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The calculation of disconnected diagram contributions to physical signals is a computationally
expensive task in Lattice QCD. To extract the physical signal, the trace of the inverse Lattice
Dirac operator, a large sparse matrix, must be stochastically estimated. Because the variance
of the stochastic estimator is typically large, variance reduction techniques must be employed.
Multilevel Monte Carlo (MLMC) methods reduce the variance of the trace estimator by utilizing a
telescoping sequence of estimators. Frequency Splitting is one such method that uses a sequence
of inverses of shifted operators to estimate the trace of the inverse of the lattice Dirac operator,
however there is no a priori way to select the shifts that minimize the cost of the multilevel trace
estimation. We present a sampling and interpolation scheme that is able to predict the variances
associated with Frequency Splitting under displacements of the underlying space time lattice. The
interpolation scheme is able to predict the variances to high accuracy and therefore choose shifts
that correspond to an approximate minimum of the cost for the trace estimation. We show that
Frequency Splitting with the chosen shifts displays significant speedups over multigrid deflation.
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1. Introduction

The evaluation of disconnected diagrams in Lattice QCD involves calculating the all-to-all
propagator, or the trace of the inverse Lattice Dirac operator, D. Such a calculation is computation-
ally infeasible on state of the art gauge ensembles, so the trace is estimated stochastically using the
Hutchinson method [1]. To estimate the trace of a matrix, A, this method uses the estimator

1
1A) = - ) 7] Az (1)
=
for Ny number of random vectors z;. It can be shown that the variance of the estimator is given by

N
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Because the variance of the estimator depends on the Frobenius norm of the matrix A, the heaviest
off-diagonal elements of the matrix will contribute the most to the variance of the estimator. In
lattice QCD, the Lattice Dirac operator becomes ill conditioned at physical light quark mass and
large lattice volumes, thus necessitating the development of methods to reduce the variance of
the estimator #(D~!). Probing [2] is one such variance reduction technique, which removes the
heaviest elements of D! corresponding to small lattice distances. Probing was extended in [3, 4]
and most recently extended to target the heaviest elements of a D~! under a permutation I,
corresponding to displacement of size p of the underlying space-time lattice [5]. Other examples of
variance reduction techniques include deflation [6—8], low mode [9] and all mode [10] averaging,

polynomial approximations [11].

A commonality of the previously discussed variance reduction techniques is that they are single
level methods. A class of estimators exists that utilizes a telescoping sum of estimators, rather than
a single estimator, to estimate the desired quantity and are thus called multilevel methods. Given a

desired random variable Xy to be estimated and the sequence Xo, X1, . . . , X1, the unbiased estimator
of Xy can be written as
L
E[X.] =E[Xo] + ) | E[X; - X;1], 3)

I=1
where the estimation is performed independently on each level [ [13]. With an appropriate selection
of the correlation between successive variables and number of levels, the total estimator variance,
and thus the computational cost, can be reduced. Examples of multilevel methods can be found in
[14] and [15]. An additional multilevel method, Frequency Splitting (FS) [16], which is the focus
of this work, utilizes a telescoping series of inverses separated by a shift.

In this work, we consider the problem of selecting shifts that optimize the multilevel cost of FS
for our target matrix I'Q,D~!, where Q,, = WII,, with W the Wilson line and I1,, a permutation
matrix corresponding to a [0, 0, p, 0]-displacement that we assume is in the z direction of the
lattice. Estimating the trace of I'Q pD_1 is required to account for the disconnected contributions
to GPDs [17] and is a computationally demanding task due to the large variance introduced by the
displacements of the lattice. In Section 2 we review FS for our target problem and discuss multilevel
Monte Carlo in the context of our application.



