
P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
8
3

Heavy quark diffusion coefficient with gradient flow

Viljami Leino,𝑎,∗ Nora Brambilla,𝑏,𝑐,𝑑 Julian Mayer-Steudte𝑏,𝑑 and
Peter Petreczky𝑒
𝑎Helmholtz Institut Mainz, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
𝑏Physik Department, Technische Universität München,
James-Franck-Strasse 1, 85748 Garching, Germany

𝑐Institute for Advanced Study, Technische Universität München,
Lichtenbergstrasse 2 a, 85748 Garching, Germany

𝑑Munich Data Science Institute, Technische Universität München,
Walther-von-Dyck-Strasse 10, 85748 Garching, Germany

𝑒Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
E-mail: viljami.leino@tum.de, nora.brambilla@ph.tum.de,
julian.mayer-steudte@tum.de, petreczk@bnl.gov
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1. Introduction

The behavior of a heavy quark moving in a strongly coupled quark gluon plasma can be
described by a set of transport coefficients. In particular, the equilibration time of the heavy quark
can be described by Langevin dynamics that depend on three related transport coefficients [1]: the
heavy quark momentum diffusion coefficient ^, the heavy quark diffusion coefficient 𝐷s, and the
drag coefficient [. In this paper we focus on the heavy quark momentum diffusion coefficient ^. The
heavy quark momentum diffusion coefficient is known in perturbation theory up to mass-dependent
contributions at NLO accuracy [1–3]. However, this NLO correction is sizable [3], which invites for
non-perturbative studies at strong coupling. We will label this leading term in the 𝑇/𝑀 expansion
as ^E. Moreover, the first mass-dependent contribution when expanding the diffusion coefficient
with respect to 𝑇/𝑀 has been studied in [4, 5], and we will label it as ^B. It is sensitive to
chromo-magnetic screening and therefore, is not calculable in perturbation theory [5].

For measuring ^E,B we take an approach laid out by effective field theory and relate the
momentum diffusion coefficient to correlators of field strength tensor components. This allows
us to circumvent the problematic transport peak that is often encountered in transport coefficient
calculations. The leading contribution in the 𝑇/𝑀 expansion ^E is related to a correlator of two
chromo-electric fields [6, 7], and the leading 𝑇/𝑀 correction is related to a correlator of two
chromo-magnetic fields [5]. The diffusion coefficients ^E,B are then defined as a 𝜔 → 0 limit of
the associated spectral functions 𝜌E,B(𝜔).

The diffusion coefficients ^E,B have been studied on the lattice within this approach in pure gauge
theory [8–13], using the multilevel algorithm [14]. Recently, the gradient flow algorithm [15, 16]
has been found to be useful for this quantity due to its renormalization properties and because it
can be extended to theories with dynamical fermions more easily than multilevel simulations. The
heavy quark diffusion coefficient ^E,B has been measured with gradient flow in Refs. [17–20].

In this proceedings, we condense the results of our recent paper [20] for both the chromo-electric
and chromo-magnetic correlators on the lattice using the gradient flow algorithm and determine the
diffusion coefficient components ^E and ^B from the respective reconstructed spectral functions.

2. Chromo-electric and Chromo-magnetic correlators

The heavy quark momentum diffusion coefficient at leading order and including the leading
𝑇/𝑀 corrections can be written as [5]:

^ = ^E + 2
3
⟨v2⟩^B , (1)

where ^E and ^B can be extracted from Euclidean correlation functions by inverting a spectral
function 𝜌(𝜔) and taking the zero frequency limit:

𝐺E,B(𝜏) =
∫ ∞

0

d𝜔
𝜋
𝜌E,B(𝜔,𝑇)𝐾 (𝜔, 𝜏𝑇) , 𝐾 (𝜔, 𝜏𝑇) =

cosh
(
𝜔
𝑇

(
𝜏𝑇 − 1

2

))
sinh

(
𝜔
2𝑇
) , (2)

^E,B ≡ lim
𝜔→0

2𝑇𝜌E,B(𝜔,𝑇)
𝜔

. (3)
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Figure 1: The normalized correlators 𝐺E (Left) and 𝐺B (Right) at fixed flow-time ratios,
√

8𝜏F/𝜏 for the
𝑁𝑡 = 28 lattice at 𝑇 = 1.5𝑇𝑐.

