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1. Background

The theory predictions of all high-energy hadronic collider observables rely on the factorization
theorem in Quantum Chromodynamics (QCD), which expresses the hadronic cross section as the
convolutions of the universal parton distribution functions (PDFs) and partonic cross sections. The
partonic cross sections can be calculated from the first principle in perturbative QCD. The PDFs
are non-perturbative quantities and they are hard to determine. Still, their scale evolution (the
well-known DGLAP evolution [1–3]) is governed by splitting functions, which can be evaluated
perturbatively in QCD.

The calculations of partonic cross sections have received rapid progress. Several benchmark
partonic cross sections in QCD have been evaluated to next-to-next-to-next-to-leading order (N3LO).
To obtain the same precision for hadronic cross sections, it is necessary to know the N3LO PDFs,
which require the knowledge of four-loop splitting functions. The splitting functions at three-loop
accuracy in QCD were computed almost 20 years ago [4, 5], and allowed the complete determination
of NNLO PDFs. At four-loop order, only partial results are available [6–17]. Those results were
already used to obtain approximate N3LO PDFs [18, 19].

Traditionally, the splitting functions were extracted from physical partonic cross-sections. This
method is technically complicated and challenges the current computational power, memory, and
storage demands, see for example, [15]. It is thus desirable to search for more efficient methods to
determine the four-loop splitting functions. One of the most efficient methods is to extract splitting
functions via the computations of off-shell operator matrix elements (OMEs), in the framework of
operator product expansion (OPE). The off-shell OMEs are defined as the off-shell OMEs with a
single operator insertion, for the case of two partons in the external states it is

𝐴𝑖 𝑗 = ⟨ 𝑗(𝑝)|𝑂𝑖 | 𝑗(𝑝)⟩ with 𝑝2 < 0 , (1)

where 𝑂𝑖 is a twist-two operator. The twist-two operators are classified into non-singlet and singlet
operators according to flavor group 𝑆𝑈(𝑁 𝑓 ). There is one non-singlet spin-𝑛 quark operator

𝑂ns(𝑛) =
𝑖𝑛−1

2

[
𝜓̄𝑖1Δ · 𝛾(Δ · 𝐷)𝑖1𝑖2(Δ · 𝐷)𝑖2𝑖3 · · · (Δ · 𝐷)𝑖𝑛−1𝑖𝑛

𝜆𝑘

2
𝜓𝑖𝑛

]
, 𝑘 = 3, · · · 𝑁2

𝑓 − 1 , (2)

and two singlet quark and gluon operators

𝑂𝑞(𝑛) =
𝑖𝑛−1

2

[
𝜓̄𝑖1Δ · 𝛾(Δ · 𝐷𝜇)𝑖1𝑖2(Δ · 𝐷)𝑖2𝑖3 · · · (Δ · 𝐷)𝑖𝑛−1𝑖𝑛

𝜓𝑖𝑛

]
,

𝑂𝑔(𝑛) = − 𝑖
𝑛−2

2

[
Δ𝜇1 · 𝐺

𝜇1
𝑎1,𝜇(Δ · 𝐷)𝑎1𝑎2 · · · (Δ · 𝐷)𝑎𝑛−2𝑎𝑛−1Δ𝜇𝑛𝐺

𝜇𝑛𝜇
𝑎𝑛−1𝑎𝑛

]
. (3)

In the above equations, 𝜆𝑘/2 denotes diagonal generators of the flavor group SU(𝑁 𝑓 ), and Δ is
a light-like reference vector with Δ2 = 0. The symbol 𝜓 and 𝐺 represent the quark field and
gluon field strength tensor respectively, and 𝐷𝜇 = 𝜕𝜇 𝛿 − 𝑖𝑔𝑠𝑻

𝑎𝐴𝑎
𝜇 is the covariant derivative in the

fundamental or adjoint representations of a general gauge group.
The non-singlet sector allows for a direct multiplicative renormalization:

𝑂R
ns(𝜇, 𝑛) = 𝑍ns(𝜇, 𝑛)𝑂B

ns(𝑛) , (4)

2



P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
0
5
6

Renormalization of twist-two operators and four-loop splitting functions in QCD Tong-Zhi Yang

where superscripts B and R are used to represent the bare and renormalized operators, respectively.
Naively, one would expect that the renormalization in the singlet sector reads(

𝑂𝑞

𝑂𝑔

)R,naive

=

(
𝑍𝑞𝑞 𝑍𝑞𝑔

𝑍𝑔𝑞 𝑍𝑔𝑔

) (
𝑂𝑞

𝑂𝑔

)B

. (5)

In the following, we will see the above renormalization procedure needs to be extended if we work
with the off-shell external states.

