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1. Introduction

The infrared (IR) singularities of QCD amplitudes can be formulated to a general form,
which can be applied to predict the IR poles and large logarithms for higher-order multi-leg QCD
amplitudes. It plays a key role to precise determinations of the parameters in the Standard Model
(SM). In addition, analytical results of IR singularities help to deepen our understanding on the
structure of perturbative quantum field theory. IR singularities are governed by the soft anomalous
dimension matrix, which has been well-known at three loops for multi-leg scattering of massless
partons [1], but only at two loops for massive cases [2]. In this work [3], we focus on the three-loop
anomalous dimension for QCD amplitudes with one massive parton, especially on the multi-leg
correlations, and present the analytical result for the correlation between one massive and two
massless partons. It can be used to improve theoretical predictions for top quark productions at
hadron colliders.

2. Structure of anomalous dimensions

To investigate IR singularities of a QCD scattering amplitude |M({𝑠}, 𝜖)〉, we start with a
slightly off-shell 𝑛-parton amputated Green’s function 𝐺𝑛 ({𝑝}). In the framework of soft-collinear
effective theory (SCET) [4–6], it can be factorized as

𝐺𝑛 ({𝑝}) ∼ 𝑺({𝛽}, 𝜖)
∏
𝑖

𝐽 (𝐿2
𝑖 , 𝜖) |M({𝑠}, 𝜖)〉 , (1)

where {𝑝} denotes the momenta of external legs, and |M({𝑠}, 𝜖)〉 is the corresponding on-shell
𝑛-parton amplitude. 𝑺({𝛽}, 𝜖) describes the soft correlation between external legs, and 𝐽 (𝐿2

𝑖
, 𝜖)

encodes collinear radiations along the 𝑖th massless external leg. |M({𝑠}, 𝜖)〉 and 𝑺({𝛽}, 𝜖) are
matrices in color space. To indicate the kinematic dependence in (1), we employ cusp angles
between different pairs of massless or massive partons

𝛽𝑖 𝑗 = 𝐿𝑖 + 𝐿 𝑗 − ln
𝜇2

−𝑠𝑖 𝑗
, 𝛽𝐼 𝑗 = 𝐿 𝑗 − ln

𝑚𝐼 𝜇

−𝑠𝐼 𝑗
, 𝛽𝐼 𝐽 = cosh−1

(
−𝑠𝐼 𝐽

2𝑚𝐼𝑚𝐽

)
, (2)

where 𝐿𝑖 = ln[𝜇2/(−𝑝2
𝑖
− 𝑖0)] and 𝑠𝑖 𝑗 = 2𝜎𝑖 𝑗 𝑝𝑖 · 𝑝 𝑗 + 𝑖0. The sign factor 𝜎𝑖 𝑗 = +1 if the

momenta 𝑝𝑖 and 𝑝 𝑗 are both incoming and outgoing, and 𝜎𝑖 𝑗 = −1 otherwise. Here and below,
indices 𝐼, 𝐽 · · · indicate massive partons, and lower-cases indices 𝑖, 𝑗 · · · indicate massless ones.
Because the soft and collinear divergences in the Green’s function 𝐺𝑛 ({𝑝}) are regulated by the
off-shellness, the IR poles of |M({𝑠}, 𝜖)〉 cancel with the ultraviolet (UV) poles of 𝐽 (𝐿2

𝑖
, 𝜖) and

𝑺({𝛽}, 𝜖). 𝐽 (𝐿2
𝑖
, 𝜖) is a color-singlet, and its UV poles can be simply derived from the collinear

anomalous dimension Γ𝑖
𝑐 = −Γ𝑖

cusp𝐿𝑖 + 𝛾𝑖𝑐 [7], which linearly depends on the collinear logarithm.
The color structure and kinematic dependence of UV poles of 𝑺({𝛽}, 𝜖) are strongly constrained by
non-abelian exponentiation theorem and the rescaling invariance of soft Wilson lines. So it is more
convenient to study the UV structure of soft function 𝑺({𝛽}, 𝜖) instead of studying IR singularities
of hard scattering amplitudes directly.

