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QCD sum-rule studies have been useful to understand and get an insight on the structure of exotic
states, such as tetraquark systems. Moreover, the majority of these studies are performed only at
leading-order (LO) within the light tetraquarks systems picture, overlooking the effects of higher
order corrections, thus motivating our analysis. Our study [1] focused on the effects of next-to-
leading order (NLO) contributions to the mass estimates of the lightest tetraquark state (�%� =

0++), the so-called f or 50 (500)[2], using ratios of QCD Laplace sum-rules. A variety of different
models were used, which included multiple resonances and width effects, resulting in a final mass
prediction of 0.52 GeV < <f < 0.77 GeV. Even though the ratios of sum-rules demonstrated
some insesitivity under superficially large NLO contributions, they added the beneficial feature
of canceling the dependence on the anomalous dimension. Our findings were in good agreement
with patterns found in Chiral Lagrangian studies regarding the four-quark structure of the f state,
including the relative coupling strengths within the multiple resonance analysis.
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1. Introduction

The hadronic sector has benefited from a substantial progress since the development of collider
physics, and the discovery of the exotic state - (3872) [3] in 2003 by Belle Collaboration, and all
the recent observations such as /2 (4430), /2 (3900) [4–6], and )+

22 [7, 8] had opened the door to
consider exotic structures that go beyond the conventional quark model [9] (e.g., tetraquarks). In
the lightquark sector, the four-quark structure picture provides a compelling framework to study the
inverted mass hierarchy [9] of the lightest scalar mesons.

QCD sum-rules (QCDSR) [10, 11] have been used to study conventional states up to NLO,
whereas the majority of exotic states had only been studied at LO. Therefore, given that four-quarks
interpretation seem to be inevitable to explain the existence of certain states, and the need for deeper
analysis of the light tetraquarks states at NLO, our paper [1] focused on the lightest scalar f as a
tetraquark state, and estimated the NLO effects on the mass prediction using QCDSR. The exact
calculations of next-to-leading order perturbative terms (NLO PT) were calculated in [12], while
the leading-order (LO) terms, as well as an exhaustive analysis of the optimal currents to perform
a QCDSR analysis, were made by [13]. Based on this results, we performed a detailed study of the
effects of NLO contributions compared to the LO in QCDSR ratios, which led to mass predictions
given a variety of resonance(s) models and width shapes.

2. Methodolody Analysis QCD Laplace Sum-rule

QCDSRs are a useful technique that, based on the concept of quark-hadron duality, aims to
emphasize the low-lying states contained in the spectral function. The hadronic spectral function
containing the states of interest, with physical threshold C0, is connected to the correlation function
via dispersion relation

Π

(
&2

)
= Π(0) +&2Π′(0) + 1

2
&4Π′′(0) + 1

3
&6Π′′′(0) +&8

∞∫
C0

d(C)
C4

(
C +&2) 3C . (1)

Later, by applying the Borel transform operator to (1), we can get rid of unknown subtraction con-
stants, resulting in a family of Laplace sum-rules, which involve the theoretical entity [10, 11]

L: (g) =
∞∫

C0

C:4−C gd(C) 3C , : = 0, 1, 2, . . . . (2)

The final form of the Laplace sum-rules will be outlined in the next section.

2.1 NLO Effects: First Results

The spectral hadronic function can be expressed separately as perturbative (PT) and non-perturbative
(non-PT) contributions, the latter also known as QCD condensates. For the states of interest, these
condensate terms were calculated in [13], and the NLO PT corrections in [12], resulting in

dPT(B) = B4

11520c6 + B4

11520c6
UB (`)
c

[
409 − 192

√
2

40
+ 7 − 6

√
2

4
log

( `2

B

)]
, (3)

where only numerically significant quark mass terms are included.
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In principle, the anomalous dimension term associated with (3) prevents application of the
established methodology for RG improvement of Laplace sum-rules for light-quark systems [14].
However, up to NLO the spectral function is modified as

d̃(B) = (UB)2W1/V1 d(B) , where W1 =
7 − 6

√
2

4
. (4)

(4) implies that ratios of sum-rules can be safely used, since the term W1/V1 cancels, thus motivating
an analysis independent of the anomalous dimension focused on these sum-rule ratios.

Our first results showed large contribution of NLO terms to the Laplace sum-rules compared
to LO alone in the spectral function (see Fig. 1), hence supporting the need for a comprehensive
study of these NLO terms, and their impact on the mass prediction from the QCDSR approach.

