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1. Introduction

Energy distribution in the high energy scattering plays an important role in probing the dynamics
of Quantum Chromodynamics (QCD) and understanding the general Lorentzian gauge theory. The
energy flows are dominated by the formation of jets, which are bunches of collimated hadrons
carry the dynamic information from the underlying quarks and gluons [1, 2]. To study QCD
scattering perturbatively, we must construct infrared and collinear safe (IRC) observables. One
famous example is the energy-energy correlator (EEC) [3–6], which characterizes the correlation
of energy deposits along two different directions.

In the 𝑒+𝑒− scattering, the definition of EEC is

EEC(𝜁) = 1
𝜎0

∑︁
𝑋

∫
𝑑𝜎𝑒+𝑒−→𝑋

∑︁
𝑏,𝑐∈𝑋

𝐸𝑎𝐸𝑏

𝑄2 𝛿(𝜁 − 1 − cos 𝜃𝑎𝑏
2

) . (1)

Here, 𝐸𝑎, 𝐸𝑏 are the energy of two final state particles measured in the center of mass frame and
𝜃𝑎𝑏 is the angle between them. The variable 𝜁 = (1 − cos 𝜃)/2 is related to the angle 𝜃 between
two calorimeters and 𝑄 is the total energy. On the other hand, EEC possesses an alternative
field-theoretical definition as the correlation function of two energy flow operators:

EEC(𝜁) = 8𝜋2

𝑞2𝜎0

∫
𝑑4𝑥 𝑒𝑖𝑞 ·𝑥13 ⟨Ω|𝐽𝜇 (𝑥1)E(𝑛2)E(𝑛4)𝐽𝜇 (𝑥3) |Ω⟩ , (2)

where 𝑛2 = (1, ®𝑛2) and 𝑛4 = (1, ®𝑛4) specify the directions of the calorimeters, 𝜁 =
(𝑛2 ·𝑛4)𝑞2

2(𝑛2 ·𝑞) (𝑛4 ·𝑞) ,
𝑞𝜇 = (𝑄, 0, 0, 0) is the total momentum, 𝐽𝜇 = 𝜓̄𝛾𝜇𝜓 is the electromagnetic current, and the energy
flow operator E(𝑛𝑖) is a detector time integral of the stress tensor 𝑇 (𝑥𝑖; 𝑛̄𝑖) ≡ 𝑇𝜇𝜈 (𝑥𝑖)𝑛̄𝜇𝑖 𝑛̄𝜈𝑖 :

E(𝑛𝑖) =
∞∫

−∞

𝑑 𝑛𝑖 ·𝑥𝑖
16

lim
𝑛̄𝑖·𝑥𝑖→∞

(𝑛̄𝑖 · 𝑥𝑖)2𝑇 (𝑥𝑖; 𝑛̄𝑖) . (3)

The presence of two equivalent definitions makes EEC an interesting observable that benefits from
both momentum space and position space techniques.

In the perturbation theory, EEC has end point divergences in the collinear limit 𝜁 → 0 and
back-to-back limit 𝜁 → 1, which is illustrated by the LO result

EEC(𝜁) = 𝛼𝑠

2𝜋
𝐶𝐹

3 − 2𝜁
4(1 − 𝜁)𝜁5

[
3𝜁 (2 − 3𝜁) + 2(2𝜁2 − 6𝜁 + 3) log(1 − 𝜁)

]
+ O(𝛼2

𝑠) . (4)

Away from these end points, the fixed order results are good approximations. Approaching the end
points, large logarithms make the fixed order results unreliable that requires resummation of them
to all orders in perturbation theory.

The focus of this talk is the back-to-back limit 𝜁 → 1 which is the classical configuration of
producing quark and anti-quark pair. Phenomenological application of the back-to-back includes
precision measurement of strong coupling constant [25] and extraction of TMD functions [26–28].
Unlike the collinear limit, both collinear and soft emissions produce large logarithms. It features
the famous Sudakov double logarithms

EEC(𝜁) ∼
∞∑︁
𝑛=1

2𝑛−1∑︁
𝑚=0

𝛼𝑛𝑠

(
𝑐𝑛,𝑚

log𝑚(1 − 𝜁)
1 − 𝜁

+ 𝑑𝑛,𝑚 log𝑚(1 − 𝜁) + O(1 − 𝜁)
)
, (5)
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where we have truncated to the Leading Power (LP) and the Next-to-Leading Power (NLP). At
LP, we can use Collins-Soper-Sterman (CSS) formalism [29] or the factorization formula from the
Soft-Collinear Effective Theory (SCET) [30]