For convenience, we use MS renormalization scheme,

|M({𝑠}, 𝜇)〉 = lim
𝜖→0

𝒁−1(𝜖, {𝑠}, 𝜇) |M(𝜖, {𝑠})〉 , (3)
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where renormalization factors are determined by the anomalous dimensions as follow [8, 9]

𝒁(𝜖, {𝑝}, {𝑚}, 𝜇) = P exp
[∫ ∞

𝜇

𝑑𝜇′

𝜇′ 𝚪({𝑝}, {𝑚}, 𝜇′)
]
, (4)

Similarly, the soft and collinear matrix elements are renormalized by the factors 𝒁𝑠 and 𝑍𝐽 ,
respectively. The cancellation of poles implies that

𝚪 = 𝚪𝑠 +
∑︁
𝑖

Γ𝑖
𝑐 1 , (5)

where 𝚪𝑠 and Γ𝑖
𝑐 denote the soft and collinear anomalous dimensions, respectively.

First, we discuss kinematic dependences of anomalous dimensions. Because the hard, soft
and collinear interactions are decoupled in soft-collinear factorization, the anomalous dimension of
hard scattering amplitudes does not depend on the collinear scale 𝑝2

𝑖
. The eq. (5) implies that the

soft matrix elements also linearly depends on 𝐿𝑖 , i.e.

𝜕𝚪𝑠

𝜕𝐿𝑖

= −𝜕Γ𝑖
𝑐

𝜕𝐿𝑖

1 . (6)

Therefore soft matrix elements can only linearly depend on cusp angles {𝛽}, or depend on conformal
cross ratios, e.g. 𝛽𝑖 𝑗𝑘𝑙 = 𝛽𝑖 𝑗 + 𝛽𝑘𝑙 − 𝛽𝑖𝑘 − 𝛽 𝑗𝑙 [9, 10], where all the collinear scales 𝑝2

𝑖
cancel out.

For the tripole correlation between one massive and two massless partons, the only conformal cross
ratio is give by

𝑟𝑖 𝑗 𝐼 ≡
𝑣2
𝐼
(𝑛𝑖 · 𝑛 𝑗)

2 (𝑣𝐼 · 𝑛𝑖) (𝑣𝐼 · 𝑛 𝑗)
with 𝑖 ≠ 𝑗 , (7)

where 𝑣𝐼 = 𝑝𝐼 /𝑚𝐼 is the four-velocity of massive parton 𝐼, and 𝑛𝑖 ( 𝑗) is the light-like unit vector
along the momentum of massless parton 𝑖( 𝑗). For the quadrupole correlation involving partons
with indices {𝑖, 𝑗 , 𝑘, 𝐼}, the kinematic functions are determined by three independent cross ratios
𝑟𝑖 𝑗 𝐼 , 𝑟𝑖𝑘𝐼 and 𝑟 𝑗𝑘𝐼 .

Second, soft anomalous dimensions only receive contribution from maximally non-abelian
parts of the conventional color factors, based on non-abelian exponentiation theorem [11, 12],
which has already been generalized to multi-leg scattering [14, 19]. So we only need to consider
fully connected color factors to build 𝚪𝑠, and their attachments to Wilson lines can be further
symmetrized by applying [𝑻𝑎

𝑖
,𝑻𝑏

𝑖
] = 𝑖 𝑓 𝑎𝑏𝑐𝑻𝑐

𝑖
repeatedly. Up to three-loop order, we need to

consider the following color structures

D𝑖 𝑗 = 𝑻𝑎
𝑖 𝑻

𝑎
𝑗 ≡ 𝑻𝑖 · 𝑻𝑗 , T𝑖 𝑗𝑘 = 𝑖 𝑓 𝑎𝑏𝑐

(
𝑻𝑎
𝑖 𝑻

𝑏
𝑗 𝑻

𝑐
𝑘

)
+
, T𝑖 𝑗𝑘𝑙 = 𝑓 𝑎𝑑𝑒 𝑓 𝑏𝑐𝑒

(
𝑻𝑎
𝑖 𝑻

𝑏
𝑗 𝑻

𝑐
𝑘𝑻

𝑑
𝑙

)
+
, (8)

where
(
𝑻𝑎1
𝑖1

. . .𝑻𝑎𝑛
𝑖𝑛

)
+
≡ 1/𝑛!

