
P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
2
1
3

Complex Langevin study of spontaneous symmetry
breaking in IKKT matrix model

Arpith Kumar,∗ Anosh Joseph and Piyush Kumar
Department of Physical Sciences,
Indian Institute of Science Education and Research (IISER) Mohali,
Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
E-mail: arpithk.iiserm@gmail.com, anoshjoseph@iisermohali.ac.in,
piyush.iiserm@gmail.com

The IKKT matrix model, in the large-# limit, is conjectured to be a non-perturbative definition
of the ten-dimensional type IIB superstring theory. In this work, we investigate the possibility of
spontaneous breaking of the ten-dimensional rotational symmetry in the Euclidean IKKT model.
Since the effective action, after integrating out the fermions, is inherently complex, we use the
complex Langevin dynamics to study the model. In order to evade the singular-drift problem in the
model, we add supersymmetry preserving deformations and then take the vanishing limit of the
deformations. Our analysis suggests that the phase of the Pfaffian indeed induces the spontaneous
SO(10) symmetry breaking in the Euclidean IKKT model.
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1. Introduction

Non-perturbative studies of ten-dimensional superstring theories are essential to understand
the emergence of spacetime. In particular, the dynamical compactification of six extra dimensions
is critical for such theories to be phenomenologically admissible. Matrix models are standard tools
to investigate the non-perturbative aspects of superstrings. The IKKT (type IIB) matrix model
was proposed in 1996 as a constructive definition of the ten-dimensional type IIB superstring
theory [1]. The action is a matrix regularization of the type IIB superstring action in the Schild
gauge [2]. The zero-volume limit of the ten-dimensional N = 1 super Yang-Mills with SU(#)
gauge group formally yields the IKKT matrix model. The equivalence between the IKKT matrix
model and type IIB superstring holds in the large-# limit. The ten-dimensional extended N = 2
supersymmetry ensures that gravity is included. The # × # bosonic matrices are analogous to
the gravitational degrees of freedom, where the eigenvalues of the matrices denote the spacetime
points. In this model, spacetime does not exist a priori but is dynamically generated from the matrix
degrees of freedom. In the large-# limit, a smooth spacetime manifold is expected to emerge from
the eigenvalues. The compactification of the extra dimensions suggests that the distribution of
eigenvalues should collapse to a lower-dimensional manifold. When this occurs in the Euclidean
signature, the ten-dimensional rotational symmetry of the model must be spontaneously broken.

In this work, we investigate the possibility of spontaneous symmetry breaking (SSB) of SO(10)
symmetry in the Euclidean version of the IKKTmatrixmodel. Themodel has a severe sign problem;
the Pfaffian obtained after integrating out fermions is inherently complex. The phase of the Pfaffian
plays a critical role in determining the correct vacuum of the model. Unfortunately, Monte Carlo
methods are unreliable for studying complex action matrix models. In recent years, the complex
Langevin method [3, 4] has emerged as a successful candidate for tackling models with the sign
problem. While applying the complex Langevin method to the Euclidean IKKT matrix model, we
encounter problems that hamper the reliability of the simulations. The singular-drift problem is one
of them. To avoid this problem, we suggest introducing a supersymmetry-preserving deformation
to the IKKT model. The original IKKT matrix model is recovered in the vanishing limit of the
deformation parameter.

In this proceedings, we present our preliminary results from the complex Langevin analysis of
the IKKT matrix model with Euclidean signature. In Sec. 2, we briefly discuss the mathematical
formalism of the model and the associated sign problem. Sec. 3 explains the problems associated
with the complex Langevin study of the model. We introduce supersymmetry-preserving defor-
mations in Sec. 4 and discuss the simulation results. Sec. 5 is devoted to conclusions and future
directions.

2. Review of the Euclidean IKKT matrix model

The Euclidean IKKT matrix model, obtained by a Wick rotation of the Lorentzian version, has
a finite well-defined partition function [5, 6],

/ =

∫
3-3k4−(IKKT , (1)
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where

(IKKT = (b + (f, with (b = −
1
4
# tr

(
[-`, -a]2

)
and (f = −

1
2
# tr

(
kU (CΓ`)UV [-`, kV]

)
. (2)

The # × # traceless Hermitian matrices, -` (` = 1, 2, 3, · · · , 10) and kU (U = 1, 2, 3, · · · , 16)
transform respectively as vectors and Majorana-Weyl spinors under SO(10) transformations. We
consider the Weyl projected representation of gamma matrices Γ` in ten dimensions. In this
representation, the charge conjugation matrix C, satisfying CΓ`C† = (Γ`)) and C) = C, becomes
an identity matrix. The action manifests SU(#) gauge symmetry, extended N = 2 supersymmetry,
and SO(10) rotational symmetry.