EEC(𝜁) ∼ 1
2

∫
𝑑2®𝑘⊥

∫
𝑑2®𝑏⊥
(2𝜋)2 𝑒

−𝑖 ®𝑘⊥ · ®𝑏⊥𝐻 (𝑄)𝐽𝑞 (®𝑏⊥)𝐽 𝑞̄ (®𝑏⊥)𝑆(®𝑏⊥)𝛿
(
1 − 𝜁 −

®𝑘2
⊥

𝑄2

)
(6)

to resum the Sudakov logarithms in EEC, based on which the cutting-edge perturbative calculations
have achieved N4LL accuracy resummation [31].

However, it is not easy to extend the factorization analysis to the subleading powers. In CFT,
Korchemsky observed that the back-to-back limit is related to the double lightcone limit of the local
correlator via the Mellin representations [9]. Building upon this observation, we will introduce a
new method of resumming Sudakov logarithms in EEC systematically beyond LP. This exploits the
definition of EEC from the position space and uses techniques from modern conformal bootstrap
program.

Compared with the factorization formalism, though less intuitive, we find several novel aspects
of the position space techniques. First, we avoid IR divergences at all stages because the local
correlator ⟨𝐽𝜇 (𝑥1)𝑇 (𝑥2; 𝑛̄2)𝑇 (𝑥4; 𝑛̄4)𝐽𝜇 (𝑥3)⟩ is IR finite. Second, the conformal symmetry becomes
manifest (classically for QCD), which constrains (part of) the power corrections systematically. Last
but not least, ⟨𝐽𝜇 (𝑥1)𝑇 (𝑥2; 𝑛̄2)𝑇 (𝑥4; 𝑛̄4)𝐽𝜇 (𝑥3)⟩ makes the crossing symmetry (i.e. invariance under
the exchange of 𝑥1 and 𝑥3) manifest.

The procedure is summarized as follows. First, we elaborate on the connection between the
back-to-back limit and the double lightcone limit. In terms of operator product expansion (OPE),
the double lightcone limit is controlled by twist expansion and large spin expansion. In this way,
we decompose the Sudakov resummation in EEC into the RG of local operators (governed by
the anomalous dimensions) and the large spin resummation. Second, we make use of the twist
conformal blocks [32] to resum the logarithms from the large spin tails. The Casimir equation of
the conformal group plays an important role in obtaining TCB recursively. Further simplification
comes from the crossing symmetry, which relates the twist corrections (in the large spin limit) to
large spin corrections in the lower twists. We use the N = 4 super Yang-Mills (SYM) theory to
illustrate this idea and achieve the first Leading and Next-to-Leading Logarithmic resummation at
the NLP.

2. Position space techniques: Back-to-back v.s. double lightcone

To apply position space techniques to study Sudakov logarithms in the back-to-back limit, an
important first step is to identify the relevant kinematic region that gives rise to such terms in the
local IR finite correlators ⟨𝐽𝜇 (𝑥1)𝑇 (𝑥2; 𝑛̄2)𝑇 (𝑥4; 𝑛̄4)𝐽𝜇 (𝑥3)⟩ from (2). The trick is to choose a
frame where detectors are exactly back-to-back 𝑛2 = 𝑛̄4 and the total momentum 𝑞 acquires small
transverse component 𝑞2

⊥ ≪ 𝑞2 at the same time. From the Fourier factor 𝑒𝑖𝑞 ·𝑥13 , this corresponds
to the region |𝑥⊥13 |

2 ≫ 𝑥+13𝑥
−
13 in the position space EEC ⟨Ω|𝐽𝜇 (𝑥1)E(𝑛2)E(𝑛4)𝐽𝜇 (𝑥3) |Ω⟩.