Here, in the heavy quark limit 𝑀 ≫ 𝜋𝑇 , the Euclidean correlators can be expressed in terms of
chromo-electric 𝐸𝑖 and chromo-magnetic 𝐵𝑖 fields [5, 6, 21]:

𝐺E(𝜏) = −
3∑︁
𝑖=1

⟨Re Tr [𝑈 (1/𝑇, 𝜏)𝐸𝑖 (𝜏, 0)𝑈 (𝜏, 0)𝐸𝑖 (0, 0)]⟩
3 ⟨Re Tr𝑈 (1/𝑇, 0)⟩ , (4)

𝐺B(𝜏) =
3∑︁
𝑖=1

⟨Re Tr [𝑈 (1/𝑇, 𝜏)𝐵𝑖 (𝜏, 0)𝑈 (𝜏, 0)𝐵𝑖 (0, 0)]⟩
3 ⟨Re Tr𝑈 (1/𝑇, 0)⟩ , (5)

where 𝑇 is the temperature and𝑈 (𝜏1, 𝜏2) is a Wilson line in the Euclidean time direction.

In order to measure the Euclidean correlators we rely on the gradient flow algorithm [15, 16],
that systematically cools off the UV physics and automatically renormalizes the gauge invariant
observables [22]. This renormalization property of the gradient flow is especially useful for
the correlators 𝐺E,B, which otherwise require an multiplicative renormalization on the lattice.
However, for chromo-magnetic fields there is further renormalization required both on the lattice
and in continuum [4] that will not be automatically renormalized by the gradient flow. Moreover,
since the gradient flow introduces a length scale

√
8𝜏F, we have to make sure that the measurements

at the length scale of interest 𝜏, which describes the separation between the chromo-electric or
-magnetic fields, will not be affected by this new scale. To avoid the mixing the scales, we will
restrict our analysis to a regime 𝑎/𝜏 ≤

√
8𝜏F/𝜏 ≤ 1/3.

We have generated a set of pure-gauge SU(3) configurations using the standard Wilson gauge
action at two temperatures: a low temperature 1.5𝑇c, and a high temperature 104𝑇c, with𝑇c being the
deconfinement temperature. The temperatures are related to the lattice spacing 𝑎 via the scale setting
done in Ref. [23]. We consider lattices with varying numbers of temporal sites, 𝑁t = 20, 24, 28,
and 34, and with corresponding spatial extents of 𝑁s = 48, 48, 56, and 68 sites.

We present the raw lattice measurements of 𝐺E,B in Fig. 1. Here we are using tree-level
improved distances, such that we have redefined the separation of the field strength components
𝜏𝑇 so that the LO perturbative expressions of lattice and continuum perturbation theories match.
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Figure 2: Examples of continuum extrapolations at fixed
√

8𝜏F/𝜏 for 𝐺E (Left) and 𝐺B (Right) correlators
at 𝑇 = 1.5𝑇𝑐. The dashed lines and circles present the limit taken at the lower edge of the flow time ratio of
interest

√
8𝜏F/𝜏 = 0.231 while solid lines and asterisks have higher ratio of

√
8𝜏F/𝜏 = 0.299.
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Figure 3: The continuum limits of𝐺E (Left) and𝐺B (Right) at 𝑇 = 1.5𝑇c for different fixed flow-time ratios.

Furthermore, we normalize the data with the LO behavior:

𝐺LO
E (𝜏)
𝑔2𝐶F

≡ 𝐺norm(𝜏) = 𝜋2𝑇4
[
cos2(𝜋𝜏𝑇)
sin4(𝜋𝜏𝑇)

+ 1
3 sin2(𝜋𝜏𝑇)

]
. (6)

We observe the statistical errors decreasing with increasing ratio
√

8𝜏F/𝜏 and that both correlators
approach a common shape with increasing flow time.

