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1. Introduction

The sign problem appears in systems haveing a complex action, invalidating importance sam-
pling simulations. The method discussed in this article is the complex Langevin method [1], which
uses a complexified stochastic process, rather than a probability distribution to circumvent the sign
problem. For some complex measure 𝜌(𝑥) = exp(−𝑆(𝑥)) depending on the variable 𝑥 the Complex
Langevin equation (CLE) is written as

𝜕𝜏𝑥 = −Re
𝜕𝑆(𝑧)
𝜕𝑧

����
𝑧=𝑥+𝑖𝑦

+ 𝜂𝜏 , 𝜕𝜏𝑦 = −Im
𝜕𝑆(𝑧)
𝜕𝑧

����
𝑧=𝑥+𝑖𝑦

(1)

with the drift term 𝐾 (𝑧) = 𝜕𝑆(𝑧)/𝜕𝑧 and a Gaussian noise 𝜂 satisfying ⟨𝜂𝜏𝜂𝜏′⟩ = 2𝛿(𝜏 − 𝜏′).
Even though this method was shown to circumvent the sign problem successfully in many models,
sometimes converge towards incorrect results is observed. It has been identified that slow decay
of the distribution on the complexified manyfold can lead to this behavior [2, 3]. In full QCD the
Complex Langevin equation has been show to provide reliable results at small lattice spacings, where
it has been used to e.g. calculate the equation of state in the deconfined state [4, 5]. The slow-decay
problem in this case is fixed by introducing gauge cooling [6]. In other cases (at large lattice-
spacings or small temperatures) gauge cooling is not sufficient to achieve fast enough decay. The
boundary terms were introduced to identify the incorrect results within the CLE simulation[7, 8].
The measurement of the boundary terms are cheap even for a lattice system, since it amounts to
measuring a new observable and performing an offline analysis to be detailed below. Dynamical
stabilization[9] introduces a gauge invariant force to the drift term with the aim to confine the
complexified process close to the original SU(3) manifold, to regularize the system in the cases
where gauge cooling is not sufficient. This has shown good results in toy models, and can be applied
to QCD as well.

In this work we study full QCD discretised using the plaquette action and two or four flavors of
staggered fermions at nonzero chemical potential, with relatively light quark masses. We measure
boundary terms and test the performance of simulations using Dynamical stabilization by comparing
their results to the reweighted results of HMC simulations at zero 𝜇.

2. Boundary terms

The Complex Langevin equation (CLE) creates a real probability density on a complexified
manifold 𝑃(𝑥, 𝑦, 𝜏), where 𝜏 is known as the Langevin time. (Here we illustrate it for one com-
plexified scalar variable, the generalization to more complicated systems easily follows.) First let
us define an observable in the complexified manifold,

⟨𝑂⟩𝑃 (𝑡 ) =

∫
𝑑𝑥𝑑𝑦𝑃(𝑥, 𝑦, 𝑡)𝑂 (𝑥 + 𝑖𝑦). (2)

Whereas we denote averages with the complex density 𝜌(𝑥, 𝑡) as

⟨𝑂⟩𝜌(𝑡 ) =
∫

𝑑𝑥𝑂 (𝑥)𝜌(𝑥, 𝑡), (3)
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Here the time dependent distribution is evolving as 𝜌(𝑥, 𝑡) = exp(𝐿𝑇𝑐 )𝜌0(𝑥), with 𝜌0(𝑥) being
some initial distribution, and we defined the complex Fokker-Planck operator or Complex Langevin
operator, 𝐿𝑐 = (𝜕𝑧 + 𝐾 (𝑧))𝜕𝑧 . It can be shown that provided 𝐿𝑐 has a spectrum with non-positive
real part eigenvalues, ⟨𝑂⟩𝜌(𝑡 ) converges to the correct result 1/𝑍

∫
𝑑𝑥𝑒−𝑆 (𝑥 )𝑂 (𝑥). Now having the

complex distribution and the correct distribution, we can interpolate between them, allowing for
verification of our Complex Langevin results.