L0( )

L1( )

0.2 0.3 0.4 0.5
τ (GeV-2)

0.35

0.40

0.45

Lk
NLOPT

Lk
LOPT

Figure 1: The ratio of NLO and LO PT contributions to LQCD
:

(g) is shown as a function of g for : = 0 (solid
blue curve) and : = 1 (dashed orange curve).

2.2 Borel Window: More Results

The hadronic spectral function d(C) with physical threshold C0 in (2), can also be split into a
resonance contribution (dres) and a QCD continuum [10, 11, 15–17], whose continuum threshold
is denoted as B0, hence resulting in the standard form of the Laplace sum-rule

R: (g, B0) =
B0∫

C0

C:4−C gdres(C) 3C . (5)

The methodology is basically composed by the following steps: First, we need to determine a reli-
able Borel window for the full analysis. Second, we must choose a variety of models that represent
the resonance with their appropriate number of parameters; and finally we need a proper optimiza-
tion method to obtain these parameters, and consequently get a mass prediction.

In order to establish the Borel window, the criteria employed to get the upper bound on g was
based on the relative contribution of the QCD condensates to the Laplace sum-rule with respect to
the PT terms

�: =
L 〈U��〉

:
(g)

LPT
:
(g)

<
1
3
, �̃

〈@̄@〉
:

=
L 〈@̄@〉

:
(g)

LPT
:
(g)

, �̃
〈@̄@〉〈U��〉
:

=
L 〈@̄@〉〈U��〉

:
(g)

LPT
:
(g)

. (6)

The results from (6), comparing the shift of the Borel window when NLO terms are added to the
spectral function, are illustrated in Fig. 2 and summarized in Table 1 (Left). Here arises our first

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
2
5
8

NLO Effects in QCD Sum-Rule Analyses of 50 (500) as a Tetraquark state B.A. Cid-Mora

B0
LOPT

B0
NLOPT

0.2 0.3 0.4 0.5 0.6
τ (GeV-2)

0.1

0.2

0.3

0.4

0.5

0.6

B0(τ)

B
˜
0

�qq〉

B
˜
0

�qq〉 ��GG〉

0.2 0.3 0.4 0.5 0.6
τ GeV

-2)

0.005

0.010

0.015

B
˜
0(τ)

Figure 2: Ratios (left) �: of the gluon condensate 〈UB��〉 to the LO (blue solid curves) and NLO (orange
dashed curves) PT terms, and (right) �̃: of other non-PT terms to the NLO PT terms for : = 0.

important conclusion: the inclusion of NLO PT terms in the spectral function is of great advantage
for the QCDSR analysis, since it widens the Borel window by shifting the upper bound of g (see
Table 1) enhancing the reliability of the analysis.

: �
〈U��〉/LO PT
:

�
〈U��〉/NLO PT
:

0 g ≤ 0.47 GeV−2 g ≤ 0.57 GeV−2

1 g ≤ 0.61 GeV−2 g ≤ 0.75 GeV−2

Variable Range
B0 ≥ 0.33 GeV2

g 0.2 – 0.57 GeV−2

Table 1: (Left) Results of Eq. (6) for : = 0, 1, showing the increase of the Borel window upper bound when
adding the NLO PT corrections. (Right) Constraints on B0 and g defining the Borel-window working region
for the QCDSR analysis.

Consecutively, setting a lower bound on g was achieved by also using an anomalous dimension
independent quantity, i.e., ratios of Laplace sum-rules. These corresponding conditions are standard
integral inequalities, the so-called Schwarz [18] and Hölder inequalities [19], respectively

R: (g, B0)/R:−1(g, B0)
R:−1(g, B0)/R:−2(g, B0)

≥ 1, : ≥ 2, (7)

and R:

(
g + [1 − l] Xg, B0

)
Rl

:

(
g, B0

)
R1−l

:

(
g + Xg, B0

) ≤ 1, 0 ≤ l ≤ 1, and : ≥ 0 . (8)

Inequalities (8) and (7), not only helped us compute a lower bound on the Borel parameter g, but
also provided us the additional feature of constraining the continuum threshold B0 from below. Our
results for both parameters are shown in Table 1 (Right). Let us mention that the ratios of Laplace
sum-rules in this stage showed a strong insensitivity to the presence of NLO contributions, as de-
picted in the unchanged lower bounds of g and B0.