The renormalized operators satisfy a renormalization group equation,

𝑑𝑂R(𝜇, 𝑛)
𝑑 ln 𝜇

= −2𝛾(𝜇, 𝑛) · 𝑂R(𝜇, 𝑛) , (6)

which defines the anomalous dimensions 𝛾(𝑛) of the twist-two operators. The anomalous dimen-
sions 𝛾(𝑛) with Mellin moments 𝑛 are related to splitting functions 𝑃(𝑥) via the following Mellin
transformation,

𝛾(𝜇, 𝑛) = −
∫1

0
𝑑𝑥𝑥𝑛−1𝑃(𝜇, 𝑥) . (7)

The anomalous dimension 𝛾 = 𝛾ns is a scalar in the non-singlet case, and is a two-by-two matrix
with elements 𝛾𝑖 𝑗 (𝑖, 𝑗 = 𝑞, 𝑔) in the singlet sector. Since the bare operators don’t depend on the
renormalization scale 𝜇, it is easy to show that the associated renormalization constants satisfy the
following renormalization group equation:

𝑑𝑍(𝜇, 𝑛)
𝑑 ln 𝜇

= −2𝛾(𝜇, 𝑛) · 𝑍(𝜇, 𝑛) . (8)

With the help of the 𝑑-dimensional QCD 𝛽 function

𝛽(𝑎𝑠, 𝜖) =
𝑑𝑎𝑠

𝑑 ln 𝜇
= −2𝜖 𝑎𝑠 − 2𝑎𝑠

∞∑︁
𝑖=0

𝑎𝑖+1
𝑠 𝛽𝑖 ,with 𝜖 = (4 − 𝑑)/2 , (9)

it is easy to express the renormalization constants 𝑍 in terms of anomalous dimensions 𝛾 order by
order in 𝑎𝑠 = (𝛼𝑠)/(4𝜋). Then one can extract the anomalous dimensions from the renormalization
constants in the single pole of 𝜖 :

𝑍 |1/𝜖 =
∞∑︁
𝑙=1

𝑎𝑙𝑠
1
𝑙 𝜖

𝛾(𝑙−1) . (10)

In the rest of this proceeding, we expand renormalization constants and anomalous dimensions in
the following form,

𝑍 =
∞∑︁
𝑙=0

𝑎𝑙𝑠𝑍
(𝑙), 𝛾 =

∞∑︁
𝑙=1

𝑎𝑙𝑠𝛾
(𝑙−1) . (11)

2. A general framework to renormalize the twist-two operators

When considering the off-shell OMEs with a twist-two operator insertion, equation (5) needs
to be extended, i.e. the physical operators 𝑂𝑞 and 𝑂𝑔 could mix with unknown gauge-variant (GV)

3
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operators under renormalization. This mixing was already pointed out by Gross and Wilczek in
the first calculation of singlet anomalous dimensions [20]. To find the unknown GV operators to
renormalize the twist-two operators, there is great progress in the literature [21–26]. However,
the problem is never completely solved. Recently, starting from a generalized BRST symmetry,
Falcioni and Herzog [27] proposed a method enabling the construction of the GV operators for
fixed 𝑛 to higher orders of strong coupling constants. It remains quite challenging to obtain high-𝑛
operators.

In [28], we proposed a new method that enables the determination of GV counterterms with
full-𝑛 dependence. We first explain the basic idea of the new method. By computing the off-
shell OMEs with the insertion of bare operators 𝑂B

𝑞 , 𝑂
B
𝑔 , and combing them according to the

renormalization procedure on the right-hand side of equation (5), we observed that the two-by-two
mixing matrix is not enough to make the right-hand side finite. It is then natural to introduce
some extra GV operators (counterterms) to cancel the remaining divergences. Therefore, the new
renormalization procedure reads

©­­«
𝑂𝑞

𝑂𝑔

𝑂𝐴𝐵𝐶

ª®®¬
R

=
©­­«
𝑍𝑞𝑞 𝑍𝑞𝑔 𝑍𝑞𝐴

𝑍𝑔𝑞 𝑍𝑔𝑔 𝑍𝑔𝐴

0 0 𝑍𝐴𝐴

ª®®¬
©­­«

𝑂𝑞

𝑂𝑔

𝑂𝐴𝐵𝐶

ª®®¬
B

+
©­­«
[𝑍𝑂]GV

𝑞

[𝑍𝑂]GV
𝑔

[𝑍𝑂]GV
𝐴

ª®®¬
B

, (12)

where we introduce the GV operator 𝑂𝐴𝐵𝐶 = 𝑂𝐴 +𝑂𝐵 +𝑂𝐶 with 𝑂𝐴, 𝑂𝐵, 𝑂𝐶 denoting the pure-
gluon, quark-gluon, and ghost-gluon GV operators respectively. At higher orders of 𝑎𝑠, in addition
to the GV operator 𝑂𝐴𝐵𝐶 , three GV counterterms [𝑍𝑂]GV

