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1. Introduction

The isentropic speed of sound and isothermal speeds of sound are given by, respectively,

𝑐2
𝑠 =

(
𝜕𝑝

𝜕𝜖

)
𝑠/𝑛𝐵

and 𝑐2
𝑇 =

(
𝜕𝑝

𝜕𝜖

)
𝑇

, (1)

where 𝑝 is the pressure, 𝜖 is the energy density, 𝑠 is the entropy density, 𝑛𝐵 is the net baryon-number
density, and 𝑇 is the temperature. It is one of many bulk thermodynamic observables useful for
characterizing strongly interacting matter. For instance in the simple Bjorken flow model, assuming
a constant 𝑐2

𝑠, one can show [1] that the energy density will decrease with proper time 𝜏 as 𝜏−(1+𝑐2
𝑠 ) .

In the context of heavy ion collisions (HIC), the system cools with longitudinal expansion of the
fireball according to 𝑐2

𝑠 in this picture. Also in the context of HIC, it can be used to look out for a
long-lived fireball, which may coincide with a softest point where the pressure-to-energy-density
ratio, and hence 𝑐2

𝑠, attains a minimum [2]. The isothermal speed of sound may also be of interest in
the context of HIC, as a new method to estimate 𝑐2

𝑇
in HIC has been recently suggested in Ref. [3].

In the context of neutron stars, 𝑐2
𝑠 is interesting since the relationship between the star masses and

radii is influenced by how 𝑐2
𝑠 changes with 𝑛𝐵 [4]. This context is particularly interesting, since

some situations may suggest or require 𝑐2
𝑠 exceed its conformal limit 1/3 [5–7].

With these applications in mind, it is worthwhile to revisit lattice investigations of the speed of
sound. The speed of sound has been extensively studied at 𝜇𝐵 = 0 on the lattice [8–10]. Here we
extend these results to obtain a first calculation of 𝑐2

𝑠 at finite baryon, electric charge, and strangeness
chemical potentials 𝜇𝐵, 𝜇𝑄, and 𝜇𝑆 on the lattice. In order to obtain observables that are functions
of 𝜇𝐵 and 𝑇 only, and in order to target physics of interest to HIC, we introduce two constraints

𝑛𝑆 = 0 and 𝑛𝑄/𝑛𝐵 = 𝑟, (2)

where 𝑛𝑆 and 𝑛𝑄 are the net strangeness and electric charge densities, and 𝑟 = 0.4 or 0.5 corre-
sponding respectively to collisions at the Relativistic Heavy Ion Collider (RHIC) and the isospin-
symmetric case.

Thermodynamic observables including 𝑐2
𝑠 calculated at 𝑟 = 0.5 have been studied extensively

by us in a recent publication [11]. This extends previous 6th-order results [12] up to 8th-order in the
pressure series. In these proceedings, we supplement our most recent results with a calculation of
𝑐2
𝑇

at 𝜇𝑄 = 𝜇𝑄 = 0 and extend speed of sound results on lines of constant 𝑠/𝑛𝐵 to include 𝑟 = 0.4,
which is similar to the RHIC scenario. We confirm that differences in 𝑐2

𝑠 and lines of constant
𝑠/𝑛𝐵 arising from this change in 𝑟 are negligible. For 𝑐2

𝑇
, we will introduce instead the constraint

𝜇𝑄 = 𝜇𝑆 = 0. While less directly relevant to HIC, this situation has 𝜇𝑄 = 0 in common with
𝑟 = 0.5 and has the advantage of especially simple expressions for 𝑐2

𝑇
.

2. Strategy of calculations

The general strategy starts with finding 𝑝. Once we have 𝑝, we can derive all other quantities
from basic thermodynamic relations. For temperatures near and above 𝑇pc we use lattice QCD; near
and below 𝑇pc we use the hadron resonance gas (HRG) model.
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2.1 Lattice QCD

For convenience, we introduce dimensionless variables 𝑋̂ ≡ 𝑋𝑇−𝑘 with 𝑘 ∈ Z chosen such
that 𝑋̂ is dimensionless. Thermodynamic observables are determined using the Taylor expansion
approach, i.e. we expand