The position space EEC is the null integrations of the correlator ⟨𝐽𝜇 (𝑥1)𝑇 (𝑥2; 𝑛̄2)𝑇 (𝑥4; 𝑛̄4)𝐽𝜇 (𝑥3)⟩
with respect to 𝑥2 and 𝑥4 at null infinity. As illustrated in Figure 1, the configuration |𝑥⊥13 |

2 ≫ 𝑥+13𝑥
−
13

means the lightcone singularities of 𝑥2
12 = 0 and 𝑥2

23 = 0 are close (compared with |𝑥⊥13 |) and pinch
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Figure 1: Penrose diagram for the double lightcone limit of the local correlator.

the integration contour of 𝑥2 (due to Wightman ordering). Therefore, we conclude that the dominant
contribution in the back-to back limit is from the double lightcone limit 𝑥2

12, 𝑥
2
23 → 0 of the local

correlator.
To avoid the complexity from the tensor structures, we take the N = 4 SYM as an example

where the supersymmetry relates the EEC to local four point function of scalar operators [33]:

EEC(𝜁) = 8𝜋2𝑄2

𝜁2

∏
𝑖=2,4

∫ ∞

−∞
𝑑 (𝑛𝑖 · 𝑥𝑖) lim

𝑛̄𝑖 ·𝑥𝑖→∞

(
𝑛̄𝑖 · 𝑥𝑖

2

)2
⟨O(𝑥1)O(𝑥2)O(𝑥3)O(𝑥4)⟩ . (7)

The functional form of the local correlator is constrained by the symmetry

⟨O(𝑥1)O(𝑥2)O(𝑥3)O(𝑥4)⟩dyn =
1

(2𝜋)4

𝑥4
13𝑥

4
24

(𝑥2
12𝑥

2
34)4

F (𝑢, 𝑣) , (8)

where we have subtracted the contribution from the protected operators and F is the function of
the conformal cross-ratios 𝑢 =

𝑥2
12𝑥

2
34

𝑥2
13𝑥

2
24
= 𝑧𝑧 , 𝑣 =

𝑥2
23𝑥

2
14

𝑥2
13𝑥

2
24
= (1 − 𝑧) (1 − 𝑧) . In the weak coupling limit

𝑎 =
𝑔2𝑁𝑐

4𝜋2 ≪ 1, F (𝑢, 𝑣) reads

F (𝑢, 𝑣) =
∞∑︁
𝑛=0

𝑎𝑛F (𝑛) (𝑢, 𝑣) = F (0) (𝑢, 𝑣) + 𝑢3

𝑣
Φ(𝑢, 𝑣) , (9)

where the function Φ(𝑢, 𝑣) = ∑
𝑛≥1 𝑎

𝑛Φ(𝑛) (𝑢, 𝑣) contains all the coupling-dependent information
and is crossing symmetric, i.e., Φ(𝑢, 𝑣) = Φ(𝑣, 𝑢). The full three-loop of Φ(𝑢, 𝑣) can be found
in [34, 35]. The double lightcone limit, in terms of the cross-ratios, is the limit 𝑢 → 0, 𝑣 → 0
or 𝑧 → 0, 𝑧 → 1. Upon expanding the perturbative results in the double lightcone limit, we have
explicitly checked that the logarithmic terms in Φ(𝑢, 𝑣) correctly produce the logarithmic terms
in the EEC at both LP and NLP, which confirms the expectation that the Sudakov limit of EEC
corresponds to the double lightcone limit of a local 4-point Minkowskian correlator (in the sense of
logarithmic enhancement). In addition, we find that the double logarithmic series 𝛼𝑛𝑠 log2𝑛−1(1− 𝜁)
comes from the single logarithmic series 𝛼𝑛𝑠 log𝑛 𝑢 log𝑛 𝑣.

3. Twist expansion and large spin expansion

It is known that the OPE in the lightcone limit is organized as the twist expansion. Suppose
we consider the lightcone limit 𝑥2

12 → 0, the most singular contribution in the 1, 2-OPE channel are

4
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the lowest twist 𝜏 ≡ Δ− ℓ operators. However, single local operator contribution in the 1, 2-channel
cannot produce the singularities in the other lightcone limit 𝑥2

13 → 0. In other words, the 𝑥2
13 → 0

singularities come from an infinite sum of operators with different spins at a given twist.
In CFT, operators are classified into two categories: primary operators and descendant op-

erators, where descendants are the total derivatives of primary operators. The contributions of
descendants in the OPE is completely determined by their associated primary operators. As a
consequence, the correlator ⟨O(𝑥1)O(𝑥2)O(𝑥3)O(𝑥4)⟩ admits the superconformal block expansion