𝑞 , [𝑍𝑂]GV
𝑔 , [𝑍𝑂]GV

𝐴 are also required to
renormalize the physical twist-two operators. For GV counterterms, 𝑍 and 𝑂 are written together
for the reason that it becomes impossible to disentangle the renormalization constants 𝑍 from their
associated operators 𝑂 while retaining the complete dependence on all powers of 𝑛. Notice that
the subscript 𝑖 in GV counterterm [𝑍𝑂]GV

𝑖 is just a name with respect to the renormalization of 𝑂𝑖

operator. Each GV counterterm [𝑍𝑂]GV
𝑖 could involve pure-gluon, quark-gluon, and ghost-gluon

GV counterterms. The GV counterterms can be expanded formally as the following form

[𝑍𝑂]GV
𝑖 =

∞∑︁
𝑙

𝑎𝑙𝑠 [𝑍𝑂]GV, (𝑙)
𝑖

,with 𝑖 = 𝑞, 𝑔, 𝐴 . (13)

The GV operators or counterterms only start to contribute from specific orders of 𝑎𝑠,

𝑍𝑞𝐴 = O(𝑎2
𝑠), 𝑍𝑔𝐴 =O(𝑎𝑠), [𝑍𝑂]GV

𝑞 = O(𝑎3
𝑠), [𝑍𝑂]GV

𝑔 = O(𝑎2
𝑠),

𝑍𝐴𝐴 = O(𝑎0
𝑠), [𝑍𝑂]GV

𝐴 = O(𝑎𝑠) . (14)

Up to now, we know very little about the form of GV operator 𝑂𝐴𝐵𝐶 or counterterms [𝑍𝑂]GV
𝑖 .

In the following, we extract more information for them. As an example, it is sufficient to consider
the renormalization of the operator 𝑂𝑔:

𝑂R
𝑔 = 𝑍𝑔𝑞𝑂

B
𝑞 + 𝑍𝑔𝑔𝑂

B
𝑔 + 𝑍𝑔𝐴𝑂

B
𝐴𝐵𝐶 + [𝑍𝑂]GV

𝑔 . (15)

The idea is to insert the above equation into matrix elements with specific off-shell external states.
Due to the property of twist-two operators, it is sufficient to consider the following one-particle-
irreducible (1PI) OMEs with all-off-shell external states consisting of two particles of type 𝑗 plus

4
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Og Og Og

Figure 1: Sample 2-loop Feynman diagrams to determine the counterterm Feynman rules with 3 legs
stemming from [𝑍𝑂]GV, (2)

𝑔 .

𝑚 gluons,

⟨ 𝑗 |𝑂𝑔 | 𝑗 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, R
1PI = 𝑍 𝑗(

√︁
𝑍𝑔)𝑚

[
⟨ 𝑗 |(𝑍𝑔𝑞𝑂𝑞 + 𝑍𝑔𝑔𝑂𝑔)| 𝑗 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, B

1PI

]
+ 𝑍 𝑗(

√︁
𝑍𝑔)𝑚

[
𝑍𝑔𝐴 ⟨ 𝑗 |𝑂𝐴𝐵𝐶 | 𝑗 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, B

1PI + ⟨ 𝑗 | [𝑍𝑂]GV
𝑔 | 𝑗 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, B

1PI

]
. (16)

Here, 𝑗 denotes quarks(𝑞), gluons(𝑔), or ghosts(𝑐) and
√︁
𝑍 𝑗 is the corresponding field renormaliza-

tion constant. To make the extraction of (counterterm) Feynman rules transparent, we expand the
off-shell OMEs according to the number of loops 𝑙 and legs 𝑚 + 2,

⟨ 𝑗 |𝑂 | 𝑗 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚 =
∞∑︁
𝑙=1

[
⟨ 𝑗 |𝑂 | 𝑗 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, (𝑙), (𝑚)] 𝑎𝑙𝑠 𝑔𝑚𝑠 . (17)

Due to the hierarchy of GV operators (counterterms) shown in equation (14), one can extract
the GV (counterterm) Feynman rules by computing the off-shell OMEs order by order in the strong
coupling constant. For example, the Feynman rules for 𝑂𝐶 operator with two-ghost plus 𝑚 gluons
can be written in the following simple form,