∑
𝜎 𝑻

𝑎𝜎 (1)
𝑖𝜎 (1)

. . .𝑻
𝑎𝜎 (𝑛)
𝑖𝜎 (𝑛)

, and 𝜎 goes through all the permutations of 𝑛
objects. To indicate massive partons, we use 𝐼, 𝐽, . . . in the subscripts. Actually, T𝑖 𝑗 𝐼 does not
contribute to 𝚪𝑠, because it is anti-symmetric under interchange of the two massless legs, while the
corresponding kinematic function is symmetric. In addition, color conservation

∑
𝑖 𝑻𝑖 +

∑
𝐼 𝑻𝐼 = 0

in the color-space formalism [15] implies

T𝑖 𝑗 𝐼 𝐼 =
1
2

(
T𝑗 𝑗𝑖𝐼 + T𝑖𝑖 𝑗 𝐼

)
− 1

2

∑︁
𝑘≠𝑖, 𝑗

(
T𝑖 𝑗𝑘𝐼 + T𝑗𝑖𝑘𝐼

)
− 1

2

∑︁
𝐽≠𝐼

(
T𝑖 𝑗 𝐼 𝐽 + T𝑗𝑖𝐼 𝐽

)
, (9)
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Figure 1: Two-particle collinear limit.

The last term vanishes if only one massive parton is involved in the scattering. Eventually, based
on soft-collinear factorization and non-abelian exponentiation theorem, three-loop anomalous di-
mensions for QCD amplitudes are constrained to be

𝚪
(
{𝑝}, {𝑚}, 𝜇

)
=

∑︁
(𝑖, 𝑗)

𝑻𝑖 · 𝑻𝑗

2
𝛾cusp(𝛼𝑠) ln

𝜇2

−𝑠𝑖 𝑗
+

∑︁
𝐼 , 𝑗

𝑻𝐼 · 𝑻𝑗 𝛾cusp(𝛼𝑠) ln
𝑚𝐼 𝜇

−𝑠𝐼 𝑗

−
∑︁
(𝐼 ,𝐽 )

𝑻𝐼 · 𝑻𝐽

2
𝛾cusp(𝛽𝐼 𝐽 , 𝛼𝑠) +

∑︁
𝑖

𝛾𝑖 (𝛼𝑠) 1 +
∑︁
𝐼

𝛾𝐼 (𝛼𝑠) 1

+ 𝑓 (𝛼𝑠)
∑︁

(𝑖, 𝑗 ,𝑘)
T𝑖𝑖 𝑗𝑘 +

∑︁
(𝑖, 𝑗 ,𝑘,𝑙)

T𝑖 𝑗𝑘𝑙 𝐹4(𝛽𝑖 𝑗𝑘𝑙, 𝛽𝑖 𝑗𝑘𝑙 − 2𝛽𝑖𝑙𝑘 𝑗 , 𝛼𝑠)

+
∑︁
𝐼

∑︁
(𝑖, 𝑗)

T𝑖 𝑗 𝐼 𝐼 𝐹h2(𝑟𝑖 𝑗 𝐼 , 𝛼𝑠) +
∑︁
𝐼

∑︁
(𝑖, 𝑗 ,𝑘)

T𝑖 𝑗𝑘𝐼 𝐹h3(𝑟𝑖 𝑗 𝐼 , 𝑟𝑖𝑘𝐼 , 𝑟 𝑗𝑘𝐼 , 𝛼𝑠)

+ [non-dipole contributions involving two or more massive partons] + O(𝛼4
𝑠) .
(10)