𝑝 =
1
𝑉𝑇3 logZQCD(𝑇,𝑉, 𝜇̂𝐵, 𝜇̂𝑄, 𝜇̂𝑆) =

∞∑︁
𝑖, 𝑗 ,𝑘=0

𝜒
𝐵𝑄𝑆

𝑖 𝑗𝑘

𝑖! 𝑗!𝑘!
𝜇̂𝑖𝐵 𝜇̂

𝑗

𝑄
𝜇̂𝑘𝑆 , (3)

with expansion coefficients

𝜒
𝐵𝑄𝑆

𝑖 𝑗𝑘
≡ 𝜒

𝐵𝑄𝑆

𝑖 𝑗𝑘
(𝑇) = 𝜕𝑝

𝜕𝜇̂𝑖
𝐵
𝜕𝜇̂

𝑗

𝑄
𝜕𝜇̂𝑘

𝑆

�����
𝜇̂=0

. (4)

Imposing our constraints (2) renders 𝜇̂𝑄 and 𝜇̂𝑆 functions of 𝜇̂𝐵 and𝑇 , and hence we can reorganize 1

𝑝 as

𝑝 = 𝑃0 +
∞∑︁
𝑘=1

𝑃2𝑘 (𝑇) 𝜇̂2𝑘
𝐵 (5)

For more details on our implementation of constraints, see e.g. Ref. [11, 14, 15].
Perhaps the most straightforward strategy2 to obtain 𝑐2

𝑠 on the lattice, and the one that we
employ here, is to use

𝑐2
𝑠 ≡ 𝑐2

®𝑋
=

(
𝜕𝑝

𝜕𝜖

)
®𝑋
=

(𝜕𝑝/𝜕𝑇) ®𝑋
(𝜕𝜖/𝜕𝑇) ®𝑋

, (6)

where ®𝑋 ≡ (𝑠/𝑛𝐵, 𝑟, 𝑛𝑆). In this strategy, one takes numerical 𝑇-derivatives of 𝑝(𝑇) and 𝜖 (𝑇) that
were determined along the line of constant physics ®𝑋 .

When 𝑇 is held fixed, one can proceed analytically a bit further in a relatively straightforward
manner through Taylor expansion. In particular one has in this case

𝑐2
𝑇 =

(
𝜕𝑝

𝜕𝜖

)
𝑇

=

(
𝜕𝑝

𝜕𝜇̂𝐵

) (
𝜕𝜖

𝜕𝜇̂𝐵

)−1
. (7)

When 𝜇̂𝑄 = 𝜇̂𝑆 = 0, the relationship between Taylor coefficients of 𝑝 and 𝜖 become especially
simple, and one eventually finds

𝑐−2
𝑇 − 3 =

2𝑃′
2 𝜇̂𝐵 + 4𝑃′

4 𝜇̂
3
𝐵
+ O

(
𝜇̂5
𝐵

)
2𝑃2 𝜇̂𝐵 + 4𝑃4 𝜇̂

3
𝐵
+ O

(
𝜇̂5
𝐵

) or 𝑐−2
𝑇 = 3 +

𝑃′
2
𝑃2

+
∑︁
𝑘

𝑐𝑇,2𝑘 𝜇̂
2𝑘
𝐵 . (8)

Using the notation 𝑋 ′ = 𝑇dX/d𝑇 , we get for the expansion coefficients

𝑐𝑇,2 =

(
𝑃4

𝑃2

) ′
, 𝑐𝑇,4 = 4

(
𝑃4

𝑃2

) (
𝑃4

𝑃2

) ′
+ 3

(
𝑃6

𝑃2

) ′
, ... (9)

1The convergence of this series in 𝜇̂𝐵 was analyzed in Ref. [13]. There, it was argued that for 𝑇 ≥ 130 MeV, the 𝑝
series is reliable for 𝜇̂𝐵 ≤ 2.5. A similar analysis for 𝑟 = 0.4 delivers the same range of applicability [14].