2.3 Resonance Models: Final Results

Having obtained the proper Borel window to make a reliable QCDSR analysis, we can turn
our attention to the models that will parameterize the coupling of resonance to the tetraquark cur-
rent. Our first choice is the simple single-narrow resonance model (SR) outlined below, and their
corresponding modification to ratios of (5)

dSR(C) = �fX

(
C − <2

f

)
,

R1(g, B0)
R0(g, B0)

= <2
f . (9)
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The optimization method is based on the minimization of the residual sum of squares with respect
to <f and B0,

j2
SR(B0) =

∑
9

(
<2

f

R0(g9 , B0)
R1(g9 , B0)

− 1

)2

. (10)

The optimized <f can be expressed as a function of B0, resulting in the single-variable residual
shown in Fig. 3 (Left). Note that (10) is defined by means of the Borel window, whose changes had
also been explored, and the results of these variations are shown in Table 2.

0.30 0.35 0.40 0.45 0.50 0.55 0.60
s0 (GeV

2)

0.00005

0.00010

0.00015

0.00020

0.00025

χ2(s0)

Single Resonance

mσ=0.69 GeV

0.4 0.6 0.8 1.0 1.2
s0 (GeV

2)

0.005

0.010

0.015

χ2 s0)

Double Resonance

Figure 3: (Left) The SR model residual j2
SR shown as a function of B0 for the optimized <f . (Right) The

DR residual sum of squares (13) shown as a function of B0 for the optimized <f = 0.69 GeV (see Table 2).

Our mass prediction for this state is in good agreement with the reported by [2] for the 50(500)
state. However, the optimized B0 extracted from the analysis is located uncomfortably near the
lower bound imposed by Hölder Inequalities (see Table 1), leaving us with a reduced separation of
the resonance location to the continuum. This shortcoming motivates the use of a double resonance
model, where the extra heavier resonance included is the well-known 50(980).

The double resonance model (DR) is then given by

dDR(C) = �fX

(
C − <2

f

)
+ � 50X

(
C − <2

50

)
, (11)

where � 50 > 0 parameterizes the coupling strength of the heavier state to the tetraquark current.
Similarly, inserting (11) into a ratio of (5), we get

R1(g, B0)
R0(g, B0)

=
�f<

2
f 4−<

2
f g + � 50<

2
50
4
−<2

50
g

�f 4−<
2
f g + � 50 4

−<2
50
g

. (12)

The mass of 50(980) was used as input in the optimization procedure. Given that 50(980) is a
well-established state, and accounting the mass hierarchy with respect to 50(500) (or f) as a com-
pensation for the exponential suppression in (5), the residual sum of squares becomes

j2
DR(B0) =

∑
9

(
<2

f

R0(g9 , B0)
R1(g9 , B0)

− 1 + A<2
50
4−Δ<

2g 9
R0(g9 , B0)
R1(g9 , B0)

− A4−Δ<
2g 9

)2

, (13)

A =
� 50

�f

, Δ<2 = <2
50
− <2

f . (14)

The results from this optimization are shown in Table 2, where A was determined as a function of B0

and <f . We obtained a mass prediction <f = 0.69 GeV, again consistent with the range reported

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
2
5
8

NLO Effects in QCD Sum-Rule Analyses of 50 (500) as a Tetraquark state B.A. Cid-Mora

by [2] for the 50(500) state, but now with a much better separation of the continuum threshold
B0 = 1.12 GeV2 from the heavier resonance 50(980). Additionally, we found similar patterns with
Chiral Lagrangian analysis respect to the relative coupling strength [20, 21], where the value of
A = 3.38 implies that the 50(980) coupling to the tetraquark current is favored over the f within the
tetraquark picture.

Model Range B0 (GeV2) Range g (GeV−2) <f (GeV) B
opt
0 (GeV2) A

SR 0.33 – 1.3 0.2 − 0.57 (±0.05) 0.52 ± 0.01 0.335 –
DR 0.98 – 1.3 0.2 – 0.57 (±0.05) 0.69 ± 0.03 1.12 3.38

Table 2: Predictions for the optimized mass and continuum threshold in the SR and DR models. With the
inclusion of resonance width effects, <f and A Table entries are interpreted as the effective mass and coupling
ratio <eff

f and Aeff .