𝑍
(1)
𝑔𝐴

⟨𝑐 |𝑂𝐶 |𝑐 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, (0), (𝑚)
1PI = −

[
⟨𝑐 |𝑂𝑔 |𝑐 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, (1), (𝑚), B

1PI

]
div

, (18)

where the subscript ’div’ is the pole part in dimensional regulator 𝜖 , and we only need to consider
one-loop OMEs. Similarly, the two-loop counterterm Feynman rules of [𝑍𝑂]GV, (2)

𝑔 with two-ghost
plus 𝑚 gluons can be written as:

⟨𝑐 | [𝑍𝑂]GV, (2)
𝑔 |𝑐 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, (0), (𝑚)

1PI = −
{[

⟨𝑐 |𝑂𝑔 |𝑐 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, (2), (𝑚), B
1PI

+
(
𝑍

(1)
𝑐 +

𝑚𝑍
(1)
𝑔

2
+ 𝑍

(1)
𝑔𝑔 − 𝛽0(𝑚 + 2)

2𝜖

)
⟨𝑐 |𝑂𝑔 |𝑐 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, (1), (𝑚), B

1PI

+
(
𝑍

(1)
𝑐 𝑍

(1)
𝑔𝐴

+
1
2
𝑚𝑍

(1)
𝑔 𝑍

(1)
𝑔𝐴

−
𝛽0𝑚𝑍

(1)
𝑔𝐴

2𝜖
+ 𝑍

(2)
𝑔𝐴

)
⟨𝑐 |𝑂𝐶 |𝑐 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, (0), (𝑚), B

1PI

+ 𝑍
(1)
𝑔𝐴

⟨𝑐 |𝑂𝐴𝐶 |𝑐 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, (1), (𝑚), B
1PI

+ 𝑍
(1)
𝑔

𝑠∑︁
𝑡=1

𝜉𝑡 𝑡 ⟨𝑐 |𝑂𝑔 |𝑐 + 𝑚 𝑔⟩𝜇1 · · ·𝜇𝑚, (1), (𝑚), (𝑡), B
1PI

]
div

}����
𝜉B→𝜉

, (19)

where 𝜉 is the gauge parameter with 𝜉 = 1 in Feynman gauge. Other (counterterm) Feynman
rules can also be written down similarly. We show some sample diagrams of determining two-loop

5
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OA

g, 2

Figure 2: Sample diagrams with the insertion of GV operator 𝑂𝐴 or two-loop GV counterterm [𝑍𝑂]GV,(2)
𝑔 ,

they enter the calculations of splitting functions starting from three-loop order.

counterterm Feynman rules in Fig. 1. We noticed that the framework shown above is general and
works for any number of loops and legs.

3. Computational methods

In the previous section, we presented a general framework to renormalize the physical twist-two
operators. The challenge of determining required GV (counterterm) Feynman rules is transformed
into the computations of off-shell multi-loop multi-leg OMEs. Upon acquiring these (counterterm)
Feynman rules, they can be inserted into multi-loop matrix elements involving two legs. By
computing the off-shell multi-loop two-leg OMEs with the insertion of physical operators as well as
GV (counterterm) operators, one can derive the anomalous dimensions or splitting functions to high
loop order. Some sample diagrams with the insertion of GV operator 𝑂𝐴 or two-loop counterterms
can be found in Fig. 2.

To keep the full-𝑛 dependence for the off-shell OMEs, we adopted a generation function
method first proposed in [29, 30]. The method sums the non-standard terms like (Δ · 𝑝)𝑛−1 into
linear propagators depending on a tracing parameter 𝑡. As an example,

(Δ · 𝑝)𝑛−1 →
∞∑︁
𝑛=1

(Δ · 𝑝)𝑛−1𝑡𝑛 =
𝑡

1 − 𝑡Δ · 𝑝 . (20)

We work in parameter-𝑡 space throughout and extract the 𝑛-space results at the final stages by
expanding the parameter 𝑡 around 𝑡 = 0. The computational steps follow a standard chain, including
generations of diagrams and unreduced amplitude, reducing the amplitude using integration-by-parts
identities [31–33], solving the master integrals by (canonical) differential equations [34, 35], and so
on. The computations were done with the help of different tools, for example, QGRAF [36], FORM [37],
Reduze 2 [38], FeynCalc [39, 40], Apart [41], MultivariateApart [42], Singular_pfd [43],
LiteRed [44], FIRE6 [45], Kira [46], CANONICA [47, 48], Libra [49, 50], FiniteFlow [51],
HarmonicSums [52–57], HPL [58] as well as a private code Finred by Andreas von Manteuffel
based on finite field sampling and rational reconstruction [51, 59, 60].