The raw lattice data at finite lattice spacing needs to be extrapolated to the continuum limit.
We start by interpolating the Euclidean correlator data for each lattice in 𝜏𝑇 at fixed flow time ratio
with cubic splines. Next, we perform a linear extrapolation in 1/𝑁2

t = (𝑎𝑇)2 of the correlators at
the fixed interpolated 𝜏𝑇 , and fixed flow-time ratio positions, using all our lattice volumes for large
separations 𝜏𝑇 > 0.25. For small separations 𝜏𝑇 < 0.25, we drop the 𝑁t = 20 lattice from the
extrapolation. Based on our previous study [11], we do not expect there to be a notable dependence
on the spatial size of the lattice. As an example, we show the continuum extrapolations at different
𝜏𝑇 and

√
8𝜏F/𝜏 in Fig. 2, where the continuum limits is shown at the edges of the

√
8𝜏F/𝜏 range,

that we will later perform the zero flow time limit in. Finally in Fig. 3, we show the final continuum
limit of 𝐺E and 𝐺B.
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Figure 4: The flow time dependence of 𝐺E (Left) and 𝐺B (Right) at 𝑇 = 1.5𝑇c in the continuum limit.

Once the discretization effects have been removed by the continuum limit, we will need to
get rid of distortions due to gradient flow. For this we extrapolate the lattice results of 𝐺E to zero
flow time using linear ansatz. We show representative cases of these extrapolations on the left side
of Fig. 4. Meanwhile, the flow time dependence of 𝐺B is shown on the right side of Fig. 4 and
it appears to be quite different from the flow time dependence of the chromo-electric correlator.
The flow time dependence of 𝐺B appears to be roughly linear but has a slope with opposite sign.
This difference is expected and is due to the non-trivial renormalization of the 𝐺B, which will be
discussed in the next section. Due to finite anomalous dimension in the chromo-magnetic correlator,
we refrain from taking the zero flow time limit of𝐺B and instead will extract ^B at finite flow time.

3. Measuring the diffusion coefficient on the lattice

Similarly to our preceding multilevel study [11], we extract ^E and ^B using Eq.(2) and
modeling the spectral function 𝜌(𝜔) using the UV and IR behaviors motivated by the perturbation
theory [12, 24]:

𝜌IR
E,B(𝜔,𝑇) =

𝜔^

2𝑇
, and 𝜌UV

E,B(𝜔,𝑇) =
𝑔2(`opt

𝜔 )𝐶F𝜔
3

6𝜋
, (7)

where the scale of the running coupling `𝜔 has been chosen so that the NLO contribution to UV
spectral function vanishes. For 𝜌E, this scale is easy to determine[24]:

ln(`opt
𝜔 ) = ln(2𝜔) + (24𝜋2 − 149)

66
. (8)

For the magnetic spectral function 𝜌B, the situation is more complicated due to required renormal-
ization [4, 5]. In order to study the chromo-magnetic correlator𝐺B at the zero flow time, we use the
relation for the UV part of 𝐺𝐵 at non-zero flow time to the corresponding renormalized correlator
in MS scheme:

𝐺
flow,UV
B (𝜏, 𝜏F) = (1 + 𝛾0𝑔

2 ln(`
√︁

8𝜏F))2𝑍flow𝐺
MS,UV
B (𝜏, `) + ℎ0 · (𝜏F/𝜏) , (9)

where ℎ0 is a constant and 𝛾0 = 3/(8𝜋2) is the anomalous dimension of the chromo-magnetic
field [12]. Using the NLO result from Ref. [12] and neglecting the distortions due to finite flow

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
8
3

Heavy quark diffusion coefficient with gradient flow Viljami Leino

1.0 1.5 2.0 2.5 3.0 3.5
𝑇/𝑇𝑐

10

20

30

2𝜋
𝐷

s𝑇

NLO [3]
Banerjee 2012 [9]
Francis 2015 [10]
Altenkort 2021 [18]

Brambilla 2020 [11]
Banerjee 2022a [12]
Banerjee 2022b [13]
Brambilla 2022 [20]

Figure 5: Our result of ^E (Grey diamond) compared to existing lattice results.

time by setting ℎ0 to zero, we can arrive to a scale:

`
opt
𝜔 = (

√
𝐴𝜔)1−𝛾0/𝛽0 · (8𝜏F)−𝛾0/(2𝛽0 ) , 𝐴 = exp

[
134
35

− 8𝜋2

5
− ln 4

]
, (10)

which will give correct 𝜌UV up to a multiplicative constant 𝑍flow.
From our previous study [11], we know that the NLO behavior is not quite enough to capture

the zero temperature part of the Euclidean correlators, hence an additional normalization constant
𝐶𝑛 needs to be introduced as a fit parameter. For chromo-magnetic correlators, we will absorb the
unknown constant 𝑍flow into 𝐶𝑛. Furthermore, we assume that 𝜌E,B(𝜔,𝑇) = 𝜌IR(𝜔,𝑇) for 𝜔 < 𝜔IR

and 𝜌E,B(𝜔,𝑇) = 𝜌UV
E,B(𝜔,𝑇) for 𝜔 > 𝜔UV, where 𝜔IR and 𝜔UV are the limiting values of 𝜔 for

which we can trust the above behaviors. In the region 𝜔IR < 𝜔 < 𝜔UV, the form of the spectral
function is generally not known. Hence, for a given value of ^E,B, we construct the model spectral
function that is given by 𝜌UV

E,B in 𝜔 > 𝜔UV, 𝜌IR
E,B in 𝜔 < 𝜔IR, and vary various forms of 𝜌E,B(𝜔) for

the intermediate 𝜔IR ≤ 𝜔 ≤ 𝜔UV such that the total spectral function is continuous. For the exact
functional forms, we refer the reader to our main paper [20].

We now hold all the information needed to extract ^E and ^B. The extraction of ^E then
proceeds as follows. We take the continuum limit data at the zero flow time limit and perform a
least squares fit to Eq. (2) with our set of different spectral function models. In order to estimate
systematics, we vary the range of points included in the fits by dropping certain amount of early
points 𝜏𝑇min, we vary the scale with a factor of two, and we use multiple different spectral function
models. For ^E we then get as a final result:

1.70 ≤ ^E

𝑇3 ≤ 3.12 , at 𝑇 = 1.5𝑇c , and 0.02 ≤ ^E

𝑇3 ≤ 0.16 , at 𝑇 = 104𝑇c . (11)

The result for 𝑇 = 1.5𝑇c is in full agreement with the existing results. We show this in Fig. 5 for
the spatial diffusion coefficient 𝐷s = 2𝑇2/^. For 𝑇 = 104𝑇c, we are in agreement with our previous
result 0 < ^E/𝑇3 < 0.1 [11]. The new result has a slightly larger errors due to gradient flow analysis
having more strict fit regimes. However, we can for the first time observe a nonzero minimum for
^E/𝑇3 at very large temperature.

For ^B we had to invert the spectral function at a finite flow time, which means we need to do

6
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Figure 6: The heavy quark momentum diffusion coefficients ^E/𝑇3 (Left) and ^B/𝑇3 (Right) at different
flow time ratios

√
8𝜏F/𝜏. The filled/unfilled points depict the different models used for 𝜌(𝜔), while different

symbols show the different 𝜏𝑇min.

the zero flow time extrapolation at the level of ^B. To further reinforce this method, we show on the
left side of Fig. 6 that such limit also works for ^E. Then on the right hand side of Fig 6, we show
the flow time dependence of ^B. We observe that by using flow time dependent scale, at sufficiently
large 𝜏𝑇min, there is very little flow time dependence left. If we take the total variation at finite flow
time to be the error of ^B, we get for 𝑇 = 1.5𝑇c: 1.23 < ^B/𝑇3 < 2.74. We can then proceed to take
the zero flow time limit in the linear regime

√
8𝜏F/𝜏 ≥ 0.25, similar to what we learned to work

with in the case of 𝐺E. We get at the zero flow time limit the final result for ^B:

1.03 ≤ ^B

𝑇3 ≤ 2.61 . (12)

This result is well in agreement with the recent result [12], that got 1.0 ≤ ^B/𝑇3 ≤ 2.1. The current
data is not accurate enough to determine ^B at 𝑇 = 104𝑇𝑐.

We can now see what happens if we try to combine ^E and ^B. Using the lattice results for
⟨v2⟩ from [25] for charm and bottom quarks ⟨v2⟩charm ≃ 0.51 and ⟨v2⟩bottom ≃ 0.3, we estimate that
the mass suppressed effect on the heavy quark diffusion coefficient is 34% and 20% for charm and
bottom quark, respectively.
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