
P
o
S
(
D
I
S
C
R
E
T
E
2
0
2
2
)
0
4
9

Theory of electric dipole moments

Yohei Ema,0,1,∗ Ting Gao1 and Maxim Pospelov0,1
0William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota,
Minneapolis, MN 55455, USA
1School of Physics and Astronomy, University of Minnesota,
Minneapolis, MN 55455, USA

E-mail: ema00001@umn.edu, gao00212@umn.edu, pospelov@umn.edu

I review recent theoretical progress of electric dipole moments (EDMs). After explaining a new
Standard Model contribution to paramagnetic EDMs that is recently discovered, I discuss indirect
constraints on the muon EDM from the paramagnetic EDM experiments such as ACME.

8th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2022)
7-11 November, 2022
Baden-Baden, Germany

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:ema00001@umn.edu
mailto:gao00212@umn.edu
mailto:pospelov@umn.edu
https://pos.sissa.it/


P
o
S
(
D
I
S
C
R
E
T
E
2
0
2
2
)
0
4
9

Theory of electric dipole moments Yohei Ema

1. Introduction

The EDMs of elementary particles [1–4] represent an important probe of new physics beyond
the Standard Model (SM) [5–7]. Recent breakthrough sensitivity to “paramagnetic EDMs" con-
nected to the electron spin [3] established a new limit on the linear combination of the electron
EDM 34 and semileptonic �%-odd operators, commonly known as �( . Given the rapid progress
of the last decade, and additional hopes for increased accuracy (see e.g. [8–10]), this paper con-
siders two �% violating sources to the paramagnetic EDM experiments; the Standard Model (SM)
Cabbibo-Kobayashi-Maskawa (CKM) phase and the muon EDM.

Within the SM, the only source of the �% violation is the phase in the CKM matrix XKM [11]
(apart from the unobserved strong CP phase \̄), now observed with precision in flavor transitions
in � and  mesons. As for the paramagnetic EDM, Ref. [12] recently estimated the size of 34
induced from XKM (dominated by long-distance effects) as ∼ 6 × 10−40 4 cm, presumably with
considerable hadronic uncertainties. This result is subdominant to the previous�( estimate coming
from the two-photon exchange diagram in combination with Δ( = ±1 transitions [13], giving rise
to the equivalent 34 of ∼ 10−38 4 cm. The first half of this paper demonstrates that the dominant
contribution of XKM to paramagnetic EDMs is �( induced by a Kaon-exchange diagram. This
has a distinct property in the chiral limit, and is calculable to ∼ 30% accuracy that can be further
improved. Remarkably, the resultant equivalent electron EDM is ∼ 10−35 4 cm [14], three orders of
magnitude larger than the previous estimate.

We then move our focus on a possible new physcis contribution to the paramagnetic EDM.
In particular, we consider the muon EDM as a new source of �%-violation. The muon EDM is a
particularly interesting observable given the ongoing discrepancy of the muon 6 − 2 between the
theory and experiments [15–17], as these two observables are related as an imaginary and real part
of the same operator, respectively. For now, the tightest constraint on the muon EDM comes from
the BNL storage ring experiment,

��3`�� < 1.8×10−19 4 cm, and this will be significantly improved by
the future storage ring experiments [18–22]. On the other hand, the muon EDM generates several
other �%-odd operators after integrating out the muon, and those operators are probed with the
atomic and molecular EDM experiments [1, 3]. The goal of our second part is to study the indirect
constraint on the muon EDM from the atomic and molecular EDM experiments.