Here 𝛾cusp(𝛼𝑠) and 𝛾cusp(𝛽𝐼 𝐽 , 𝛼𝑠) are the light-like and angle-dependent cusp anomalous dimen-
sions, respectively. 𝛾𝑞 (𝑔) and 𝛾𝑄 denote anomalous dimensions for massless and massive partons,
respectively. The first three lines in eq. (10) have been presented and calculated in [1, 8–10, 23].
T𝑖 𝑗𝑘𝑙 has symmetry properties as

T𝑖 𝑗𝑘𝑙 = T𝑗𝑖𝑙𝑘 = −T𝑖𝑘 𝑗𝑙 = −T𝑙 𝑗𝑘𝑖 = T𝑘𝑙𝑖 𝑗 . (11)

Together with the Jacobi identity

T𝑖𝑘𝑙 𝑗 + T𝑖𝑙 𝑗𝑘 + T𝑖 𝑗𝑘𝑙 = 0 , (12)

the kinematic functions𝐹h3 can be rewritten as an odd function, i.e. 𝐹h3(𝑥, 𝑦, 𝑧, 𝛼𝑠) = −𝐹h3(𝑦, 𝑥, 𝑧, 𝛼𝑠).
The kinematic functions 𝐹4, 𝐹h2 and 𝐹h3 are constrained by two-particle collinear limits, and 𝐹h2

and 𝐹h3 are also constrained by small-mass limits. As shown in fig. 2, when two massless particles
become collinear in an 𝑛−particle scattering amplitude, it can be factorized into the corresponding
(𝑛 − 1)-particle amplitude multiplied by the 1 → 2 splitting function, i.e.

|M({𝑝1, 𝑝2, . . . , 𝑝𝑛}𝜖)〉 ' Sp({𝑝1, 𝑝2}) |M({𝑝𝑎, . . . , 𝑝𝑛}𝜖)〉 . (13)
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Figure 2: Small-mass limit.

where 𝑝1 and 𝑝2 are the momenta of any two of the particles becoming collinear, and 𝑝𝑎 = 𝑝1 + 𝑝2.
By using color conservation, we have

𝚪Sp({𝑝1, 𝑝2}, 𝜇) =𝚪
(
{𝑝1, 𝑝2, . . . , 𝑝𝑛}, {𝑚}, 𝜇

)
− 𝚪

(
{𝑝𝑎, . . . , 𝑝𝑛}, {𝑚}, 𝜇

)
=Γcusp(𝛼𝑠)

[
𝑻1 · 𝑻2

(
ln

𝜇2

−𝑠12
+ ln[𝑧(1 − 𝑧)]

)
+ 𝐶𝑅1 ln 𝑧 + 𝐶𝑅2 ln(1 − 𝑧)

]
+

[
𝛾1(𝛼𝑠) + 𝛾2(𝛼𝑠) − 𝛾𝑎 (𝛼𝑠)

]
1

+
[
𝑓 (𝛼𝑠) + 4𝐹4(𝜔𝑖 𝑗 , 𝜔𝑖 𝑗 , 𝛼𝑠)

] (
−
𝐶2

𝐴

4
𝑻1 · 𝑻2 − 2T1122

)
+ 4

∑︁
𝑖≠1,2

T12𝑖𝑖

[
𝑓 (𝛼𝑠) − 2𝐹4(𝜔𝑖 𝑗 , 𝜔𝑖 𝑗 , 𝛼𝑠)

]
+ 2

∑︁
𝐼

T12𝐼 𝐼

[
𝐹h2(0, 𝛼𝑠) − 𝑓 (𝛼𝑠) − 4𝐹4(𝜔𝑖 𝑗 , 𝜔𝑖 𝑗 , 𝛼𝑠)

]
+ 2

∑︁
𝐼

∑︁
𝑖≠1,2

(T12𝑖𝐼 + T21𝑖𝐼 )
[
𝐹h3(0, 𝑟1𝑖𝐼 , 𝑟1𝑖𝐼 , 𝛼𝑠) − 4𝐹4(𝜔𝑖 𝑗 , 𝜔𝑖 𝑗 , 𝛼𝑠)