2Another strategy is given in Appendix C of Ref. [11].
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2.2 Hadron resonance gas

In the HRG model, we work in a phase where quarks are confined so that the only degrees of
freedom are hadronic bound states. Hence this model is expected to be valid up to roughly 𝑇pc. A
non-interacting, quantum, relativistic gas eventually delivers for particle species 𝑖

𝑝𝑖

𝑇
=
𝑚2

𝑖
𝑔𝑖𝑇

2𝜋2

∞∑︁
𝑘=1

𝜂𝑘+1
𝑖
𝑧𝑘
𝑖

𝑘2 𝐾2

(
𝑚𝑖𝑘

𝑇

)
, 𝑧𝑖 ≡ 𝑒 𝜇̂𝐵𝐵𝑖+𝜇̂𝑄𝑄𝑖+𝜇̂𝑆𝑆𝑖 , (10)

where 𝑚𝑖 is the species’ mass, 𝑔𝑖 is its degeneracy factor, 𝜂𝑖 = ±1 for boson/fermion statistics, and
𝐾2 is the modified Bessel function3 of the 2nd kind. The total 𝑝 is then found by summing over all
known4 states.

In the special case 𝜇̂𝑄 = 𝜇̂𝑆 = 0, one can derive a relatively simple form for the isothermal
speed of sound. This case is instructive to get some intuition about how the speed of sound behaves,
especially at low temperatures, and it moreover shares 𝜇̂𝑄 = 0 in common with the 𝑟 = 0.5 case.
One schematically has in this situation

𝑝 = 𝑓𝑀 (𝑇) + 𝑓𝐵 (𝑇) cosh( 𝜇̂𝐵),
𝜖 = 3 𝑓𝑀 (𝑇) + 𝑓 ′𝑀 (𝑇) +

(
3 𝑓𝐵 (𝑇) + 𝑓 ′𝐵 (𝑇)

)
cosh( 𝜇̂𝐵),

(11)

where 𝑓𝑀 (𝑇) and 𝑓𝐵 (𝑇) are the mesonic and baryonic contributions, respectively. Hence when
taking a 𝜇̂𝐵-derivative, 𝑓𝑀 drops out. This makes computing the isothermal speed of sound
especially5 straightforward:

𝑐2
𝑇 =

(
𝜕𝑝

𝜕𝜇̂𝐵

) (
𝜕𝜖

𝜕𝜇̂𝐵

)−1
=

1
3 + 𝑓 ′

𝐵
(𝑇)/ 𝑓𝐵 (𝑇)

, (12)

i.e. in an HRG, 𝑐2
𝑇

will be 𝜇̂𝐵-independent. This is in agreement with the 𝑟 = 0.5 expansion
coefficients of 𝑐2

𝑇
given in eq. (9). To see this, note that for an HRG in the Boltzmann approximation,

the expansion coefficients 𝑃2𝑘 are given by

𝑃2𝑘 =
𝑓𝐵 (𝑇)
2𝑘!

. (13)

The ratios 𝑃2𝑘/𝑃2 are thus 𝑇-independent, which means the coefficients in eq. (9) vanish when
applied to a 𝜇̂𝑄 = 𝜇̂𝑆 = 0 HRG.

To determine 𝑐2
𝑠 in HRG, one could use eq. (6). While this is quite successful for large 𝑠/𝑛𝐵,

which corresponds6 to small 𝜇̂𝐵, we found it had numerical difficulties for 𝑠/𝑛𝐵 ≲ 10. Instead, we
use here Appendix C of Ref. [11], which while more elaborate to implement, increases numerical
stability by circumventing the numerical 𝑇-derivatives. We find exact agreement between both
approaches for 𝑠/𝑛𝐵 ≳ 400, while the second approach allows us to compute 𝑐2

𝑠 for 𝑠/𝑛𝐵 ≲ 10
more reliably.

3𝐾2 is exponentially suppressed, so in practice we calculate eq. (10) numerically by dropping all terms with 𝑘 > 20.
For the same reason, we neglect states with masses larger than the kaon.