Interpolation as a Means of Shift Selection... Travis Whyte

2. Frequency Splitting

Given a set of real increasing shifts 0 = oy < 0] < ... < o, the inverse lattice Dirac operator
can be written as a telescoping series given by

L-1
p=> ((D+a,1)-1 —(D+U1+1I)_l)+(D+ULI)_1. 4)
=0

FS then makes use of the matrix identity A~'(A—B)B~! = B~! — A~! to create products of inverses
from differences of inverses, such that (D + o71) ™! = (D + 041 1) ™" = (0741 — 07) (D + oy I) " (D +
ol )‘1. In lattice QCD, this was first introduced for twisted mass fermions under the name the
"One End Trick" [18]. This can be generalized to our target matrix by left multiplying with I'Q,,.
Taking the trace, using the cyclic property and the commutation of the inverses yields

L-1
Te(rQ,D™") = (01 —o))Tr ((D + o) 'TQ, (D + 07+1I)_1) +Tr(CQ, (D +orD)™). (5)
=0
In [16], the terms within the summation are known as the “split-even estimator". The insertion of
I'Q,, in between the two inverses changes the singular spectra, which reduces the variance of the
split even estimators. The total trace estimator of this quantity, is then given by

L-1 N
“1N _ (o141 = 07) t -1 -1
(IQ,D™") = l:EO —Nl ‘E:O Zs,l(D +oyl)" TQ,(D +0p1)” 25
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with the trace estimator on each level [ having variance as defined in Equation (2). If each term in
Equation (6) is estimated independently, then the total multilevel computational cost is given by

L
Crs = 6_2( > x/czvl)
=0

2
El

(N

where €2 is the target variance, and C; and V; are the solver cost and variance of the level /, given
by Equation (2), respectively [13]. The optimal number of samples for each level for a fixed set of
shifts, I and Q,, can be found with
Vi
Ny = —, 8

L= )]
where the Lagrangian multiplier y is given by u = €72 (Zszo \/VICI). The total variance of the
trace estimation is then given by

i Vi
VEs = ) —. 9
= M

Our goal is to find a set of shifts o that approximately minimizes the multilevel cost of Equation
(7). Because of the computational cost, we optimize only for a particular (I', £,,) combination,
even though these shifts may not be optimal for other combinations. Since estimating the variance
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for each level [ involves solving linear systems of equations, finding the optimal shifts through
sampling alone is prohibitively expensive. Next, we present our sampling and interpolation method
that provides reliable predictions of the variances for many shifts with only a few samples at sampled
shifts, which in turn can be used to minimize the multilevel cost.

3. Sampling and Interpolation

3.1 Sampling

While FS employs the use of trace estimators at fixed shifts, the variances V; and V}, are
generally a function of the shifts(s), I" and £2;,. Thus, to minimize the multilevel cost, it is necessary
to estimate these quantities over a range of shifts. We explicitly denote the variances of each level
as a function of shifts, @, 8 and w, introducing also a more convenient V; for intermediate levels
that does not include the squared difference of shifts and thus it is easier to interpolate,

Vi(a,B,T,Qp) = (@ - B)*Vi(a, B,T,Q,) = (@ — B)*Var[t((D +al)"'TQ,(D +B1)~")] (10)

Vi(w,T,Qp) = Var[t(T'Q,(D +wl)™)]. (11)
We also introduce three sets of shifts. The sampling set, §, is a set of m real shifts such that
S0 =0< 58 <...< §u-1. The sampling set is used to sample the values of Equations (10) and
(11). The evaluation set, s, is a set of n real shifts with so = 0 < 51 < ... < $y_1 = §;u_1, ON

which we evaluate the interpolating polynomials to obtain a prediction of the variances V; and V; at
each pair of shifts, or shift, respectively. The evaluation set always contains the sampling set. The
optimal set, o, is the set of L shifts chosen from s such that minimizes the multilevel cost over all
choices of s;,1.e. o9p =s50=0< 0y =5 <...<o0 =5, with
o= arg min Crs(80,Sj,s---18].)- (12)
1<ji<j2<...<jL<n
This optimization needs accurate values for V; and V. for a wide range of shifts that it is too
expensive to sample in its entirety. Instead, we interpolate a small number of sampled variances of
Vi(8:,5;,T,Qp) and Vi (8;,T,Qp) withi =0,...,m—1and j =i,..,m — 1. The calculation of the
variances V; and V, through Equation (2) is not computationally tractable so we estimate it as