2. Standard Model contribution to paramagnetic EDMs

Tounderstand the reach of the EDMexperiments to newphysics, it is essential to first understand
the Standard Model (SM) contribution. Therefore, in this section, we discuss the SM value of the
paramagnetic EDM experiments. A paramagnetic atom has an unpaired electron, and is dominantly
sensitive to (semi)leptonic�% violations, such as the electron EDM 34 and the semileptonic�%-odd
operator �( , defined as

LCPV = −
8

2
34 4̄f`a�

`aW54 + �(
��√

2
(4̄8W54) #̄#, (1)

where �� is the Fermi constant, �`a is the electromagnetic field strength, 4 is the electron, and #
is the nucleon. It is known that the paramagnetic EDM experiments are sensitive only to a specific
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Figure 1: The�3
�
order diagram that dominates�( in the chiral limit. The top vertex is the�%-odd, %-even

interaction  ( 4̄8W54 generated at �2
�
order with one �� compensated by the top quark mass, and the bottom

vertex is the �%-even, %-odd interaction  ( #̄# coupling generated at �� order.

linear combination of 34 and �( , which we may define as an equivalent electron EDM 3
equiv
4 . The

explicit form of the linear combination depends on the specific atomic and/or molecular system,
and it is given by

3
equiv
4 = 34 + �( × 1.5 × 10−20 4 cm, (2)

in the case of the ThO molecule. The current best limit is |3equiv
4 | < 1.1 × 10−29 4 cm [3]. The SM

value of 34 is estimated by different groups in the literature. In particular, Ref. [12] recently claims
that the long-distance contribution is dominant with its size estimated as 34 ' 6 × 10−40 4 cm. The
size of �( induced by the CKM phase is estimated in the past by [13]. They relied on a two-
photon exchange diagram to induce the structure <4 4̄8W54, and this contribution scales as U2�2

,

with U being the electromagnetic fine structure constant. This contribution is numerically of order
3

equiv
4 = O(10−38) 4 cm and dominates over the contribution from the electron EDM.

We shall now see that a Kaon-exchange diagram gives a contribution larger by three orders
of magnitude than the two-photon exchange one. Although this contribution is formally of order
UW�

3
�
with U, the fine structure constant of the electroweak interaction, one �� is numerically

compensated by the top quark mass as a result of the electroweak penguin diagram. Thus, this
contribution is enhanced compared to the previous one by UW/U2 ∼ 103

The Kaon-exchange diagram that we consider is shown in Fig. 1. The upper part of the diagram
originates from the EW penguin /-boson exchange/,-box diagram. As we noted above, although
EW penguins are formally of order �2

�
, their size is enhanced by the top quark mass, so that the

result scales as �2
�
<2
C . This diagram is theoretically well-established and essential for several

flavor-changing processes such as �B,3 → `+`− and  ! → `+`− amplitude. Focusing only on the
part relevant to our purpose, the semileptonic operator is concisely written as

LEWP = −PEW 4̄W`W54 B̄W
` (1 − W5)3 + (ℎ.2.), PEW =

��√
2
×+∗CB+C3 ×

UEM(</ )
4c sin2 \,

� (GC ), (3)
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where the loop function is given by [23]

� (GC ) =
3
4

(
GC

GC − 1

)2
log GC +

1
4
GC −

3
4

GC

GC − 1
, GC =

<2
C

<2
,

. (4)

Below the QCD scale, the quark current B̄W` (1− W5)3 is matched with the derivatives of the neutral
Kaon fields. At the leading order in the chiral perturbation theory, we obtain

L 44 = −2
√

2 50<4 4̄8W54 ( ( × ImPEW +  ! × RePEW) , (5)

where we used the equation of motion for electrons, where 50 is the meson decay constant.
We proceed to the lower part of the diagram in Fig. 1, i.e., the Δ( = 1 interaction between the

Kaon and the nucleons. Instead of attempting to calculate such a process from first principles (see
e.g. [24] in this direction), we use the flavor (* (3) relations and connect this coupling to the B-wave
amplitudes of non-leptonic hyperon decays [25]. The empirical Δ� = 1/2 rule holds for hyperon
decays, and the leading order (* (3) relations fit B-wave amplitudes with O(10%) accuracy. It
is strongly suspected that these amplitudes are indeed induced by strong penguins (SP), but the
mechanism behind the Δ� = 1/2 rule is not crucial to us. With that, one can write down the two
types of couplings consistent with (8! , 1') transformation properties:

LSP = −0Tr(�̄{b†ℎb, �}) − 1Tr(�̄[b†ℎb, �]) + (ℎ.2.). (6)

where � is the baryon octetmatrix, b = exp[8" 5 −1
0 ] with" themeson octetmatrix, and ℎ8 9 = X82X83

is a spurion that controls the flavor violating structure of the process. Assuming 0 and 1 to be real,
and taking 50 = 5c , they are fit by [25] to be1

0 = 0.56�� 5c × [<c+]2, 1 = −1.42�� 5c × [<c+]2. (7)

The bracket over <c+ represents that this is merely the numerical value 139.5 MeV, and not the
theoretical quantity <c proportional to the quark masses. In the assumption of 0 and 1 being real,
only the  ( meson couples to nucleons, 21/2 5 −1

0 ((1 − 0) ?̄ ? + 21=̄=) ( , which will provide the
dominant contribution. This type of coupling breaks % but respects �% symmetry. Restoring the
CKM factors, one can also include a subdominant coupling to  ! so that we have:

L ## ' −
√

2�� × [<c+]2 5c
|+D3+DB | 50

× 2.84(0.7?̄ ? + =̄=) ×
(
Re(+∗D3+DB) ( + Im(+∗D3+DB) !

)
. (8)

Finally, we integrate out the Kaons in Fig. 1. Adopting it for a nucleus containing � = / + #
nucleons, one arrives at the prediction of �( induced by the CKM phase:

�( ' J ×
# + 0.7/

�
× 13[<c+]2 5c<4��

<2
 

× U� (GC )
c sin \2

,

, (9)

where J is the reduced Jarlskog invariant

J = Im(+∗CB+C3+∗D3+DB) ' 3.1 × 10−5, (10)

1The overall sign of 0 and 1 is not fixed by the hyperon nonleptonic decay (the relative sign between 0 and 1 is fixed
to be negative). We use the sign motivated by the vacuum factorization of strong penguins [24, 26]. If the overall sign is
opposite, it only affects the overall sign of �( (and 3equiv

4 ) and not its absolute value.
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Figure 2: The baryon pole diagrams that contribute to �( at the NLO level in the chiral limit. The diagrams
with the nucleon-hyperon mixing on the right side give the same amount of contribution.

that carries about ∼ 6% uncertainty. The overall scaling of this formula in the chiral limit and at
large GC is

���( ∝ J�3
�<

2
C<4<

−1
B Λ

2
hadr. (11)

where Λhadr is the typical hadronic scale. Notice that this is far more singular behavior with <@
than that arising in the chiral-loop-induced expressions for 3=. Also notice that the  ( exchange
dominates for any conventional parametrization of the CKMmatrix, and the role of  ! exchange is
to add small pieces of the amplitude that take Re(+D3+∗DB)Im(+CB+∗C3), arising from  ( exchange,
to the full J . Substituting all the SM parameters, we obtain

�( (LO) ' 5 × 10−16, (12)

at the leading order in the chiral limit.
In order to estimate the accuracy of the above result, one could try to evaluate the Next-to-

leading order (NLO) corrections in the expansion over small <B. It turns out that the baryon
pole diagrams, shown in Fig. 2, are the dominant correction in the chiral limit, as they scale as
< /Λhadr ∼

√
<B/Λhadr relative to the leading order result. They are fully calculable without

introducing any counterterms. With the heavy baryon chiral perturbation theory, we find that NLO
corrections interfere constructively with LO, and give 30% correction for the proton, and 40% for
the neutron, reqspectively. Combining LO and NLO, we arrive at our final result,

�( (LO + NLO) ' 6.9 × 10−16, or 3equiv
4 ' 1.0 × 10−35 4 cm. (13)

From the size of the NLO corrections, we estimate the accuracy of our computation as O(30 %). As
stated before, this result is much larger than previously believed, and exceeds any contributions of
34 into 3equiv

4 by at least four orders of magnitude. The enhancement of �( at �3
�
order compared

to U2�2
�
can be roughly understood as U, /U2 ∼ O(103). We note that, although translating �( to

3
equiv
4 depends on atoms/molecules that one considers, this dependence is mild and 3equiv

4 is within
the same ballpark if we instead consider, e.g., Tl, YbF or HfF+ [13].
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3. Indirect constraints on muon EDM

