𝑖,𝛼 [𝑡1] corresponds to a vector which contains the 𝑖-th Laplacian
eigenvector at time 𝑡1 in Dirac index 𝛼 and is zero everywhere else. The entries of the elementals
are given by

Φ[𝑡]𝑖 𝑗
𝛼𝛽

= 𝑣𝑖,𝛼 [𝑡]†Γ𝑣 𝑗 ,𝛽 [𝑡], (2)

where Γ is the operator which defines the symmetry channel. The computational work for the
construction of the perambulators corresponds to the solution of 4 × 𝑁𝑡 × 𝑁𝑣 for a single gauge
configuration with 𝑁𝑡 the temporal extent of the lattice. Additionally, for a fixed level of smearing
the value of 𝑁𝑣 scales with the 3D physical volume of the lattice [1]. Therefore, for sufficiently large
lattices and large statistics the number of inversions is considerably high. At light quark masses
close to their physical values each inversion is also expensive due to worse conditioning, which adds
up to the total cost. All of these considerations point to the need to address these costs. A guiding
question is how to choose 𝑁𝑣 since too small would neglect significant low energy modes while
too big would increase the overall cost too much and include non-significant high energy modes.
Not only this, but it is also important to know if a given choice of 𝑁𝑣 is equally useful for different
operators of interest and if all the used eigenvectors will contribute in the same manner. This is
not expected a priori since local and derivative-based operators sample different spatial structures
which can also differ in between different excitations of a same channel. An initial study of the
use of distillation profiles to not only build operators that optimally use each available eigenvector
but also to qualitatively determine an appropriate choice of 𝑁𝑣 for each operator and energy level
studied was presented in [4]. Here an extension of this work is presented including the application
of the proposed method to analyze multiple meson operators corresponding to different 𝐽𝑃𝐶 using
two 𝑁 𝑓 = 2 ensembles with same quark mass but different lattice spacings and volumes to check the
effectiveness of the method and the obtained so-called optimal meson distillation profiles with the
volume scaling, as well as the mixing of these optimized meson operators with glueball operators.
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2. Construction of optimal meson distillation profiles

As described in [4], a basis of 𝑁𝐵 different quark gaussian profiles 𝑔𝑘 (𝜆) are used to define
distilled quark fields which are then used to build a basis of 7 meson operators O𝑘 with a fixed Γ

and projected to zero spatial momentum. From these meson operators a 7 × 7 correlation matrix is
built as

𝐶𝑎𝑏 (𝑡) =
〈
O𝑎 (𝑡)Ō𝑏 (0)

〉
(3)

which is then pruned via a singular value decomposition for numerical stability as described in
[5, 6] to keep the most significant 𝑁𝑆 = 4 operators. It should be noted that since the operator Γ is
fixed this matrix can be built at no significant extra cost since the only necessary step is to replace
the profile factor 𝑔𝑘 (𝜆𝑖 [𝑡])∗𝑔𝑘 (𝜆 𝑗 [𝑡]) that multiplies entry Φ[𝑡]𝑖 𝑗

𝛼𝛽
of the corresponding elemental.

The resulting 𝑁𝑆 × 𝑁𝑆 pruned 𝐶 (𝑡) is then used to set up the GEVP formulation [7–9] as

𝐶 (𝑡)𝑢𝑒 (𝑡, 𝑡𝐺) = 𝜌𝑒 (𝑡, 𝑡𝐺)𝐶 (𝑡𝐺)𝑢𝑒 (𝑡, 𝑡𝐺), (4)

where 𝑢𝑒 (𝑡, 𝑡𝐺) are the generalized eigenvectors and 𝜌𝑒 (𝑡, 𝑡𝐺) their corresponding generalized
eigenvalues with 𝑒 = 0, ..., 𝑁𝑆 − 1 ordered such that 𝜌𝑒 (𝑡, 𝑡𝐺) > 𝜌𝑒+1(𝑡, 𝑡𝐺). From 𝜌𝑒 (𝑡, 𝑡𝐺) one
can extract the effective mass of energy level 𝑒 while from 𝑢𝑒 (𝑡, 𝑡𝐺) one can extract the coefficients
that define a linear combination of the pruned operators which has the largest overlap with the actual
energy eigenstate of the corresponding 𝐽𝑃𝐶 . As shown in [4], the elemental corresponding to this
optimal operator for a fixed Γ and energy level 𝑒 is given by