]
+ · · · ,

(14)
Since the splitting function only depends on 𝑝1 and 𝑝2, the last three lines in eq. (14) have to vanish.
Then we have

lim
𝜔→−∞

𝐹4(𝜔, 𝜔, 𝛼𝑠) =
𝑓 (𝛼𝑠)

2
, 𝐹h2(0, 𝛼𝑠) = 3 𝑓 (𝛼𝑠) , 𝐹h3(0, 𝑟, 𝑟, 𝛼𝑠) = 2 𝑓 (𝛼𝑠) , (15)

In addition, when the masses of the external particles are much smaller than the hard scales, the
amplitudes factorize into the corresponding massless amplitude multiplied by jet functions [16, 17],
which account for collinear singularities and only depend on the information of the corresponding
heavy quarks. This allow us to constrain 𝐹h3 similarly as what we did in the collinear limit, e.g.

lim
𝑣2
𝐼
→0

𝐹h3(𝑟𝑖 𝑗 𝐼 , 𝑟𝑖𝑘𝐼 , 𝑟 𝑗𝑘𝐼 , 𝛼𝑠) = 2 𝑓 (𝛼𝑠) + 4𝐹4(𝛽𝑖 𝑗𝑘𝐼 , 𝛽𝑖 𝑗𝑘𝐼 − 2𝛽𝑘 𝑗𝑖𝐼 , 𝛼𝑠) . (16)

3. Calculation at three loops

The two new terms presented in the last line of eq. (10) describes the tripole and quadrupole
correlations with a single massive parton for the first time. In this work, we calculate the tripole

5
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kinematic function

𝐹h2(𝑟, 𝛼𝑠) =
(𝛼𝑠

4𝜋

)3
Fh2(𝑟) + O(𝛼4

𝑠) (17)

analytically at three loops. It is more convenient to compute Fh2(𝑟) using soft matrix element
because of the simplicity of Feynman integrals with linear propagators. In order to isolate the UV
poles, a proper IR regulator has to be introduced. Though some regulators have been used to extract
the UV poles in two-loop massive and three-loop massless scattering, the calculations of Feynman
integrals are extremely complicated because extra scales are involved. Here we employ a novel
regularization to obtain UV poles. We focus on the soft function from the threshold factorization
for one-particle inclusive single top quark production associated with a color singlet in hadron
collisions. It is defined as

𝑺(𝜔) = 〈0|T
[
𝒀†
𝑛1𝒀

†
𝑛2𝒀

†
𝑣

]
𝛿(𝜔 − 𝑣 · 𝑝)T

[
𝒀𝑛1𝒀𝑛2𝒀𝑣

]
|0〉 , (18)

where 𝒀𝑛(𝑣) = 𝒀𝑛(𝑣) (0) denotes semi-infinite soft Wilson lines along 𝑛𝜇 (𝑣𝜇) direction, 𝑝𝜇 is the
momentum operator picking up the total momentum of all soft emissions in final states, and T(T)
indicates (anti-)time ordering. In SCET, the soft function defined at cross-section level are only
UV divergent, because the IR poles cancel out after all the diagrams are added up. 𝜔 is the only
dimensionful variable involved in eq. (18), so it can be factored out. In principle, the calculation
of the soft function at three loops can be categorized into three parts: triple real emissions at tree
level, double real emissions at one loop, and single real emission at two loops. However, there is a
way to compute the soft function in terms of loop integrals by rewriting its definition in eq. (18) as
[18]

𝑺(𝜔) = 1
2𝜋

Re [𝚺(𝜔 + 𝑖0) − 𝚺(𝜔 − 𝑖0)] , (19)

with

𝚺(𝜔) =
∫ ∞

0
𝑑𝑡 𝑒𝑖𝜔𝑡 〈0|T

[
𝒀†
𝑛1 (𝑡𝑣)𝒀

†
𝑛2 (𝑡𝑣)P exp

[
𝑖𝑔

∫ 𝑡

0
𝑑𝑠 𝑣 · 𝐴𝑐 (𝑠𝑣)𝑻𝑐

𝑣

]
𝒀𝑛1 (0)𝒀𝑛2 (0)

]
|0〉 . (20)

