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The parametric error on the QCD-coupling can be a dominant source of uncertainty in several
important observables. One way to extract the coupling is to compare high order perturbative
computations with lattice evaluated moments of heavy quark two-point functions. The truncation
of the perturbative series is a sizable systematic uncertainty that needs to be under control. In
this contribution we give an update on our study [1] on this issue. We measure pseudo-scalar
two-point functions in volumes of 𝐿 = 2 fm with twisted-mass Wilson fermions in the quenched
approximation. We use full twist, the non-perturbative clover term and lattice spacings down to
𝑎 = 0.010 fm to tame the large discretization effects. Our results show that both the continuum
extrapolations and the extrapolation of the Λ-parameter to the asymptotic perturbative region are
very challenging.
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1. The Strong Coupling

Nearly all cross sections and decay rates of processes measured at LHC depend on some power
of the strong coupling 𝛼(𝜇), implying the presence of some parametric uncertainty on it. Prominent
examples include the 𝑍 boson total and partial widths [2] and the 𝐻 → 𝑔𝑔 and 𝐻 → 𝑏𝑏 partial
widths [3]. In recent years lattice computations of the coupling reached an unprecedented precision
and nowadays they dominate the world average [4], requiring a meticulous assessment of all possible
error sources. Here, we analyze quantitatively the size of uncertainties present when extracting
𝛼(𝜇) from integrated, heavy quark two-point functions, a method first introduced by [5, 6]. This
procedure relies on the simultaneous knowledge of this observable on the lattice and through high
loop perturbative computations [7], naturally prompting the question: within what energy window
are both applicable with small and controlled errors? As a matter of fact, in a large physical box of
length 𝐿, at a given number of simulation points 𝑁 = 𝐿/𝑎, the resolution of simulations is limited to
wavelengths below the cutoff ∼ 𝑎−1. Typical values for 𝑎 result in scales at which the renormalized
coupling’s size may cause concern as to the size of the truncated part of the asymptotic series.

Herein, we study this issue in the quenched model – arguing this to be qualitatively, but also
quantitatively similar to the dynamical case – carefully extrapolating to the continuum and finally
estimating the truncation error of the perturbative expansion.

2. Overview of Strategy

To start, let us define the central observable under scrutiny in continuum, Euclidean spacetime

M𝑛 (𝑀RGI) =
∫
R

d𝑡 𝑡𝑛 𝐺 (𝑡, 𝑚ℎ) =
∫
R

d𝑡 𝑡𝑛
∫

d3𝑥 𝑚2
ℎ

〈
𝑃†(𝑥)𝑃(0)

〉
, 𝑃(𝑥) = 𝑖 ℎ(𝑥)𝛾5ℎ

′(𝑥) ,
(1)

which we refer to as n-th moment – an observable depending on one scale only. Here 𝑚ℎ denotes
the common bare mass of the heavy flavor doublet (ℎ, ℎ′) and if 𝑍𝑃𝑍𝑚ℎ

= 1 holds, then 𝐽RGI =

𝑀RGI𝑃RGI = 𝑚ℎ𝑃. This, together with its small statistical noise, makes the pseudoscalar density
a favorable, yet non-unique choice. To select what values of 𝑛 to study, note the following: (1)
for pseudoscalar quantum numbers, one has 𝐺 (𝑡, 𝑚ℎ) = 𝐺 (−𝑡, 𝑚ℎ) and odd 𝑛 moments vanish
and (2) from power counting, or more precisely from a leading order OPE as 𝑡 → 0, one obtains
𝐺 (𝑡, 𝑚ℎ) ∼ |𝑡 |−3 implying the 𝑡-integral to be finite for 𝑛 ≥ 4. Altogether, one is left with values
𝑛 = 4, 6, 8 . . . where we stress higher 𝑛 moments are dominated by longer distances, imposing an
upper limit on 𝑛 if perturbation theory is to be employed.