𝐹𝑂 (𝑡, 𝜏) =
∫

𝑑𝑥𝑑𝑦𝑃(𝑥, 𝑦, 𝑡 − 𝜏)𝑂 (𝑥, 𝑦, 𝜏), (4)

with the time-evolved observable

𝑂 (𝑡, 𝜏) = 𝑒𝑥𝑝(𝜏𝐿𝑐)𝑂 (𝑥, 𝑦). (5)

It is easy to see that 𝐹𝑂 (𝑡, 0) = ⟨𝑂⟩𝑃 (𝑡 ) , the less obvious 𝐹𝑂 (𝑡, 𝑡) = ⟨𝑂⟩𝜌(𝑡 ) is also true (provided
assumptions made above hold). This implies that if the 𝜏 derivative of our interpolation function is
zero, we have correct results.

𝜕𝐹 (𝑡, 𝜏)
𝜕𝜏

= 0 (6)

However this is not always satisfied in practice. To better understand its behavior we introduce a
cut-off, to define:

𝐵(𝑌, 𝑡) = 𝜕𝜏𝐹𝑂 (𝑌 ; 𝑡, 𝜏) |𝜏=0 =

∫
|𝑦 |<𝑌

𝑑𝑥𝑑𝑦𝜕𝜏𝑃(𝑥, 𝑦, 𝑡 − 𝜏)𝑂 (𝑥, 𝑦) (7)

The value of the boundary terms are then to be observed in the 𝑌 → ∞ limit. Here we can make
use of the Fokker-Planck equation, and change the derivative 𝜕𝑡𝑃(𝑥, 𝑦, 𝑡) = 𝐿𝑐𝑃(𝑥, 𝑦, 𝑡)

𝐵(𝑌, 𝑡) = −
∫
|𝑦 |<𝑌

𝑑𝑥𝑑𝑦 (𝜕𝑡𝑃(𝑥, 𝑦, 𝑡))𝑂 (𝑥, 𝑦) +
∫
|𝑦 |<𝑌

𝑑𝑥𝑑𝑦𝑃(𝑥, 𝑦, 𝑡)𝐿𝑐𝑂 (𝑥, 𝑦) (8)

and since the distribution 𝑃(𝑥, 𝑦, 𝑡) settles as 𝑡 → ∞, the first integral vanishes. Applying the
derivative multiple times to the interpolation function we get higher order boundary terms, which
are calculated similarly to the first one.

𝐵𝑛 (𝑌, 𝑡) = 𝜕𝑛𝜏𝐹𝑂 (𝑌 ; 𝑡, 𝜏)
��
𝜏=0 =

∫
𝑑𝑥𝑑𝑦𝑃(𝑥, 𝑦, 𝑡)𝐿𝑛𝑐𝑂 (𝑥, 𝑦)Θ(𝑌 − 𝑦). (9)

Thus the boundary terms are defined in terms of new observables 𝐿𝑛𝑐𝑂, which also include a cutoff
in the imaginary part of the fields. For lattice systems, the definitions are the same, however the
cutoff now has to depend on all of the gauge links in order to enclose a compact submanifold of
the complexified manifold. Thus we define a unitarity norm, as a measure of how non-unitary our
gauge links are.

𝑛(𝑀) = Tr(𝑀†𝑀 − 1)2 for 𝑀 ∈ SL(𝑁,C). (10)

This can then be used as the cutoff in the boundary term

𝐵𝑛 (𝑌 ) =
∫

𝑃(𝑀)𝐿𝑛𝑐𝑂Θ(𝑌 − 𝑛(𝑀))𝑑𝑀. (11)
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3. Results

First we investigate the plaquettes and Polyakov loops in full QCD, to investigate whether
the boundary term can provide a way to confirm correct observables. The boundary term for the
plaquette and the Polyakov loop has been calculated using eq. (11), using the left derivative