Φ̃[𝑡]𝑖 𝑗
𝛼𝛽

= 𝑓 (Γ,𝑒) (𝜆𝑖 [𝑡], 𝜆 𝑗 [𝑡])𝑣𝑖,𝛼 [𝑡]†Γ𝑣 𝑗 ,𝛽 [𝑡], (5)

where the optimal meson distillation profile 𝑓 (Γ,𝑒) (𝜆𝑖 [𝑡], 𝜆 𝑗 [𝑡]) is given by

𝑓 (Γ,𝑒) (𝜆𝑖 [𝑡], 𝜆 𝑗 [𝑡]) =
∑︁
𝑘

𝜂
(Γ,𝑒)
𝑘

𝑔𝑘 (𝜆𝑖 [𝑡])∗𝑔𝑘 (𝜆 𝑗 [𝑡]) (6)

and the coefficients 𝜂 (Γ,𝑒)
𝑘

take into account the coefficients from the generalized eigenvector 𝑢𝑒 (𝑡, 𝑡0)
and also the singular vectors from the pruning. This profile not only determines how the vectors
𝑣𝑖,𝛼 [𝑡] and 𝑣 𝑗 ,𝛽 [𝑡] must be weighted in the elemental for a fixed Γ and energy level 𝑒 but also shows
if a sufficient level of suppression of high Laplacian eigenvalues has occurred and the chosen value
of 𝑁𝑣 can be considered acceptable.

3. Meson results in 𝑁 𝑓 = 2 QCD

The model used in this work corresponds to 𝑁 𝑓 = 2 QCD clover-improved Wilson fermions
with quark mass at half of the physical charm quark mass. Two different ensembles are used, one
with size 48 × 243 and lattice spacing 𝑎 ≈ 0.0658 fm [4] and the other one with size 96 × 483 and
lattice spacing 𝑎 ≈ 0.049 fm [10], both with periodic boundary conditions in time for the gauge
links. The coarsest lattice, which also has the smallest 3D physical volume, is the starting point of
the analysis with 𝑁𝑣 = 200. A basis of 7 different quark gaussian profiles

𝑔𝑘 (𝜆) = 𝑒
− 𝜆2

2𝜎𝑘 , (7)
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with widths chosen to allow different ranges of suppression for the relevant eigenvalues and whose
specific values can be found in [4], are used to build the meson operators. For the finer lattice
these widths are scaled according to the squared lattice spacing and a value of 𝑁𝑣 = 325 is used,
which via the volume scaling corresponds roughly to 100 eigenvectors in the coarser lattice. Both
local and derivative-based Γ operators shown in [4], the latter taken from [11], are analyzed in
both available ensembles for the iso-vector channel and the effective masses of the different 𝐽𝑃𝐶

channels are extracted from the eigenvalues of the previously described GEVP formulation using
𝑡𝐺 = 3 and pruning at this same value of time. Fig. 2 shows the effective masses for a selection
of operators using the optimal profiles, standard distillation and stochastic estimation without any
smearing (only for the local operators) for the sake of comparing the three methods in the coarsest
lattice.
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(a) Masses of local operators using optimal pro-
files, standard distillation and stochastic estima-
tion. Masses are displaced for clarity.
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(b) Masses of derivative-based operators us-
ing optimal profiles and standard distillation.
Masses are displaced for clarity.

Figure 1: Masses of a selection of operators in the coarse ensemble.

It is clear that the use of the optimal meson distillation profiles leads to significant suppression
of the excited-state contamination which in turn leads to earlier and in general longer mass plateaus
when compared to standard distillation. This improvement can be numerically quantified via the
so-called fractional overlap defined in [4], a quantity which measures the presence of excited
state contamination at early times which can be calculated from the correlation functions of each
operators using both variants of distillation, where a value closer to 1 means a larger suppression
of the undesired contamination. The fractional overlaps for some of the analyzed operators are the
following:

• Γ = 𝛾5: 0.9272(3) → 0.9858(2)

• Γ = 𝛾𝑖: 0.8743(10) → 0.9900(5)

• Γ = 𝜖𝑖 𝑗𝑘𝛾 𝑗𝛾𝑘 : 0.77(7) → 0.93(1)

• Γ = ∇𝑖: 0.4758(7) → 0.742(2)

• Γ = 𝛾5∇𝑖: 0.84(1) → 0.970(5)

• Γ = Q𝑖 𝑗𝑘𝛾 𝑗∇𝑘 : 0.858(8) → 0.981(3)