The partition function, after integrating out the fermions reads,

/ =

∫
3- PfM 4−(b =

∫
3- 4−(eff ; (eff = (b − ln PfM, (3)

where the fermionic operator,M is a 16(#2 − 1) × 16(#2 − 1) anti-symmetric matrix. In order to
get the explicit form ofM, we expand -` and kU in terms of the #2 − 1 generators, {C0} of SU(#)
as follows

-` =

# 2−1∑
0=1

-0
` C

0 and kU =

# 2−1∑
1=1

k1
UC

1, (4)

where -0
` and k1

U are real and Grassmann numbers, respectively. The traceless, Hermitian gen-
erators are normalized as tr

(
C0C1

)
= X01. Using the properties of SU(#) structure constants, we

have

MU0,V1 =
#

2
Γ
`

UV
tr
(
-`

[
C0, C1

] )
. (5)

The interpretation of the eigenvalues as the spacetime points allows us to define the ‘radial extent’
of spacetime in each direction as follows

〈_`〉 =
〈 1
#

tr
(
-2
`

) 〉
. (6)

We consider _` as an order parameter for investigating SSB of SO(10) symmetry. In the large-#
limit, if these extents are not equivalent, i.e., if they grow along some dimensions, 3 < 10, and
shrink along others, we say that the SO(10) symmetry spontaneously breaks down to SO(d). The
bosonic IKKT model was studied using Monte Carlo method and 1/� expansion, and no SSB
was observed [7]. Later, phase-quenched Monte Carlo studies were performed, and again no SSB
was evident [8, 9]. These studies point to the fact that the complex phase of the Pfaffian plays a
crucial role in SSB. The phase fluctuates wildly, suggesting that the sign problem is severe; hence,
phase-quenched approximations are inexact. There exist only a few methods that are capable of
incorporating the complex phase and tackling the associated sign problem. The complex Langevin
method is one such promising approach.

3. Applying complex Langevin to the IKKT model

This section discusses the application of the complex Langevin method to the Euclidean IKKT
model. The update of bosonic matrices -` at Langevin time g reads

3 (-`)8 9
3g

= − m(eff
m (-`) 98

+ ([`)8 9 (g), (7)
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where [` (g) is aHermitianGaussian noise obeying the probability distribution exp
(

1
4

∫
tr

(
[2
` (g)

))
.

Sometimes, the complex Langevinmethod can give wrong results due to incorrect convergence.
Fortunately, there exist certain correctness criteria [10, 11], which can validate the simulation
results. The more recent one is based on the localized distribution of the probability of complex
field configurations. The distribution of the magnitude of the drift

D =

√√√
1

10#2

10∑̀
=1

#∑
8, 9=1

���� m(eff
m (-`) 98

����2 (8)

should be suppressed exponentially or faster to ascertain the reliability of the simulations.
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Figure 1: Bosonic IKKT model. (Left) The expectation value of order parameter _` and (Right) the
corresponding probability of the magnitude of the drift for various # .

In Fig. 1 we present the complex Langevin simulation results for the bosonic IKKT model.
From the plot on the left panel, we infer that the SO(10) symmetry is intact even for finite-# , and
approaches the analytical value in the large-# limit [7]. The probability of drift plotted on the right
panel falls off exponentially or faster, which implies that the simulation results are reliable. While
applying complex Langevin method to the Euclidean IKKT model, we encountered two major
problems, namely the excursion problem and the singular-drift problem, that violate the above
mentioned correctness criterion. In the upcoming subsections we briefly discuss these problems
and the ways to circumvent them.

3.1 Excursion problem and gauge cooling

The inherent complex nature of the Pfaffian can result in excursions of the bosonic matrices -`

into anti-Hermitian directions, enlarging the group space from SU(#) to SL(#,C). We encounter
the excursion problem when -` wanders too far away from SU(#). A proposed solution to this
problem is gauge cooling [10]. We define the ‘Hermiticity norm’ [11]

NH ≡ −
1

10#

∑̀
tr

( [
-` − -†`

]2) (9)
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to track the deviation of -` from Hermitian configurations. The matrix fields -` are invariant
under the enlarged gauge symmetry,

-` → 6-`6
−1, 6 ∈ SL(#,C) (10)

6 = e−UXNH , XNH =
1
#

∑̀ [
-`, -

†
`

]
, U ∈ R+, (11)

while NH is not invariant. We utilize this property and successively apply the above gauge trans-
formation at each Langevin step until NH is minimized. The gauge cooling procedure has been
proven to respect complex Langevin correctness criteria [11]. In our simulations, we observe that
after applying gauge cooling, NH is well under control.