Furthermore, as 50(500) is considered a broad state [2], our analysis contemplated models
including symmetric and asymmetric width (Γf) shapes. The former, symmetric width model (SW)
parameterizes the spectral function as

dSW(C) = �f

2<fΓf

[
\

(
C − <2

f + <fΓf

)
− \

(
C − <2

f − <fΓf

)]
. (15)

The resulting SW modification [22] of the SR model (9), and to the DR model (12) are given by

SR → R1(g, B0)
R0(g, B0)

= <2
f

Δ1 (<f , Γ, g)
Δ0 (<f , Γ, g)

, (16)

DR → R1(g, B0)
R0(g, B0)

=

Δ0�f

(
<2

f
Δ1
Δ0

)
4−<

2
f g + � 50<

2
50
4
−<2

50
g

Δ0�f 4−<
2
f g + � 50 4

−<2
50
g

, (17)

where
Δ0 (<f , Γ, g) =

sinh (<fΓfg)
<fΓfg

, (18)

Δ1 (<f , Γ, g) =
(
1 + 1

<2
fg

)
Δ0 (<f , Γ, g) −

cosh (<fΓfg)
<2

fg
. (19)

It was found that for values of 0.2 GeV < Γf < 0.6 GeV, and the parameters given in Table 2, the
ratio Δ1/Δ0 is approximately 1 in both models (SR and DR), as shown in Fig. 4 (Left), thus leaving
the door open to consider the asymmetric width shape model.

Later, for an asymmetric width shape (AW) that could be obtained from Chiral Lagrangian
methods [23–26], the resonance models are modified by

dAW(B) = �f

#<2
f

B2[
(B − <2

f)2 + Γ2
f

<6
f

B4
] , (20)

where # is a normalization factor to ensure that (20) and (9) have the same integrated resonance
strength. The AW modifications to SR and DR models, analogous to (16) and (17) are

SR → R1(g, B0)
R0(g, B0)

= <2
f

,1 (<f , Γ, g, B0)
,0 (<f , Γ, g, B0)

, (21)
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DR → R1(g, B0)
R0(g, B0)

=

,0�f

(
<2

f
,1
,0

)
4−<

2
f g + � 50<

2
50
4
−<2

50
g

,0�f 4−<
2
f g + � 50 4

−<2
50
g

, (22)

where

,: (<f , Γf , g, B0) =
1
#

∫ B0−<2
f

<2
f

−1
3Z 4−<

2
f Z g (Z + 1)2+:

Z2 + Γ2
f

<2
f
(Z + 1)4

, for : = 0, 1. (23)

The results of the effects of the asymmetric width as a function of the Borel window are showed in
Fig. 4 (Right). They resulted in a suppression on effective mass of around 5% compared to the SW,
being consistent with the trend found in [27]. Though the ratio ,1/,0 as a function of g seems to
be non-negligible, the effective mass term appears to be surprisingly robust under the width effects.

0.3 0.4 0.5 0.6
τ GeV

-2)

0.96

0.97

0.98

0.99

Δ1 Δ0 ( )

Γ 0.3 Γ 0.4 Γ 0.5

0.3 0.4 0.5 0.6
τ GeV

-2)
1.04

1.06

1.08

1.10

1.12

W1/W0 (τ)

Γ = 0.3 Γ = 0.4 Γ = 0.5

Figure 4: The quantity (left) Δ1/Δ0, and (right) ,1/,0 is shown as a function of g within the Borel window
for <f = 0.69 GeV and for selected values of Γf .

3. Conclusions

In this paper, we performed a comprehensive QCDSR analysis of the lightest tetraquark scalar
50(500)/f. The study focused on the impact of NLO perturbative terms compared to the LO on
the mass prediction, using specifically ratios of Laplace sum-rules. The inclusion of these NLO
corrections in the hadronic spectral function was crucial, as it benefited the analysis by shifting the
upper bound on the Borel window, making the QCDSR analysis more reliable.

NLO corrections demonstrated large contributions to the individual Laplace sum-rules, but
these were compensated when using ratios of them. Nevertheless, the great impact of these NLO
terms were somewhat overshadowed with the use of the ratios of Laplace sum-rules, they had the
additional feature of removing dependence on the anomalous dimension.

As a summary, the NLO tetraquark QCD Laplace sum-rules were employed in a variety of
models to obtain a mass prediction of the f state, which included single and double resonances, as
well as symmetric and asymmetric width shapes. We concluded that the mass prediction depends
indirectly on these corrections, via the widened Borel window shown as in Table 1. We also con-
cluded that the single narrow resonance model was not enough to understand the f state, given that
the continuum threshold was too close to the permitted by Hölder Inequalities, motivating further

7
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studies with more complex models. Additionally, we noticed the mass prediction was surprisingly
robust under the inclusion of widths. Finally, we were then able to obtain results that are in good
agreement with mass values given in [2], and from the double resonances model, we computed a
coupling strength consistent with the findings from Chiral Lagrangian studies [20, 21]. See Ref. [1]
for additional detail of our work.
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