The lattice moments’ definition with a maximally twisted mass term, with periodic boundary
conditions in space and open ones in time (at our small lattice spacings topological freezing may
be worrisome [8]) is

Mlat
𝑛 (𝑎, 𝑀RGI) = lim

𝐿,𝑇→∞
2 𝑎

∑︁
𝑡∈I

𝑡𝑛 𝑎3
∑︁
®𝑥

𝜇2
tm

〈
𝑃†(𝑡, ®𝑥)𝑃(0)

〉
, (2)

where 𝜇tm is the bare twisted mass and the interval I consists of 𝑡-values far from the boundaries.
Moreover, given the exponential decay of the correlator 𝐺 (𝑡, 𝑚ℎ), noisy large 𝑡 contributions are
suppressed and may be excluded. The absence of any dependence on the above choices has been
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extensively checked and confirmed within our precision. Finally, exploiting the above mentioned
time-reversal symmetry one may sum over positive times only, with the factor 2 accounting for
𝑡 < 0.

Given the continuum limit of (2), it can be equated to the 4-loop perturbative expression [7, 9]
of (1) in the MS-scheme

lim
𝑎→ 0

Mlat
𝑛 (𝑎, 𝑀RGI) 𝛼→0∼ 𝑚 4−𝑛

MS
(𝜇)

3∑︁
𝑖=0

𝑐
(𝑖)
𝑛 (𝑠) 𝛼𝑖

MS
(𝜇) + O

(
𝛼4(𝜇)

)
, (3)

𝜇 ≡ 𝑠 𝑚MS(𝜇) , (4)

which for some fixed 𝑠 implies a one to one correspondence between 𝑚MS(𝜇) and 𝑀RGI. One can
then invert (3) and extract the coupling – which we stress is an input parameter of QCD – up to an
O(𝛼4) truncation uncertainty of an a priori unknown size. This introduces a spurious 𝜇-dependence
in the perturbative representation, which varies upon the variation of both the physical scale and
the parameter 𝑠, yielding two possible handles to turn when trying to understand its behavior.

Let us define a constant physics trajectory by keeping

𝑧
def.
=

√︁
8𝑡0𝑀RGI =

√
8𝑡0
𝑎

𝑀RGI

𝑚SF(𝜇)
𝑎𝜇tm

(
𝑍SF
𝑃 (𝑎𝜇, 𝑔0)

)−1
(1 + O (𝑎𝜇tm)) (5)

constant, where
√

8𝑡0 = 0.463(3) fm is a gradient flow scale [10] and renormalization factors at high
𝛽 are obtained from a reanalysis of the results of [11], carried out at half the original box length.
The heavy quark mass 𝑧 sets the dominating scale of the observable and to inspect perturbation
theory systematics we are interested in computing moments for various values of 𝑧, found in table
1.

Table 1: Approximate mass values in units of
√

8𝑡0 and of the quenched RGI-charm mass, given by
𝑀charm

RGI = 1.684(60) GeV [12].

z 13.5 9 6 4.5 3

𝑀RGI/𝑀charm
RGI 3.48 2.32 1.55 1.16 0.77

Although automatic O(𝑎)-improvement is at play, large cutoff effects are expected and ob-
served, prompting us to add a nonperturbatively [13] tuned 𝑐SW(𝑔0) (which reduces higher order
cutoff effects [14, 15]) and to divide by the analytically1 computed tree-level at finite 𝑎 and 𝐿

𝑅𝑛 (𝑎𝑀RGI, 𝑧)
def.
=


M𝑛 (𝑎𝑀RGI,𝑧)

MTL
𝑛 (𝑎𝜇TL

tm ,𝐿/𝑎) , 𝑛 = 4(
M𝑛 (𝑎𝑀RGI,𝑧)

MTL
𝑛 (𝑎𝜇TL

tm ,𝐿/𝑎)

) 1
𝑛−4

, 𝑛 = 6, 8, 10 .
(6)

Up to logarithmic corrections of the kind discussed in [16], this suppresses the leading O(𝑎2)
effects in 𝐺 (𝑡, 𝑚ℎ) by a factor 𝛼bare, but more care is needed for integrated observables [17].