3.2 Singular drift problem and mass deformations

The gradient of the effective fermionic action contains the inverse of the fermion operator,
M−1. The singular-drift problem arises when the eigenvalues ofM accumulate densely near zero.
One way to avoid this problem is to shift the eigenvalues of the fermion operator away from the
origin. This shift can be introduced by adding fermion bilinear mass deformation terms to the
action [12]. In general, the deformations have the following form

Δ( =
#

2
n<`tr

(
-2
`

)
+ #

2
tr

(
kU (CA)UVkV

)
, (12)

where <` is the mass vector and A is a complex 16 × 16 anti-symmetric matrix. Majorana-Weyl
spinors severely limit the allowed ranks of gamma matrices in ten dimensions. This implies that
only bilinears of rank three and seven tensor (equivalent due to the duality relations) survive [13],
that is, A = 8<fn`afΓ`Γ

†
aΓf with totally anti-symmetric n`af 3-form. Here n and <f are the

deformation parameters. Apart from explicitly breaking the SO(10) symmetry, such deformations
induce supersymmetry breaking. The extended N = 2 supersymmetry is crucial for the model to
include gravity. Similar deformations were considered in a recent study [14], where the authors
concluded that the SO(10) symmetry was spontaneously broken down to SO(3) (consistent with
Gaussian expansion method results [15]). Studying SSB with this deformation requires three-step
extrapolations, # → ∞, n → 0, <f → 0, which introduce systematic errors. In this work, we
suggest supersymmetry-preserving deformations that reduce the number of extrapolations to just
two.

4. Supersymmetry-preserving mass deformations

We introduce supersymmetry-preserving deformations [16], which includes a Myers term, to
the original IKKT model ((IKKT). We obtain the following deformed model

( = (IKKT + (Ω, with (Ω = # tr
(
"`a-`-a + 8#`af-` [-a , -f] +

8

8
k#3k

)
, (13)

where #3 = Γ`af#`af , with #`af denoting a totally anti-symmetric tensor, and "`a is the
mass matrix. The deformed model preserves half of the supersymmetry and is invariant under the
following transformation

X-` = −1
2
YΓ`k, Xk =

1
4
[-`, -a] Γ`aY −

8

16
-`

(
Γ`#3 + 2#3Γ`

)
Y, (14)
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provided a mass/flux constraint,
[
#3(Γ`#3 + 2#3Γ

`) − 43"`aΓa
]
Y = 0, is satisfied. A straight-

forward solution to this constraint is to consider

#3 = −ΩΓ8Γ9†Γ10, #`af =
Ω

3!

10∑
`,a,f=8

n `af and " =
Ω2

43 (I7 ⊕ 3I3) , (15)

which explicitly breaks the ten-dimensional rotational symmetry SO(10) to SO(7)× SO(3). One can
obtain the original IKKT matrix model and study the spontaneous breaking of rotational symmetry
by extrapolating Ω→ 0 in the large-# limit.

The fermion bilinear deformation modifies the fermion operator in the following manner:

MU0V1 → M̃U0V1 =
#

2
Γ
`

UV
tr

(
-`

[
C0, C1

] )
− 8Ω#

8

(
Γ8Γ9†Γ10

)
UV
X01 . (16)

In Fig. 2, we plot the eigenvalue distribution of the fermion operatorM for the SUSY-preserving

Figure 2: IKKT model with SUSY-preserving mass deformations. Scatter plot of real versus imaginary part
of the eigenvalues of the fermion operatorM. The plots are for various mass deformation parameters Ω and
fixed # = 6.

mass deformed IKKTmodel. The singular-drift problem is apparent formass deformation parameter
Ω = 0, that is, the original IKKT model. As we increase Ω, the trend suggests that the eigenvalue
distribution shifts further away from the origin. These results strongly indicate that SUSY-preserving
mass deformations evade the singular-drift problem.