The significant closeness to 1 of the fractional overlaps when the optimal profiles are used
in this sample of values serves as further evidence of the advantage of using them. Given this
improvement it is of interest to directly visualize the different profiles that for each operator and
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energy level yield the best overlap with the actual energy eigenstate. Their specific construction is
given in [4] and for the case of the local operators in the coarse lattice they can be seen in Fig. 2a
as a function of a single eigenvalue, made dimensionless by multiplying it with the scale 𝑡0 [12].
Unlike the case of standard distillation none of them is a constant, which already points to the fact
that a one-for-all approach with the profile is not the optimal alternative and different operators
should be treated differently. Nonetheless the common suppression of larger eigenvalues shows
that the intuition behind distillation of favoring small eigenvalues still remains valid. To check
that this feature is not a result of basis bias, due to all the Gaussian quark profiles exhibiting this
pattern, the GEVP formulation was also tried with a basis of monomials of the form 𝜆𝑘 and the
same optimal meson profiles were obtained. Additionally, the values of the profile at the largest
available eigenvalues serves as a qualitative guide to determine if the chosen 𝑁𝑣 is large enough.
Namely, if the profile has not decreased enough compared to its peak then more eigenvectors should
be considered. It can be argued from Fig. 2a that for all local operators the chosen value of 𝑁𝑣

is large enough. As was also presented in [4] it is possible to visualize the spatial profile of the
meson operator built using the corresponding optimal meson distillation profile, which for the case
of Γ = 𝛾5∇1 is given by

Ψ (𝛾5∇1,𝑒) (®𝑥) = 1
𝑁𝑡

𝑁𝑡−1∑︁
𝑡=0

| |𝑇𝑟
(
𝛾5𝑉 [𝑡]Φ̃(𝛾5∇1,𝑒) [𝑡]𝑉 [𝑡]†

)
𝜙0 | |22, (8)

where 𝑒 denotes the energy state, the norm is taken in color space, the trace is taken in Dirac space
and 𝜙0 is a 3D point source. The resulting spatial profile can be seen in Fig. 2b. This serves not
only as a useful visualization tool to check the expected spatial behavior of the meson operators, e.g
a P-wave structure for the Γ = 𝛾5∇1 operator with 1+− numbers, but also to monitor finite-volume
effects in cases when the extent of the profile is close to reaching the boundaries of the lattice.
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(a) Optimal meson distillation profiles of the
ground state of the local Γ operators as a func-
tion of the Laplacian eigenvalue.
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(b) Spatial profile of the ground and first excited
states of the Γ = 𝛾5∇1 operator as defined in Eq.
8 using the optimal meson distillation profile.

Figure 2: Profiles in distillation and coordinate space of some of the analyzed operators.

The same calculations can be performed for the ensemble with the finer lattice spacing. The
corresponding results for the effective masses of some local and derivative-based operators can be
seen in Fig. 3. Significant suppression of excited state contamination is again evidenced for both
kinds of operators when the corresponding optimal meson distillation profiles are used. Some of
the fractional overlaps for the studied operators are
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• Γ = 𝛾5: 0.8765(7) → 0.9555(5)

• Γ = 𝛾𝑖: 0.825(3) → 0.969(2)

• Γ = Q𝑖 𝑗𝑘𝛾 𝑗∇𝑘 : 0.82(2) → 0.92(1)

• Γ = 𝜖𝑖 𝑗𝑘𝛾 𝑗B𝑘 : - → 0.91(1)

where for the exotic 1−+ channel the hybrid operator 𝜖𝑖 𝑗𝑘𝛾 𝑗B𝑘 only presents an effective mass
plateau when the optimal profile is used. The distillation profiles can also be visualized for this
ensemble, which is displayed in Fig. 4 for the ground state of the local operators as a function of a
single eigenvalue and for a derivative based operator as a function of two eigenvalues. As mentioned
before the widths of the Gaussian quark profiles involved are scaled appropriately and the displayed
interval between the two gray regions corresponds to roughly 100 eigenvalues of the coarse lattice.
All the observations made for the case of the coarse ensemble hold for these resulting profiles as the
clearly different profiles distinguish the different channels and display the common suppression of
higher eigenvalues. It is worth noticing that the overall shapes of the different profiles are similar
when plotted against the dimensionless combination 𝑡0𝜆.
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(a) Masses of local operators using optimal pro-
files, standard distillation and stochastic estima-
tion. Masses are displaced for clarity.
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Figure 3: Masses of a selection of operators in the fine ensemble.
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(a) Optimal meson distillation profiles of the
ground state of the local Γ operators as a func-
tion of the Laplacian eigenvalue.
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(b) Optimal meson distillation profile for the
ground state of the Γ = Q𝑖 𝑗𝑘𝛾 𝑗∇𝑘 operator as a
function of two Laplacian eigenvalues.

Figure 4: Profiles in distillation space for some local and derivative-based operators in the fine ensemble.