As we saw above, the CKM contribution to 3equiv
4 is still far below the current experimental

sensitivity. This indicates that, once we find a non-zero result in those experiments, it definitely
comes from new physics. In this section, we discuss one possible such new physics contribution to
the paramagnetic EDMs, that is, the muon EDM:

L = − 8
2
3` ¯̀fUV�UVW5`. (14)

The latest interest inmuons is fueled by the ongoing discrepancy between theoretical predictions
and experimental measurements of the muon anomalous magnetic moment 6 − 2 [16, 17]. This
situation brings other observables that involvemuons particularly interesting, and one such important
quantity is themuonEDM 3` (see e.g. [15] on the extended discussion on this point). At themoment,
the storage ring EDM measurement at BNL sets the tightest bound on the muon EDM [19],��3`�� < 1.8 × 10−19 4 cm, (15)

but there are proposals on significantly improving this bound with dedicated storage ring type muon
experiments [18, 20–22]. Given these upcoming efforts, it is important to reevaluate indirect bounds
on muon EDM, especially given the significant progress in the precision of atomic/molecular EDM
experiments in recent years. In the following, we focus on the paramagnetic EDM experiments,
and quote only the final result for the diamagnetic EDM experiments. Readers interested in details
of the latter calculation are referred to [27].

3.1 Electron EDM induced at three-loop

First, we evaluate the electron EDM induced by the heavy-lepton EDMs. The relevant diagrams
are shown in Fig. 3 (and their permutations). Since there is a hierarchy in the mass, <;/<! � 1,
where ; = 4 and ! = `, g, we expand the diagrams with respect to <;/<! and ?/<! and evaluate
only the leading terms, where ? is themomentum of the external electron (which is of the same order
as <; due to the Dirac equation). In general, the amplitude contains two distinct Dirac structures
that induce the EDM operator:

8M = 8�̃`a 4̄(?)
[
( (1)<4f`a + ( (2)

{
f`a , /?

}]
4(?). (16)

One can see that the second term is equivalent to the first one after using the equation of motion
for electrons. Since we expand the integrals by <4 and ?, ( (1) and ( (2) do not depend on these
parameters, corresponding to the so-called scalar vacuum integral. ( (1) and ( (2) have a simple
topology described by �" in [28] and can be reduced to two master integrals by repeated use of
integration by parts [29–33]. One of the master integrals is simply the product of three one-loop
integrals, and the other is a three-loop integral corresponding to E(0, 0, G, G) in [33]. We use the
FIRE6 [34] package to perform the integration-by-parts reduction and use the analytical expressions
of master integrals in [33]. Divergences and gauge dependencies in the two structures cancel out
separately2 and leave with us a finite result [35]:

3; =

(
0 (1) + 0 (2)

) <;
<!

(U
c

)3
3! , (17)

2Each individual diagram contains divergences, and we exploit the dimensional regularization to tame them.

6



P
o
S
(
D
I
S
C
R
E
T
E
2
0
2
2
)
0
4
9

Theory of electric dipole moments Yohei Ema

p p+ q

q

F̃µν

e e

(a)

p p+ q

q

Aβ

e e

(b)

p p+ q

q

Aβ

e e

(c)

p p+ q

q

Aβ

e e

(d)

Figure 3: Three-loop QED diagrams for heavy lepton EDM contribution to electron EDM. The thin lines
correspond to the electron, while the thick lines correspond to the heavy lepton. The crossed dots indicate
the EDM operator insertions.

where

0 (1) =
3
2
Z (3) − 19

12
, 0 (2) =

1
2
Z (3) − 1

6
, Z (3) ' 1.202. (18)

The contribution from expansion in<;/<! is labeled by the upper index “(1)”, and the contribution
from expansion in ?/<! is labeled by the upper index “(2)”.