Z

Var[t(A)] = NL (zZAzk)*(zZAzk) —1(A)"t(A), (13)
S k=1

>~
Il

where * denotes the complex conjugate, with A = (D + §,~I)‘1FQP(D + §j1)‘1 fori=0,...,m—-1
and j =1,...,m — 1 in the case of Equation (10) and A = T'Q,,(D + §D'fori=0,...,m-1
in the case of Equation (11). From Equation (13), we observe that estimating V; and V, involves
solving systems of linear equations of the form (D + §;/)x = z and (D + §;1)"y = z. Instead of a
general random vector z, we use spin-diluted [19, 20] probing vectors. Due to the large number of
inversions required, the number of z vectors used must be both practical and give a good estimate of
the true variance. In [21], it was shown that accurate order of magnitude estimates for the Frobenius
norm of a general matrix requires only a few noise vectors. We choose Ng = 5 random vectors to
estimate V; and V..
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Since the total number of inversions scales linearly with m, m must be chosen to keep the
expense of sampling practical and provide enough data points for the interpolation to give reliable
predictions. To obtain the correct trace, §o = 0. For the last shift §,,_;, we choose a large shift
well within the interior of the singular spectrum of D. The behavior of V;(5;, §;) as a function of
8;, which is given by the red bursts in Figure 1, guides our choice of the interior sampling shifts.
The variance displays a rapid decay for near zero shifts. In order to obtain accurate estimates of the
variance in this region through interpolation, we choose §; to be small. Due to the near exponential
decay of the variance for shifts larger than 0.15, it is sufficient to choose three remaining shifts,
equidistant in log space. We then choose the sampling set to be § = {0.0, 0.05, 0.25,0.50, 1.00}.

3.2 Interpolation

Having sampled the variances V; and V, we can then interpolate the sampled values to obtain
a finer “shift space" in order to extract the shifts that approximately minimize Equation (7). In order
to obtain numerically accurate results, we use piecewise cubic hermite interpolating polynomials
(PCHIP) [22]. The use of PCHIP ensures continuity at the sampled points and a monotonic
decrease of the predicted variances with increasing evaluation shifts. In the cases where only two
sampled data points are available, which arises in the case for V;, we use simple linear interpolation.
Due to the observed near exponential decay of the variances V;, Vy for larger shifts, we choose
to interpolate [n(V;) and In(Vy). We illustrate the method of interpolation for the variance V7.
Having obtained the estimated variances at the sampled points, the interpolating polynomial g can
be formed on the interval [0, §,,—1] using the points /n(V(8;)). For details on the interpolating
polynomials themselves, we defer the reader to [22]. The polynomial can be evaluated at an
evaluation shift s; and exponentiated to obtain a predicted variance V; (sx) = ¢?*¢). Due to the
two dimensional dependence of V; on the sampling set, the interpolation of V; must be done in
successive interpolations along each dimension. Figure 1 (left) gives the algorithm for the two
dimensional interpolation of V; and the right subgraphs illustrate the process.

Lastly, we describe the interpolation of the solver cost at each level. Due to critical slowing
down at physical quark mass, we use multigrid preconditioned FGMRES as our linear solver. The
cost at each level is then the number of outer iterations of FGMRES which is typically small and
decreases in a step-wise function as the quark mass increases. Thus, we choose a linear interpolation
between the solver costs at the sampled shifts to obtain C; for each evaluation shift s ;.