4We use the QMHRG2020 list of hadron resonances [16].
5This works nicely since 𝜇𝐵 and 𝑇 are independent control parameters, so one can straightforwardly take a partial

derivative of one while holding the other fixed. By contrast, derivatives on a line of fixed 𝑠/𝑛𝐵 are much more delicate.
6The 𝑠( 𝜇̂𝐵) expansion has a nonzero leading term 𝑠0, while 𝑛𝐵 ( 𝜇̂𝐵) leads at O( 𝜇̂𝐵). Thus the limit 𝜇̂ → 0

corresponds to 𝑠/𝑛𝐵 → ∞.
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Figure 1: Lines of constant entropy per baryon number in the 𝑇-𝜇̂𝐵 plane for 𝑟 = 0.4 (left) and 𝑟 = 0.5
(right). Solid bands indicate results obtained by numerically solving 𝑠/𝑛𝐵 derived from the O

(
𝜇̂6
𝐵

)
pressure

series for 𝜇̂𝐵. Dashed lines indicate QMHRG2020 model calculations. The yellow band indicates 𝑇pc ( 𝜇̂𝐵).

3. Computational setup

We use high-statistics data sets for (2 + 1)-flavor QCD with degenerate light quark masses
𝑚𝑢 = 𝑚𝑑 ≡ 𝑚𝑙 and a heavier strange quark mass 𝑚𝑠. These data sets were generated with the HISQ
action using SIMULATeQCD [17] and have been presented in previous HotQCD studies [12, 13].

For 𝑇 < 180 MeV, the speed of sound is extracted from continuum-extrapolated data7 from
𝑁𝜏 = 8, 12, and 16 lattices with𝑚𝑠/𝑚𝑙 = 27, which is the physical value. For 𝑇 > 180 MeV, we use
data [12] with slightly heavier8 light quarks, 𝑚𝑠/𝑚𝑙 = 20. In all cases results have been obtained
on lattices with aspect ratio 𝑁𝜎/𝑁𝜏 = 4.

We are often interested in the behavior of observables near the pseudocritical temperature 𝑇pc.
When indicated on figures, we take 𝑇pc = 156.5(1.5) MeV from Ref. [19]. 𝑇pc( 𝜇̂𝐵) curves use the
O
(
𝜇̂2
𝐵

)
expansion

𝑇pc( 𝜇̂𝐵) = 𝑇pc(0)
(
1 − 𝜅𝐵2 𝜇̂

2
𝐵 + O

(
𝜇̂4
𝐵

))
(14)

using curvature coefficient 𝜅𝐵2 = 0.016 for 𝑟 = 0.5 and 𝜅𝐵2 = 0.012 for 𝑟 = 0.4.
The AnalysisToolbox [20] is used to facilitate HRG calculations and bootstrapping. Statisti-

cal uncertainty in all figures is represented by bands and is calculated through bootstrap resampling,
unless otherwise stated. Central values are returned as the median, with the lower and upper error
bounds given by the 32% and 68% quantiles, respectively. If needed, spline interpolations are cubic
with evenly spaced knots, and temperature derivatives of lattice QCD data are calculated by fitting
the temperature dependence with a spline, then calculating the derivative of the spline numerically.

4. Results

Results for 𝑐2
𝑠 are computed along lines of constant 𝑠/𝑛𝐵, which are depicted for both the

𝑟 = 0.4 and 𝑟 = 0.5 cases in Fig. 1. We examine 400 ≤ 𝑠/𝑛𝐵 ≤ 30, which very roughly corresponds

7For details on our continuum extrapolation, see Ref. [11].
8This is known to have a negligible effect on the results [18].
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Figure 2: Isentropic speed of sound versus temperature for strangeness-neutral matter with 𝑟 = 0.4 (left)
and 𝑟 = 0.5 (right). Dashed lines at low temperatures indicate QMHRG2020 model calculations, while the
yellow band indicates 𝑇pc. 𝑠/𝑛𝐵 = ∞ data taken from Ref. [9].

to the 𝑠/𝑛𝐵 range covered by BES-II at RHIC for beam energies 7.7 GeV ≲ √
𝑠
𝑁𝑁
≲ 200 GeV.

We find good agreement with HRG below 𝑇pc. For Figs. 1, 2, and 3, the behavior between the
𝑟 = 0.4 and 𝑟 = 0.5 cases is qualitatively the same and quantitatively very close, i.e. we verify that
differences in these observables due to deviations from the isospin-symmetric case are quite small.
Error bars for the 𝑟 = 0.4 case may be larger, since one introduces an error in 𝜇̂𝑄 ( 𝜇̂𝐵), which is
otherwise exactly zero in the 𝑟 = 0.5 case.