This allowed us to straightforwardly take advantage of modern multi-loop technology.
To calculate Fh2(𝑟), only color-connected diagrams contributing to the color factors T𝑖𝑖 𝑗 𝐼 , T𝑖 𝑗 𝐼 𝐼

and T𝑖𝑖𝐼 𝐼 are taken into account. The diagrams are organised web by web, where mixing matrices
can be obtained by the replica trick [19]. Though the replica trick was employed at amplitude level,
it is still compatible at cross-section level. We show how to employ the replica trick on our soft
function in fig. 3. The amplitude on the left hand side is the same as the eight subdiagram on right
hand side, so we can use the same mixing matrix to project their maximally non-abelian part out.

The Feynman diagrams are calculated in general covariant gauge. After IBP reduction, there
are 173 linear independent master integrals (MIs), which can be evaluated by using the method. of
differential equation (DE). Then, the DE systems are transformed to an 𝜀-form [20], and the MIs
are solved iteratively order-by-order in 𝜖 with the alphabet {𝑟, 𝑟 − 1, 𝑟 − 2, (𝑟 − 1)

√
𝑟,

√︁
𝑟 (𝑟 − 1)}.

The boundary conditions are chosen at 𝑟 = 1, and we use dimensional recurrence relations to relate
all the MI to a set of quasi-finite integrals in dimension 𝑑 = 𝑛 − 2𝜖 (𝑛 = 4, 6, 8, . . . ), which can
be evaluated by using HyperInt [21]. Finally, all the Feynman integrals are expressed by linear
combinations of Goncharov Polylogarithms (GPLs) and the generalized harmonic polylogarithms
(GHPLs).
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n1

n2

v
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Figure 3: A sample for the comparison between diagrams of the soft correlator and the soft function at
cross-section level in (19). For the subdiagrams on right hand side, the external and internal double lines
denote the semi-infinite and finite-length soft Wilson lines in (20), respectively. Each diagram on the right
hand side has the same color factor as the one on the left.

4. Result

After replacing the MIs in Fh2(𝑟) with their analytical results, we find that all the 𝜖 poles
drop out, and only GPLs appear in the final expression. The final expression can be remarkably
simplified to

Fh2(𝑟) =128
[
𝐻−1,0,0,0 + 𝐻−1,1,0,0 + 𝐻1,−1,0,0 − 𝐻1,0,0,0

]
+ 128 (𝜁2 + 𝜁3)

[
𝐻1,0 − 𝐻−1,0

]
+ 96 (𝜁3 + 𝜁4)

[
𝐻−1 − 𝐻1

]
+ 128𝜁2

[
𝐻−2,0 − 𝐻2,0 + 𝐻−1,0,0 − 𝐻1,0,0

]
+ 256

[
𝐻1,2,0,0 + 𝐻2,0,0,0 − 𝐻−2,0,0,0 + 𝐻−1,−2,0,0 − 𝐻−1,2,0,0 − 𝐻1,−2,0,0

− 𝐻−1,0,0,0,0 + 𝐻1,0,0,0,0

]
+ 48 (2𝜁2𝜁3 + 𝜁5) ,

(21)

where 𝐻 ®𝑎 ≡ 𝐻 ®𝑎 (
√
𝑟) are the harmonic polylogarithms (HPLs) [22]. This result is consistent with

the constraints of two-particle collinear limit and small-mass limit in eqs. (15) and (16).

5. Summary

In this work, we present the general structure of the soft anomalous dimension for QCD
amplitudes with a single massive parton up to three loops. The color structures and corresponding
kinematic dependences for tripole and quadrupole correlations are presented for the first time, and
their behaviours in two-particle collinear limit and small-mass limit are discussed in details. To
extract the UV poles of soft matrix elements, we employ a novel IR regulator at cross-section
level. By using modern techniques for multi-loop calculations, e.g. differential equation method
and dimensional recurrence relations, we compute the three-loop kinematic function for the tripole
correlation, the analytical result of which can be remarkably simplified to a linear combination of
HPLs with transcendental weight four and weight five.
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