4. Numerical Results

All calculations were performed on a lattice of size 32° x 64 with mg = —0.2390. The
sampling set and number of noise vectors are as discussed in Section 3. When m, + §; > 0,
we employ the use of the Generalized Hopping Parameter Expansion [23] for V7 (§;), which
is known to decrease the variance at large quark mass. Since we seek an accurate estimation
of the trace at large displacements, we use the p8k7 probing vectors, i.e., corresponding to a
lattice displacement of size p = 8 in the z-direction and distance of k = 7 coloring of the
lattice, which produces 16 orthogonal vectors. The evaluation set is (in MATLAB notation)
s = [logspace(-5,-2,4) logspace(logl10(0.011),0,76)].
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Input: The sampled variances V;, sampled 10%

shifts, § and evaluation shifts, s. -
Output: Predicted variances Vj. ]
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Figure 1: (Left) The algorithm for the 2D interpolation of V;. (Top right) The sampled variances V;(3;, §,)
(red bursts) for §;, §; € {0.0,0.05,0.25,0.5, 1.0}. The red dashed lines denote the polynomials generated at
fixed §; at step 3 of the algorithm. The blue dashed line denotes the polynomial generated when §; = §; at
step 9 of the algorithm. (Right Center) Rotated 45° with respect to top subgraph and shown for an evaluation
set of size n = 9. Green squares denote the evaluated points of polynomials generated at fixed §; and §; = §;
at steps (4 — 6) and (10 — 12). These evaluated points can then be used to form interpolating polynomials at
fixed s;, denoted by green dashes, at step 15. Purple crosses denote the evaluated points of the polynomials
generated at fixed §; in step 17. (Right bottom) The final manifold of V; for n = 20.

Due to high computational cost, we verify the accuracy of our interpolation scheme for I' = 3
and ysy4, which are important in the calculation of GPDs, and €, with p = 0,...,8. Table (1)
shows the predicted and estimated V;,;q; and Cpg for I' = y3,ysy4 and p = 0,...,8. For each
(', ,,) pair, the shifts o coming from that pairs’ optimization were used in order to estimate
the variance and multilevel cost and compare to the predicted variance and multilevel cost. We
observed that the optimal cost was achieved at six shifts, while increasing the number of shifts
further provided negligible benefits. We observe good agreement in our predicted values from the
interpolation and the estimated values using the same set of shifts. For many of the displacements,
the agreement is within one digit of accuracy.

Next we compare the variance reduction of FS using optimized shifts to that of multigrid
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Y3 Y5Y4
p | Predicted | Estimated Predicted Estimated Predicted | Estimated Predicted Estimated
Viotal Viotal | Crs (X109) | Cpg (X10%) | Vigrar Viotal | Crs (x10°) | Cpg (x10°)
0| 4.9504 5.2968 0.2921 0.3422 18.8176 21.6828 4.8145 5.7190
1| 82.1364 99.4092 1.4293 1.7824 9.3321 9.7361 3.9570 4.4446
2 | 20.8019 23.7536 0.7521 0.8781 2.4040 2.5149 1.4491 1.6664
3 4.4729 4.6869 0.2371 0.2665 0.7998 0.8279 0.4895 0.5648
4 1.1335 1.1263 0.0680 0.0742 0.3110 0.3111 0.1812 0.2080
5 0.3491 0.3578 0.0215 0.0245 0.1509 0.1443 0.0796 0.0875
6 | 0.1469 0.1528 0.0084 0.0094 0.0581 0.0464 0.0408 0.0389
7 0.0826 0.0887 0.0041 0.0052 0.0356 0.0279 0.0253 0.0227
8 0.0410 0.0367 0.0030 0.0030 0.0320 0.0234 0.0217 0.0185

Table 1: In order to assess the accuracy of the interpolation, we introduce the quantity V;,41, Which is the
total of the variances on each level [, V;pra1 = 21]; o V1. The predicted and estimated V;;q; and Crs of the y3
and ysvy4 operators for each displacement of size p.