1This further modification is – to the best of our knowledge – common to all lattice results appearing so far in
literature, although mostly computed numerically and not analytically.
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Some freedom is left in choosing 𝑎𝜇TL
tm and we previously [1] observed 𝑎𝜇TL

tm = 𝑎𝑚∗, where
𝑚∗ = 𝑚MS(𝑚∗), to further improve the continuum approach. Note for 𝑛 > 4 the mass dimension
[𝑅𝑛] = −1 and beyond the fourth moment, further adimensional observables can be defined as
ratios of consecutive moments. Explicit mass prefactors present in (3) cancel in

R𝑛 (𝑎𝑀RGI, 𝑧) =
{

𝑅4(𝑎𝑀RGI, 𝑧) , 𝑛 = 4,
𝑅𝑛 (𝑎𝑀RGI,𝑧)
𝑅𝑛+2 (𝑎𝑀RGI,𝑧) , 𝑛 = 6, 8 ,

(7)

leaving only a weak (logarithmic) dependence on the mass.

3. Simulations

We briefly summarize here our setup and comment on the simulations. The pure Yang-Mills
ensembles are generated with a plaquette action and consist of volumes of 𝐿 ∼ 2 fm,𝑇 ∼ 6 fm, while
the topological charge is not integer valued with open boundary conditions. It has been monitored
to check it actually varies freely and over a large enough range of values. To avoid disconnected
diagrams we employ a mass degenerate doublet of Wilson-clover fermions with a twisted mass
term, tuned to maximal twist by setting the Hopping parameter to its critical value. 𝜅𝑐 is computed
via fits of the data in [13] and for each 𝜅(𝑔0) we tested independence on the fit function used and
the number of points included in it, while including the known 1 loop coefficient, establishing the
solidity of the procedure. The absence of boundary effects was monitored [1] and table 2 contains
all important lattice parameters. W.r.t. to the status in [1], we also carried out dedicated studies at
different 𝐿 for one of the coarser ensembles, establishing the absence of any visible finite volume
corrections for quenched moments.

Table 2: Gauge run details, 𝑙 = 𝐿/𝑎, 𝑡 = 𝑇/𝑎, with plaquette definition for E(t).

Run Name 𝛽 𝑙3 × 𝑡 𝑁cnfg 𝑡0/𝑎2 𝑎[ 𝑓 𝑚] 𝜏int(𝑡0) [cfg] GB
cnfg

q_beta616 6.1628 323 × 96 128 5.1604(98) 0.071 0.78 1.7

q_beta628 6.2885 363 × 108 137 7.578(22) 0.059 1.37 2.7

q_beta649 6.4956 483 × 144 109 13.571(50) 0.044 1.55 8.5

sft4 6.7859 643 × 192 200 29.390(98) 0.030 1.00 27

sft5 7.1146 963 × 320 80 67.74(23) 0.020 0.55 152

sft6 7.3600 1283 × 320 98 124.21(91) 0.015 1.03 360

sft7 7.700 1923 × 480 31 286.3(4.7) 0.010 – 1,823

4. Results

4.1 Continuum Limits

We will show here results for moments R𝑛 defined in (7), for 𝑛 = 6, 8 and for the mass values
in table 1. For 𝑛 = 4 a logarithmic enhancement of cutoff effects is present – stemming from
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Figure 1: Continuum limit of 𝑅6/𝑅8, at high mass large cutoff effects may be present.

(a) Lower mass. (b) Higher mass.

Figure 2: Continuum limit of 𝑅8/𝑅10, cutoff effects here are under control.

(a) Lower mass. (b) Higher mass.

the integration over short distances – for which another procedure was introduced as discussed at
this conference in a separate contribution [17] (note, this behavior is of interest also for 𝑔 − 2 and
smoothed spectral function determinations).