In Fig. 2 we show our results for 𝑐2
𝑠 against 𝑇 for both 𝑟 = 0.4 and 𝑟 = 0.5. Fig. 3 shows the

HRG results down to about 𝑇 = 20 MeV. In general one finds only mild quantitative differences
with changing 𝑠/𝑛𝐵 above 𝑇pc. We find good agreement between lattice results and HRG below 𝑇pc.
Near 𝑇pc, one finds a dip in the lattice data for 𝑠/𝑛𝐵 ≥ 100. Using both lattice and HRG results,
one expects a dip also down to at least 𝑠/𝑛𝐵 = 30. This dip location roughly corresponds to the
location of the 𝑝/𝜖 minimum, i.e. the softest point mentioned in the introduction, which one can
also verify directly using our 𝑝 and 𝜖 data [11]. This gives yet another indication of the existence
of a crossover at all chemical potentials examined in this study.

Turning to the QMHRG2020 results shown in Fig. 3, we see a peak in 𝑐2
𝑠 that decreases with

decreasing 𝑠/𝑛𝐵. Somewhere in the vicinity 𝑠/𝑛𝐵 ∈ [10, 15], the peak has vanished, and 𝑐2
𝑠

increases monotonically with 𝑇 up to 165 MeV. The 𝑐2
𝑠 curves at 𝑟 = 0.4 and 𝑟 = 0.5 seem to

approach 𝑐2
𝑇

as 𝑠/𝑛𝐵 → 0 with particularly close agreement at the lowest calculated 𝑇 . We reiterate
that we only have 𝑐2

𝑇
data at 𝜇̂𝑄 = 𝜇̂𝑆 = 0, which is a somewhat different situation than both 𝑟 = 0.4

and 𝑟 = 0.5. This precludes an unambiguous direct comparison.
From eq. (11) and (12) we see that 𝑐2

𝑇
is insensitive to mesons. We will use this as a starting

point to understand the weakening of the peak in 𝑐2
𝑠. In the massless limit, one expects from eq. (10)

that 𝑐2
𝑠 and 𝑐2

𝑇
will be 1/3 at all 𝑇 . Continuing this behavior to small 𝑚, one expects that small

masses have the tendency to pull speed of sound curves up toward 1/3. The isentropic speed of
sound, which feels the mesonic sector, but should approach 0 at low 𝑇 , therefore develops a peak.
By contrast 𝑐2

𝑇
at 𝜇̂𝑄 = 𝜇̂𝑆 = 0 is insensitive to mesons, so it has no tendency to be pulled to 1/3.

In Fig. 4 (right), we show a lattice determination of 𝑐2
𝑇

at 𝑟 = 0.5 using eq. (8). Despite the slight

6
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Figure 3: Isentropic speed of sound versus temperature for strangeness-neutral matter with 𝑟 = 0.4 (left)
and 𝑟 = 0.5 (right) from QMHRG2020 model calculations.
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Figure 4: Isothermal speed of sound for strangeness-neutral matter. Left: QMHRG2020 calculation at
𝜇̂𝑄 = 𝜇̂𝑠 = 0. Right: Lattice data at 𝑟 = 0.5. Error bands come from error propagation. The yellow band
indicates 𝑇pc, and the red, dashed line indicates the HRG curve from the left figure.

difference in external conditions, it agrees well with HRG at low 𝑇 , and it rapidly approaches the
ideal gas limit 1/3 at high 𝑇 .

As a closing remark, we mention that our results for the speed of sound are in rough qualitative
agreement with various model calculations, for instance PNJL and NJL models [21–25]; the
quark-meson coupling model [26, 27]; the field correlator method [28, 29]; and the quasiparticle
method [30].

5. Conclusion and outlook

We presented a first lattice calculation of 𝑐2
𝑠 and 𝑐2

𝑇
at finite chemical potential. The dip in

𝑐2
𝑠 near 𝑇pc, or equivalently its peak at lower 𝑇 , can be understood through its sensitivity to light

meson states. For all results we find a negligible difference between 𝑟 = 0.4 and 𝑟 = 0.5. Our
results for 𝑐2

𝑠 are qualitatively in agreement with model calculations. Finally we note that the
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strategy of Appendix C in Ref. [11] works quite successfully for 𝑐2
𝑠, and hope to extend it to other

thermodynamic observables.
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