deflation. The shifts used in FS, o = [0, le — 05, 0.053, 0.146, 0.360, 0.618, 1.000], were
obtained from the optimization using the (I, €,,) = (y3,£24) pair. This is because: 1) The error of
the interpolation of the variance was smallest for this pair. 2) Optimizing the shifts at p = 4 provided
additional speed up at low displacements compared to an optimization using large displacements,
and 3) When shifts from an optimization with I' = ys5y4 were used, the variance of the trace
estimator y3€2 pD‘1 was larger. In the case of multigrid deflation, we compute the smallest 400
singular triplets of the coarse grid operator. In addition, we use p5k8 probing vectors corresponding
to a displacement-5, distance-8 coloring of the lattice, rather than the p8k7 coloring used in FS
because the 16 probing vectors of p8k7 did not sufficiently complement multigrid deflation to reduce
variance. The p5k8 coloring results in 256 probing vectors; a more challenging test for FS.

10° — T T T T 10° — T T T T 10° — T T T T
s
_ ]
g 5 1072 g
g ® =
5 £ 6
>~ =10 2
<
~
1079 L— I I I I 1076 L— I I I I 10°
10° — T T T T 10° — T T T T T T T T T
y —— A A 4 S Y Sy
g 3
=
: 2 =
= 2 S 1001 1
= 3 2
= <
1072
1079 I I I I I I I I I I I I I I I
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

z-displacement size

z-displacement size

z-displacement size

Figure 2: The estimated variance, relative error and average trace for I' = y3 (top row) and I = y5y4 (bottom
row) using FS + probing (circles), multigrid deflation + probing (squares) and random noise (triangles).
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For each level [, we calculate the optimal number of samples from Equation (8) for a target
variance of €2 = 0.001. Then using Equation (9) we obtain an estimate of the total variance of FS.
We can determine an equivalent number of noise vectors, and thus an equivalent computational cost,
for multigrid deflation by computing the number of noise vectors through the following relation:

L
_ Cleoerz
- ’

Cdrad

Ny (14)

where c is the number of colors used in FS, r; is the number of outer iterations of FGMRES, N is
the number of samples of the level /, respectively, and c4 and r4 are the number of colors and outer
iterations for multigrid deflation. After estimating the variance of the trace estimator with multigrid
deflation, we can estimate the variance achieved by multigrid deflation after N, samples. Figure 2
displays the results of this comparison for I = y3, ¥sy4. FS has significantly smaller variance than
multigrid deflation for both I"’s at large displacements. The relative error is also similarly reduced,
which is particularly important at large displacements due the trace becoming smaller in magnitude.

Lastly, we consider the effects of using a single set of shifts over multiple configurations. The
cost of sampling is too expensive to optimize the shifts for every configuration within an ensemble.
We therefore test the efficacy of a common set of shifts used for ten configurations separated by
100 MC steps. For each configuration we define the speedup over multigrid deflation as the ratio
of estimated wallclock times for each method to reach the target variance of € = 0.001 for the
(', p) = (v3,9Q4) pair. Table 2 shows consistent speedup across all ten configurations with little
deviation. We conclude that the shifts coming from an optimization of one configuration can be
used for other configurations within an ensemble without a penalty to performance.

Config. # 1 2 3 4 5 6 7 8 9 10
Est. Speedup | 4.8436 | 5.4360 | 4.8494 | 4.5541 | 5.0838 | 3.4911 | 4.9955 | 4.5245 | 4.5861 | 5.7280

Table 2: Estimated speedup of FS over multigrid deflation for a target variance €> = 0.001 for (3, Q4).

5. Conclusion

Through a sampling and interpolation scheme, we have developed the ability to predict vari-
ances associated with the trace estimators of FS for different combinations of shifts. Thus, we can
choose shifts that approximately minimize the cost of FS for a given set of probing vectors and
(T", ), pair. FS with the chosen shifts outperforms multigrid deflation in terms of variance reduc-
tion at equal computational cost for large lattice displacements. Optimal shifts for one configuration
can be reused for other configurations of the same ensemble without performance penalty.
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