Here is a comment. Grozin, Khriplovich, and Rudenko in [36] showed, for the first time, that
heavy leptons (muon and tau lepton) induce an electron EDMat the three-loop order, and put indirect
constraints on heavy-lepton EDMs based on electron EDM experiments. Comparing with [36],
we see that their result corresponds to our 0 (1) , while the contribution from 0 (2) is not included.
This means that they expanded the amplitude in <4/<g but overlooked the expansion in ?/<g .
Our calculation shows that both contribute to the electron EDM at the same order. Numerically
our result is ∼ 40% larger than [36]. As a double-check of our procedure, we reevaluated the
leading order contribution to the electron 6− 2 induced by a muon loop (without the EDM operator
insertion). This contribution to the electron 6 − 2 has been extensively studied by many groups and
is better known [37, 38]. Our procedure reproduces the known result correctly, and both expansions
in <4/<` and in ?/<` need to be included to get the correct result.

3.2 Semi-leptonic �%-odd operator

We next evaluate �( induced by the muon EDM. Once we go below the muon mass scale,
in addition to the electron EDM, the muon EDM induces �%-odd nonlinear electromagnetic
interactions. The left diagram of Fig. 4 is an example of such a diagram. We notice that photon

7
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N

e e

EE

Figure 4: A representative light-by-light scattering diagram with 3` insertion (indicated by the crossed
dot) giving rise to �3� interaction. The closed solid line corresponds to the off-shell muon. When �2 is
sourced by the nucleus and �� is connected to the electron, as shown on the right, it induces an equivalent
�( operator.

momenta entering the muon loop are small compared to the muon mass <`. Indeed, in a large
nucleus with @max

W ∼ '−1
#
∼ 30 MeV, one can keep only the lowest dimension operators, and omit

the operators that involve derivatives acting on the electric E and magnetic B fields. To linear order
in 3`, we directly compute the corresponding electromagnetic operators, similar to the dimension
eight terms in the Euler-Heisenberg Lagrangian:

L = −44(�̃UV�UV) (�WX�WX) ×
3`/4

96c2<3
`

= −
3`/4

12c2<3
`

44(E · E) (E · B) + · · · . (19)

where we ignore the O(�3) interaction in the last equality that is subdominant due to no /

enhancement.
The �3� term generates the semileptonic�%-odd operator via the right diagram of Fig. 4. The

two electric field lines are sourced by the nucleus, while the photon loop attached to the electron
line generates the <4 4̄8W54 structure. Being concentrated inside and near the nucleus, E2 can be
considered equivalent to the delta-functional contribution:

42(E2)nucl → X(r) × 24c(/U)2
5'#

, (20)

where we assume a constant density charge distribution. Since the nucleon number density operator
#̄# is also localized at the position of the nucleus, one can think of these two operators as equivalent.
The photon loop is enhanced by a logarithm log(Λ/<4), and we evaluate it to leading logarithmic
accuracy by taking Λ = <`.3 Putting the results of the loop calculation together with (20), we
arrive at the following prediction for the equivalent �( value:

��√
2
�

equiv
(

= ^
4/2U4

c�
×
<4 (3`/4)
<3
`'#

× log
(
<`

<4

)
, (21)

where the fudge factor ^ accounts for the different distributions of E2 and #̄# . Solving the Dirac
equation near the nucleus for the outside B1/2 and ?1/2 electron wave functions and finding a ratio
of the matrix elements for these two distributions result in ^ ' 0.66. As one can see, �equiv

(
scales

as /2�−1'−1
#
∝ /2/3, which is the sign of coherent enhancement. Numerically we obtain

�
equiv
(

= 3.1 × 10−10
(

3`

10−20 4 cm

)
. (22)

3In practice, this cutoff will be supplied by the non-local nature of the muon loop in the right diagram of Fig. 1.

8



P
o
S
(
D
I
S
C
R
E
T
E
2
0
2
2
)
0
4
9

Theory of electric dipole moments Yohei Ema

3.3 Constraints on muon EDM

By combining the results of 34 and �( obtained above, we derive an indirect constraint on
muon EDM from the paramagnetic EDM experiment [27, 35]:��3`�� < 1.7 × 10−20 4 cm. (23)

We observe that 34 and �( interfere constructively, and the �( contribution is larger by a factor of
' 3. We believe that Eq. (22) is accurate within ∼ 15–20% with uncertainties associated with the
modeling of E(A) and the logarithmic approximation for the photon loop integral.