𝐷𝑎𝑈 = 𝑖𝜆𝑎𝑈 𝐷𝑎𝑈
−1 = −𝑖𝑈−1𝜆𝑎 (12)

in the 𝐿𝑐 =
∑

𝑖 (𝐷𝑖 +𝐾𝑖)𝐷𝑖 operator, where 𝜆𝑎 are the Gell-Mann matrices, and the 𝑖 index includes
space-time coordinates, Lorentz and color indices. In this section we present results from small
(44) lattices, as our aim was to test the feasibility and validity of the boundary term analysis for full
QCD simulations. We use 2 flavors of (rooted) staggered fermions with mass parameter 𝑚 = 0.02.
The setup of the simulations (regarding discretisation of the Langevin eq. for the gauge link
variables, gauge cooling, etc) is similar to what have been used in [10], except for the calculation
of the fermionic drift force, where in this case, instead of a noisy estimator we have used an exact
calculation of the fermionic drift term

𝐾𝐹
𝑖 = −𝑁 𝑓 Tr(𝑀−1𝐷𝑖𝑀) (13)

where 𝑀 is the staggered Dirac matrix. This allows simulations at low 𝛽 values, as the simulations
using noisy estimator tend to be more instable in that region , as also noticed in [11]. To compare our
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Figure 1: On the left panel the Spatial plaquette is plotted, with results calculated from CLE(blue) and
reweighted HMC(orange). On the right panel the boundary terms are shown for various values of beta as a
function of the cutoff.

CLE data with correct results, we have used data from a HMC simulations at zero quark chemical
potential(𝜇 = 0), reweighted to a non-zero 𝜇. We have used 𝜇 = 0.1 corresponding to 𝜇/𝑇 = 0.4,
such that reweighting is still feasible here. We used O(1000) configurations at each 𝛽 value to
perfom the reweighting. It can be seen in Fig. 1 that the CLE is incorrect for low beta values as
observed in earlier studies [12]. This can be also correctly observed from the boundary terms, as
seen on the right panel of Fig. 1. Similarly, in Fig. 2 we see the Polyakov loop comparison and
boundary terms. From these plots it can be seen that the incorrect results are signalled by non-zero
boundary terms. In fact the more incorrect the result, the larger are the magnitude of the boundary
terms.
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Figure 2: On the left panel the Polyakov loop is plotted, with results calculated from CLE(blue) and
reweighted HMC(orange). On the right panel the boundary terms are shown for various values of beta as a
function of the cutoff.

4. Dynamical stabilization

As we can see by the boundary terms, the simulations at low-beta yields incorrect results, as
they have distributions with slow decay on the complexified manifold. To negate this problem. a
gauge invariant force to the drift term is introduced [9]:

𝐾𝑎
𝑥,𝜇 → 𝐾𝑎

𝑥,𝜇 + 𝑖𝛼𝐷𝑆𝑀
𝑎
𝑥 (14)

with the force it self

𝑀𝑎
𝑥 = 𝑖𝑏𝑎𝑥

(∑︁
𝑐

𝑏𝑐𝑥𝑏
𝑐
𝑥

)3

and 𝑏𝑎𝑥 = Tr

[
𝜆𝑎

∑︁
𝜈

𝑈𝑥,𝜈𝑈
†
𝑥,𝜈

]
. (15)

Here the 𝛼𝐷𝑆 is a tunable parameter controlling the strength of the force towards the SU(3) manifold.
We also investigated a modifaction of the proposal, where the sum over directions has been removed,
implying that the 𝑀-term now also will depend on the direction 𝜇.

𝑀 ′𝑎
𝑥,𝜇 = 𝑖𝑏𝑎𝑥

(
2Tr

[(
𝑈𝑥,𝜇𝑈

†
𝑥,𝜇

)2
]
− 2

3
Tr

[
𝑈𝑥,𝜇𝑈

†
𝑥,𝜇

]2
)3
, (16)

Here the term has been simplified, using an identity of the Gell-Mann matrices.

5. Results with dynamical stabilization

In this section we compare the results of dynamically stabilized CLE simulations to results of
HMC simulations at zero quark chemical potential(𝜇 = 0) reweighted to a non-zero (𝜇 = 0.1). The
CLE simulations tend to crash due to infinities, when using low 𝛽 parameters (low temperatures).
Therefore we show results for nonzero 𝛼 parameters as dynamical stabilization helps suppressing
this instable behavior. We used 𝑀 and 𝑀 ′ as defined in the previous section, and we have observed
that mostly it doesn’t really matter which one we use. So from now on we present the data that
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has been found using the 𝑀-term, as described in [9]. In this section, we present results on 83 × 4
lattices, and here the noisy estimator [10] has been used to calculate the fermionic drift terms.