We fit linearly and quadratically in (𝑎𝑀RGI)2, for both Ansätze while varying the number of
included points. We consider fits with a 𝑝-value of 𝑝 < 0.05 to have acceptable significance level
and discard others. The continuum extrapolated values, depicted in figs. 1a, 1b, 2a and 2b in the
gray band on the left hand side (next to each other for easier comparison), have a spread which
is typically within the statistical error, yet sometimes quite an extrapolation is necessary from the
point at smallest 𝑎 to 𝑎 → 0. Take for instance fig. 1b, where – keeping in mind the sensitivity
to the coupling is given by R𝑛 − 1, i.e. the distance from 1 – one has an extrapolation of order
5%. Knowing logarithmic enhancements of the type mentioned above to only be present at orders
higher than 𝑎2 for 𝑛 ≥ 6 [17], still does not put us at ease in fully trusting the extrapolation; the 3
points closest to the continuum show (again, w.r.t. 1) relative cutoff effects of about ∼ 30%. We
thus decide to give quite a conservative estimate, namely by taking half of the extrapolated distance
in the y-axis and adding it in quadrature to the statistical error. Let us mention for 𝑧 = 13.5, the
highest mass, we were able to extrapolate for 𝑅8/𝑅10, but not for 𝑅6/𝑅8.
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4.2 Extraction of the Coupling

Our goal is to study the applicability domain of perturbation theory to moments, for which we
focus here on the coupling. Adimensional observables may be expanded as

R𝑛 (𝑀RGI) 𝛼→ 0∼ 1+𝑑 (1)
𝑛 𝛼MS(𝜇)+𝑑

(2)
𝑛 (𝑠) 𝛼2

MS
(𝜇)+𝑑 (3)

𝑛 (𝑠) 𝛼3
MS

(𝜇)+O(𝛼4
MS

(𝜇)) , 𝜇 ≡ 𝑠 𝑚MS(𝜇) ,
(8)

and inverting for each 𝑠, several values for 𝛼MS(𝜇) can be extracted, all with an intrinsic O(𝛼4)
uncertainty. At a given 𝑠, the size of the truncated part is determined by two factors: the unknown
coefficient 𝑑 (4)

𝑛 (𝑠) (plus higher order corrections) and by the coupling’s value at a given scale. How
the size of the truncated part changes with the scale is, in turn, encoded in the 𝛽MS(𝛼MS)-function;
quantitatively put, in the asymptotic region

𝛽MS(𝛼MS)
𝛼→ 0∼ −𝛽0 𝛼

2
MS

(𝜇) − 𝛽1 𝛼
3
MS

(𝜇) + O(𝛼 4) , with (9)[
𝛽0, 𝛽1

]
=

[
1

(4𝜋)

(
11 − 2

3
𝑁 𝑓

)
,

1
(4𝜋)2

(
102 − 38

3
𝑁 𝑓

)]
≃
{[

0.88, 0.65
]
, 𝑁 𝑓 = 0[

0.66, 0.33
]
, 𝑁 𝑓 = 4

, (10)

so that there is strong perturbative indication to expect a very similar behavior, qualitatively but also
quantitatively, between quenched and the fully dynamical (lattice accessible) case, namely 𝑁 𝑓 = 4.
To conclude, a quenched computation is a well motivated first step into studying the size of the
asymptotic scaling region of moments.

4.3 ΛRGI’s Asymptotic Scaling

Here, instead of results for R𝑛 as a function of 𝛼4, we directly show results for the ΛRGI-
parameter, computed through2 its ratio with 𝑧 =

√
8𝑡0𝑀RGI – which we remind here was a chosen

value we tuned our bare masses to – as

√︁
8𝑡0ΛMS = 𝑧 · 𝑠 ·

(
𝑏0𝑔

2
MS

(𝜇)
)−𝑏1/(2𝑏2

0 )(
2𝑏0𝑔

2
MS

(𝜇)
)−𝑑0/(2𝑏0 )

exp

{
− 1

2𝑏0𝑔
2
MS

(𝜇)

}
· (11)

· exp

{
−
∫ 𝑔MS (𝜇)