Although we have not discussed, the �%-odd photon operator �3� induces the Schiff moment
probed by diamagnetic EDM experiments as well. In particular, from 199Hg [1], we obtain the
upper bound on the muon EDM as ��3`�� < 6.4 × 10−20 4 cm. (24)

Although this is weaker than the paramagnetic EDM experiments, this is stronger than the direct
constraint by the BNL experiment. Given that the paramagnetic and diamagnetic systems are
completely different, this result strengthens the robustness of our indirect limits on the muon EDM.

Finally, we can apply our result to the tau EDM by simply replacing<` by<g . We thus update
the constraint on the tau EDM:

|3g | < 1.1 × 10−184 cm (90%C.L.). (25)

In the case of tau EDM, the �( operator is suppressed since it scales as �( ∝ <−3
!
, and 34 induced

by 3g dominates. While there is only a small change from the previous work on the three-loop
computation side (from ( (2) ), the accuracy of the paramagnetic experiments has improved by two
orders of magnitude since the time [36] was published. As a result, the indirect constraint on
3g is now tighter than the one from 4+4− → g+g− by the Belle experiment [39]. The Belle-II
experiment plans to measure 3g , again by 4+4− → g+g−, with an accuracy of |Re 3g |, |Im 3g | <
10−18–10−19 4 cm [40]. Therefore Eq. (25) provides an important benchmark for the Belle-II
experiment. We note that the studies of the tau-lepton electromagnetic form factors will greatly
benefit from the proposed addition of the longitudinal polarization to the electron beam [41], and
several orders of magnitude improvements are possible [42, 43].

4. Conclusion

In this paper, we have reviewed recent theoretical developments in the field of the EDM. In
particular, we have discussed two�% violating contributions to the paramagnetic EDMexperiments;
Standard Model CKM phase and the muon EDM.

In the former case, we have found that a Kaon-exchange contribution, combining weak non-
leptonic transition with the semileptonic electroweak penguin, is larger by three orders of magnitude
than the previous estimation. Numerically we have obtained

3
equiv
4 = 1.0 × 10−35 4 cm. (26)

9
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This contribution is rather precisely calculable with the chiral perturbation theory. Indeed, we have
evaluated the NLO correction in the chiral limit, which allows us to estimate the precision of our
calculation as O(30 %). Although the result is still small, it is not unthinkable that the progress
in sensitivity to the paramagnetic EDMs may reach the level of 3equiv

4 in the future. Indeed, some
novel proposals [8] envision at detecting 34 ∼ O(10−35–10−37) 4 cm.

Then we have evaluated the electron EDM 34 and the semileptonic �%-odd operator �(
induced from the muon EDM. We have computed a three-loop contribution from 3` to 34 that
was overlooked in the previous literature. Moreover, we have found that muon-loop-induced �3�

effective interaction leads to �( enhanced by a coherent factor /2/3. By combining those results,
we obtain an upper bound on the muon EDM from the paramagnetic EDM experiment as��3`�� < 1.7 × 10−20 4 cm. (27)

Although we have not explained it in detail, the �3� operator also induces the Schiff moment (#
probed by the diamagnetic EDM experiments. From the mercury EDM experiment, we obtain��3`�� < 6.4 × 10−20 4 cm. (28)

These are already stronger than the direct bound at BNL (15). Eq. (27) provides a new benchmark
that future dedicated muon EDM experiments would have to overtake. We also notice that since
both 199Hg and ThO EDM results give an improvement, it is highly unlikely that a fine-tuned choice
of 34 and hadronic �%-violation would lead to the relaxation of indirect bounds on 3`.

Finally, we have updated the limit on the g-lepton EDM 3g derived in [36]. In this case, the
electron EDM plays the dominant role since 34 ∝ <−1

g while (# , �( ∝ <−3
g up to logarithm. From

the ThO molecule, we obtain

|3g | < 1.6 × 10−18 4 cm. (29)

This surpasses the constraint from the Belle experiment [39].
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