4.1 Bosonic IKKT deformed model with Myers term

We append the bosonic Gaussian mass deformation terms and a Myers term to the bosonic
IKKT matrix model. The action of the deformed model reads (b = (bIKKT + (G + (Myers, where

(G =
Ω2#

43 tr

( 7∑
8=1

-2
8 + 3

10∑
0=8

-2
0

)
and (Myers =

8Ω#

3!
tr

( 10∑
0,1,2=8

-0 [-1, -2]
)
. (17)

We perform complex Langevin simulations for various mass deformation parameters Ω and inves-
tigate whether the ten-dimensional rotational symmetry is intact in the Ω → 0 limit. We notice
that the order parameter _` (Ω) has an inverse order dependence on mass deformation parameter
Ω. As a consequence, _` (Ω) blows up in the limit Ω → 0. To resolve this issue, we consider the
normalized extent values defined as

〈d` (Ω)〉 ≡
〈 _` (Ω)〉∑

` _` (Ω)

〉
. (18)
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The normalized extents cancel a significant part of the dependency on the deformation parameter.
In the case of broken SO(10) symmetry, the normalized extents d` will not be equal in all directions.
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Figure 3: Deformed bosonic IKKT model with a Myers term. (Left) The averaged extents, 1
7
∑7

8=1 d8 (Ω)
and 1

3
∑10

0=8 d0 (Ω) versus mass-deformation parameter Ω for # = 8, 16. (Right) The bosonic action terms
versus mass-deformation parameter Ω for # = 16.

In this model, we observe an explicit symmetry breaking of SO(10) → SO(7) × SO(3) for
large enough Ω values and thus, we have considered the averaged extents, that is, 1

7
∑7

8=1 d8 (Ω) and
1
3
∑10

0=8 d0 (Ω) as the order parameters. The averaged extents are shown on the left panel of Fig. 3.
In the limit Ω → 0, the two averaged extents converge, and the SO(10) symmetry of the original
bosonic IKKT model is restored. These results demonstrate that the bosonic mass deformation and
the Myers term do not play any role in the SSB of SO(10) symmetry. We also notice a first-order
phase transition around Ω ∼ 7.1 for # = 16. We believe this is a consequence of the change in the
saddle point configurations due to the Myers term. On the right panel of Fig. 3, we see that the
dominant nature of the Myers term is apparent after Ω ∼ 7.1. The inset plot shows that in the limit
Ω→ 0, the contributions from the Gaussian deformation and the Myers term vanish, and we obtain
the bosonic IKKT model.

4.2 IKKT model with supersymmetry-preserving mass deformations

This section reports our preliminary results from the complex Langevin simulations of the
IKKT model with SUSY-preserving mass deformations. On the left panel of Fig. 4, we plot the
normalized extents d` for fixed Ω = 5 and various matrices of size # . For a large enough Ω value,
we observe an explicit SO(7) × SO(3) symmetry breaking. Our finite-# results suggest that the
extents d` are almost independent of # , but we require large-# computations to comment on the
exact behavior concretely.

The estimation ofM−1 has a computational time complexity of$ (#6) and is the bottleneck of
the algorithm. In this preliminary study, we consider # = 6 as the large-# limit and take the mass
deformation parameterΩ→ 0 limit on the right panel of Fig. 4. The complex Langevin simulations
become unreliable for Ω < 2. In limit Ω → 0, we recover the original IKKT matrix model, and
even for # = 6, the spontaneous breaking of SO(10)→ SO(7) × SO(3) is apparent. Interestingly,
we notice that the SO(7) symmetry appears to further break down into smaller subgroups asΩ→ 0,
indicating a SO(3) symmetric vacuum with 3 < 7. To investigate the exact nature of the symmetric
vacuum of the IKKT matrix model, we need to consider large-# extrapolations.

7
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Figure 4: IKKT model with SUSY-preserving mass deformations. (Left) The normalized extents (order
parameter) d` versus # for fixed Ω = 5. (Right) The normalized extents d` versus Ω for fixed # = 6.

5. Conclusions and future prospects

In this work, using the complex Langevin method, we have performed a first-principles study
of the Euclidean IKKTmatrix model. The main objective was to inspect the spontaneous symmetry
breaking of ten-dimensional rotational symmetry. For the bosonic IKKT model, we did not see
any signs of SSB, which is consistent with the previous Monte Carlo and 1/� expansion studies.
In our simulations, we encountered the singular-drift problem. The preliminary results reported in
this work suggest that adding supersymmetry-preserving mass deformations can successfully evade
this singular-drift problem. We have also investigated the bosonic IKKT deformed model with the
Myers term and found that the Gaussian deformation and Myers terms do not play any role in the
SSB of SO(10) symmetry.

For the IKKT matrix model with SUSY-preserving deformations, our analysis indicates that
the phase of the Pfaffian does indeed trigger the SSB of ten-dimensional rotational symmetry. For
# = 6, we saw that the SO(7) symmetric vacuum was realized. We have also observed hints toward
smaller subgroups SO(3) symmetric vacua with 3 < 7. We plan to carry out a more robust large-#
analysis to find the exact nature of the vacuum. We are considering efficient techniques to compute
theM−1 operator. Stochastic estimation of the fermion gradient is one such alternative. We hope
to report the results of ongoing simulations soon.
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