4. Results

With the methods presented above, in [28] we had determined the Feynman rules resulting
from operator 𝑂𝐴𝐵𝐶 to 𝑔2

𝑠 , as well as the counterterm Feynman rules resulting from counterterm

6
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Oq

Oq

Figure 3: Representative Feynman diagrams for 𝑁2
𝑓

contributions to the OME ⟨𝑞 |𝑂B
𝑞 |𝑞⟩ at four loops. The

first diagram contributes to the non-singlet anomalous dimension, while the second diagram contributes to
the pure-singlet anomalous dimension in the quark channel.

operator [𝑍𝑂]GV
𝑔 to 𝑎2

𝑠 𝑔𝑠, where 𝑎2
𝑠 is from 𝑍 and 𝑔𝑠 is from 𝑂. Similarly with the Feynman rules

for physical operators 𝑂𝑞, 𝑂𝑔, the Feynman rules for operator 𝑂𝐴𝐵𝐶 were found to involve only
multiple summations like ∑𝑛−3

𝑗=0 (Δ · 𝑝1)𝑛−3− 𝑗(Δ · 𝑝2) 𝑗 . However, the counterterm Feynman rules
at order 𝑎2

𝑠 𝑔𝑠 for [𝑍𝑂]GV
𝑔 exhibit a complicated pattern, which involve transcendental functions:

harmonic sums [61, 62] as well as generalized harmonic sums [63], for example

𝑆1,1 (1, 𝑧1 + 1; 𝑛) =
𝑛∑︁

𝑡1=1

1
𝑡1

𝑡1∑︁
𝑡2=1

(1 + 𝑧1)𝑡2
𝑡2

, with 𝑧1 =
Δ · 𝑝2
Δ · 𝑝1

. (21)

Based on the computations of off-shell OMEs, the above (counterterm) Feynman rules enable
us to determine the three-loop splitting functions for all channels in the unpolarized singlet sector.
In the non-singlet sector, the GV operators (counterterms) are absent, and the first three-loop
calculations based on off-shell OMEs were presented in [64]. We repeated the calculation in our
convention and found full agreement with them. The obtained three-loop singlet and non-singlet
splitting functions agree with the results [4, 5] extracted from forward deep inelastic scattering.

In [10], we found the same (counterterm) Feynman rules are enough to extract the four-loop
𝑞 → 𝑞 splitting functions. We determined the four-loop pure-singlet splitting functions involving
two closed quark loops for the first time in the same paper [10]. Some sample diagrams can be
found in Fig 3. By evaluating the corresponding anomalous dimensions with full-𝑛 dependence at
fixed-𝑛 values, we cross-validated our result against the fixed-𝑛 result up to 𝑛 = 20 shown in [12].

To go beyond the 𝑁2
𝑓

contributions, in [16] we computed the 𝑁 𝑓 𝐶
3
𝐹

contribution to four-loop
non-singlet splitting functions for the first time. Some sample Feynman diagrams can be found in
Fig. 4. The GV operators (counterterms) are not required in this case. The corresponding anomalous
dimension successfully passes the check against the results with fixed moments to 𝑛 = 16 [9].

All partially known splitting functions at four-loop order can be expressed solely in terms of
harmonic polylogarithms [65]. It will be interesting to see if we need generalized polylogarithms or
even special functions beyond generalized polylogarithms to express the full results at the four-loop
order.
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Figure 4: Sample Feynman diagrams for the 𝑁 𝑓 𝐶
3
𝐹

contribution to the four-loop, non-singlet OME with
two external quarks. The crossed circle represents the non-singlet operator 𝑂ns.

5. Conclusions

When considering the off-shell OMEs with a twist-two operator insertion, the physical operators
𝑂𝑞, 𝑂𝑔 mix with the priority unknown gauge-variant operators. We proposed a general framework
to systematically determine the full-𝑛 (counterterm) Feynman rules stemming from those gauge-
variant (counterterm) operators. The derived (counterterm) Feynman rules allow us to determine
the three-loop singlet splitting functions based on the off-shell operator matrix element method,
for the first time. The same (counterterm) Feynman rules also enable the determination of the
new result for four-loop pure-singlet splitting functions with two closed fermionic loops. We also
computed the first 𝑁 𝑓 𝐶

3
𝐹

contributions to the four-loop non-singlet splitting functions, where the
gauge-variant counterterms are not required.
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