0
d𝑥

[
1 − 𝜏MS(𝑥)
𝛽MS(𝑥)

+ 1
𝑏0𝑥3 − 𝑏1

𝑏2
0𝑥

+ 𝑑0

𝑏0𝑥

]}
, (12)

with the 5 loop 𝛽MS(𝑔) [18, 19] and 4 loop quark mass anomalous dimension 𝜏MS(𝑔) [20, 21],
and where we plug in the value of 𝑔MS obtained in section 4.2. The leftover 𝛼4 uncertainty in R𝑛

implies, at leading order, an asymptotic scaling of ΛRGI as

ΔΛ =
d

d𝛼MS

(
Λ

𝜇

)
Δ(𝛼MS) =

𝑐

𝛼2
MS

𝛼4
MS

(
1 + O(𝛼MS)

)
=⇒ Λeff

MS
= ΛMS + O

(
𝛼2

MS

)
, (13)

where 𝑐 is some constant. We thus show Λeff vs. 𝛼2
MS

(𝜇), both obtained from the moments’ ratios
under scrutiny, in figs. 3a and 3b. We show only results for 𝑠 = 1, where, to stay on the safe side, we
select the extracted 𝛼MS values with the largest errors. The purple value is the result of [22], which

2Here we prefer the usage of 𝑔2 = 4𝜋𝛼.
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Figure 3: Results of scaling violations in 𝛼 in the Λ parameter for the two main observables, built with
appropriate ratios of lattice-normalized moments. Description in the main text.

(a) Fit for ΛMS as a function of 𝛼2
MS

, compared with
a fit constrained to pass through ΛBR in [22], extracted
from 𝑅6/𝑅8.

(b) Fit for ΛMS as a function of 𝛼2
MS

, compared with a
fit constrained to pass through ΛBR in [22], extracted from
𝑅8/𝑅10.

we indicate with ΛBR, and it is valid for 𝛼 = 0, but we add a light blue horizontal line to guide the
eye. We show two different fits, a free fit linear in 𝛼2 in light green – with the extrapolated result
drawn in the light gray band – and, again, a fit linear in 𝛼2, but constrained to pass through ΛBR, in
red. Finally, a dashed vertical light purple line indicates the scale 𝜇 ≃ 2𝑚charm.
First, we start by noticing the truncated part to be quite large at a considerable energy scale. As

expected, higher moments have a larger deviation w.r.t. the asymptotic 𝛼 → 0 value, but they can
rely on more precise lattice results – this is nothing more than the statement of the window problem
we are dealing with. For the free fit, we obtain results completely compatible with [22] (but also
with other pure gauge studies, such as [23–25]), but not with a particularly competitive error. The
constrained fit agrees very well with the unconstrained one, validating the theoretically motivated
Ansatz of 𝛼2 scaling and giving supporting evidence of overall consistency.

5. Conclusions

We have computed the strong coupling from moments of heavy-quark two point functions over
a range of energies from slightly below the charm mass up to 𝜇 ∼ 3.5𝑚charm. The continuum limit
was difficult and lattice spacings down to 𝑎 ∼ 0.01 fm were used (and in one case, for 𝑛 = 4, a
further approach had to be developed [17]), enabling us to extrapolate reliably in almost all cases.

The objective was to study quantitatively the behavior of unknown, higher order corrections
in the coupling, which are truncated after the known term of order 𝛼3 [7], to compute around what
energy scale these are small or close to absent within errors. As a matter of fact, studies of cases
where 𝛼 needs to be unexpectedly small for this to happen exist [26] and are part of our overall
motivation.

At the scale 𝜇 ≃ 2𝑚charm, the deviations are worryingly of order ∼ 10%, where we stress once
more these results are obtained in the quenched theory and cannot currently be reproduced with
comparable precision in the fully dynamical case.
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Differently put, turning the reasoning around, the moments method to extract the strong
coupling and the charm or bottom quark mass would greatly benefit in precision and reliability if
its 5 loop computation was available.
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