4. Meson-glueball mixing in 𝑁 𝑓 = 2 QCD

Iso-scalar meson operators can also be studied with the use of the meson profiles and a
case of particular interest is their mixing with the corresponding glueball of the same symmetry
channel. Since these iso-scalar meson operators require the inclusion of disconnected pieces in ther
correlations, which tend to be lost to noise at very early values of times, the improvement brought
by the meson profiles in earlier mass plateaus is specially desirable. For the case of the glueball
operators, which are notoriously noisy, it is also necessary to work with the best possible operators.
For this end the GEVP formulation is also adopted, where the operator basis is given by operators
built from 3D Wilson loops with different shapes, windings and lengths [13, 14] involving link
variables smeared via different smearing schemes, namely 3D HYP [15] and 3D improved APE
[16]. The 𝐽𝑃𝐶 of interest for the mixing in this work are 0−+ and 0++ and therefore the Wilson loop
operators have to be projected to the irreps 𝐴−+

1 and 𝐴++
1 accordingly [14]. The correlation function

corresponding to this meson-glueball mixing is given by

𝐶𝑀𝐺 (𝑡) = 𝑇𝑟

(
Φ(Γ) [𝑡]𝜏[𝑡, 𝑡]

)
𝐺 (𝑅𝑃𝐶 ) (0), (9)

where 𝐺 (𝑅𝑃𝐶 ) (𝑡) stands for the glueball operator in irrep 𝑅𝑃𝐶 at time 𝑡 built using the GEVP
eigenvectors. As a remark, since the 0++ glueball is the lightest particle in this study, as shown in
Fig. 5 for the coarse lattice, one would expect the clearest mixing signal to be in this channel. The
results obtained for the mixing correlation functions for both ensembles are displayed in Fig. 6 for
0−+ and 0++, where each correlation function is normalized by dividing it by its value at a fixed time
in physical units (𝑡𝑐 = 0.245 fm for 0++ and 𝑡𝑐 = 0.147 fm for 0−+). This requires an interpolation of
one of the correlation functions, in this case of the coarse lattice, which is performed in the regime
where it behaves like an exponential decrease. For both symmetry channels and both ensembles
there is a clear presence of a signal at early times which serves as evidence of the mixing. The meson
operator used for the 0++ channel is Γ = I with standard distillation while for the 0−+ it is Γ = 𝛾5

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
8
7

Optimized meson operators for charmonium spectroscopy and mixing with glueballs Juan Andrés
Urrea-Niño

using the optimal profile obtained from the iso-vector calculation. As expected, the 0++ displays the
clearest signal out of the two channels analyzed. It should be noted that in both cases the noise of the
correlation function is dominated by the noise of the glueball operators, which require significantly
higher statistics than the meson operators to obtain a signal-to-noise ratio comparable to the latter.
However, due to the fact that the meson operators are much more computationally expensive to
calculate than the glueball ones it is the former the ones that dictate the statistics available.
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Figure 5: Effective mass of the 0++ glueball in the coarse ensemble compared to the plateau average of the
lightest iso-vector meson measured in [4]. The errorbars of the latter are omitted since they would not be
visible at the scale of the plot.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t [fm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C M
G
(t)

0+ +

a 0.0658 fm
a 0.049 fm
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(b) Normalized mixing correlation for the 0−+

channel in both ensembles.

Figure 6: Normalized mixing correlations for the channels of interest in this work.

5. Conclusions

In this work an extension to the study of optimal meson distillation profiles presented in [4]
was performed to compare two ensembles with 𝑁 𝑓 = 2 degenerate quarks at half the physical
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charm quark mass but with different lattice spacing and physical volume. In both ensembles the use
of these profiles leads to a significant suppression of excited state contamination at no additional
inversion cost, a main advantage of this modification. The construction of these meson profiles
comes from a GEVP formulation where the previously unexploited choice of the quark distillation
profile is used as an additional degree of freedom. Furthermore, these profiles help characterize
optimal operators for different 𝐽𝑃𝐶 of interest not only in distillation space but also in coordinate
space via the visualization of their spatial profile. This characterization was performed for the
case of meson operators, however it can be extended to general hadron operators where distillation
is applicable as well as to the framework of stochastic distillation. Furthermore we did a first
investigation of the mixing between isoscalar mesons and glueballs. A GEVP study of meson and
glueball operators involving this mixing is an ongoing work, together with the application of the
optimal meson distillation profiles in an 𝑁 𝑓 = 3+1 ensemble with a physical charm quark and three
degenerate light quarks with the average mass as in nature.
Acknowledgement. The authors gratefully acknowledge the Gauss Centre for Supercomputing
e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS
Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.de).
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