In Figure 3 we show the spatial plaquette average, Polyakov loops and its inverse and the
baryonic density, calculated with CLE simulations using dynamical stabilization with 𝛼 = 106 and
reweighted HMC results. One observes good overall agreement even at low 𝛽 parameters. In
Figures 4 to 7 we show the results of the CLE simulations as a function of the 𝛼 parameter, where
the reweighted HMC result is also indicated, as well as the boundary terms of the observables.
We use two 𝛽 parameters, one in the low temperature and one in the high temperature phase. We
observe that at high temperatures the results are correct. In this case actually simulations without
dynamical stabilization behave similarly well. At low temperatures, we observe that the spatial
plaquette and density observables within errors reproduce the reweighted results, whereas we see
discrepancies in the Polyakov loop and its inverse. Although the magnitude of these errors are
quite small they seem to be statistically significant. The boundary terms are quite small for all
observables and temperatures (much smaller in magnitude as for the 𝛼 = 0 simulations at low
𝛽). Further investigation is neccessary to be able to verify whether the small discrepancy in the
Polyakov loops is accurately signalled by the boundary terms. Note that the new term introduced in
the Langevin equation is non-holomorphic, so in principle the boundary term analysis is invalidated
in this setup, although in practice it seems to give results consistent with expectations.

4.6 4.8 5.0 5.2 5.4 5.6 5.8

0.40

0.45

0.50

0.55

0.60

Re
[s

pa
tia

l p
la

qu
et

te
]

QCD 43x4, Nf = 2, m = 0.02, = 0.1
CLE
Reweight

4.6 4.8 5.0 5.2 5.4 5.6

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Re
[B

ar
yo

ni
c 

de
ns

ity
]

QCD 83x4, Nf = 4, m = 0.02, = 0.1
CLE
Reweight

4.6 4.8 5.0 5.2 5.4 5.6 5.8
0.00

0.05

0.10

0.15

0.20

Re
[P

ol
ya

ko
v]

QCD 43x4, Nf = 2, m = 0.02, = 0.1
CLE
Reweight

4.6 4.8 5.0 5.2 5.4 5.6

0.05

0.10

0.15

0.20

0.25

0.30

Re
[in

ve
rs

e 
Po

ly
ak

ov
]

QCD 83x4, Nf = 4, m = 0.02, = 0.1
CLE
Reweight

Figure 3: Comparison between CLE, and reweighted HMC data, for the four observables studied in this
paper. Top left: Spatial Plaquette. Top right: Baryonic density. Lower left: Polyakov loop. Lower right:
Inverse Polyakov loop. The CLE data is simulated with 𝛼𝐷𝑆 = 106.
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Figure 4: The spatial plaquette(top) and its boundary term(bottom) for low(left) temperature and high(right)
temperature.
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Figure 5: The baryonic density(top) and its boundary term(bottom) for low(left) temperature and high(right)
temperature.
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Figure 6: The Polyakov loop(top) and its boundary term(bottom) for low(left) temperature and high(right)
temperature.
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Figure 7: The inverse Polyakov loop(top) and its boundary term(bottom) for low(left) temperature and
high(right) temperature.
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6. Conclusions

We have studied the boundary terms in full QCD simulations using the Complex Langevin
equation. We observe a good performance of CLE for high temperatures, where dynamical stabi-
lization is not needed, and we obtain correct results, as confirmed by comparison to reweighting and
correctly signalled by vanishing boundary terms. At low inverse coupling however, incorrect results
are obtained, which are correctly signalled by non-vanishing boundary terms. We have tested dy-
namical stabilisation by comparing its results to reweighting while also measuring boundary terms
of some observables. We observe correct results at high temperatures, and mostly correct results at
low temperatures (the Polyakov loop shows a small discrepancy). This study will be presented in
more detail in an upcoming article [13].
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