F (𝑢, 𝑣) =
∑︁
Δ

∑︁
even ℓ

𝑎𝜏,ℓ𝐺Δ+4,ℓ (𝑢, 𝑣) , (10)

where the sums are over all superconformal primary operators with dimension Δ, spin ℓ and 𝑎𝜏,ℓ are
the OPE coefficients. The functions 𝐺Δ,ℓ are called conformal blocks and have analytic expressions
in 4𝑑 [36]

𝐺Δ,ℓ (𝑢, 𝑣) =
𝑧𝑧

𝑧 − 𝑧
[𝑘Δ−ℓ−2(𝑧)𝑘Δ+ℓ (𝑧) − (𝑧 ↔ 𝑧)] , (11)

where 𝑘𝛽 (𝑥) = 𝑥𝛽/2
2𝐹1( 𝛽2 ,

𝛽

2 , 𝛽; 𝑥). They are eigenfunctions of the quadratic Casimir operator

D2 = 𝑧2((1 − 𝑧)𝜕2
𝑧 − 𝜕𝑧) +

(𝑑 − 2)𝑧𝑧
𝑧 − 𝑧

(1 − 𝑧)𝜕𝑧 + (𝑧 ↔ 𝑧) (12)

with eigenvalues 1
2 (Δ(Δ − 4) + ℓ(ℓ + 2)) [37].

The analytic expression of 4𝑑 conformal block is a good example to demonstrate the idea of twist
expansion and large spin expansion in the double lightcone limit. Expanded in the 𝑧 → 0, 𝑧 → 1
limit, the conformal block is𝐺Δ,ℓ (𝑧, 𝑧) ∼ 𝑧𝜏/2 log(1− 𝑧) ,where high twist causes suppression in the
𝑧 → 0 limit and the logarithmic divergence in (1 − 𝑧) is the effect of summing over infinitely many
operators because each conformal block contains infinitely many descendants in the corresponding
conformal family. However, physical correlators can exhibit more severe divergences than a single
logarithm in 1 − 𝑧, called enhanced divergences1, necessitating contributions from infinitely many
primary operators at large spin.

Noticed that there is a shift Δ → Δ + 4 in the expansion (10) caused by superconformal
symmetry, and we denote G𝜏,ℓ (𝑧, 𝑧) = 𝐺Δ+4,ℓ (𝑢, 𝑣) for later convenience. The perturbative ex-
pansion enters the block decomposition via the twist 𝜏 = 𝜏0 + ∑∞

𝑛=1 𝑎
𝑛𝛾

(𝑛)
𝜏0,ℓ

and OPE coefficient
𝑎𝜏,ℓ =

∑∞
𝑛=0 𝑎

𝑛𝑎
(𝑛)
𝜏0,ℓ

, where 𝜏0 is the classical twist and
∑
𝑛≥1 𝑎

𝑛𝛾
(𝑛)
𝜏0,ℓ

= 𝛾𝜏,ℓ is the anomalous
dimension. In particular, after expanding with respect to the anomalous dimension 𝛾𝜏,ℓ in the
conformal blocks

G𝜏,ℓ =

∞∑︁
𝑛=0

1
𝑛!
𝛾𝑛𝜏,ℓ𝜕

𝑛
𝜏0G𝜏0,ℓ , (13)

we find that 𝜕𝑛𝜏0G𝜏0,ℓ contains at most log𝑛 𝑢 in the small 𝑢 limit. Therefore, we identify that log 𝑢
is generated from the renormalization of operators in the twist expansion.

The origin of log 𝑣 is hidden in the logarithmic growth of anomalous dimension in the large
spin limit 𝛾𝜏,ℓ ∼ Γcusp log ℓ, where the coefficient Γcusp is known as the cusp anomalous dimension.
After summing over the spin, log ℓ is converted into log 𝑣. However, carrying out the sum is
directly technically not easy. In the next section, we employ the tricks developed in the large spin
perturbation theory to calculate the logarithms in 𝑣.

1Examples include power divergences (1 − 𝑧)𝑚<0 and powers of logarithms [log(1 − 𝑧)]𝑘≥2.
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4. Large spin perturbation theory

In this section, we will describe how to use the Large Spin Perturbation Theory [32, 38–44] to
systematically handle the enhanced divergences at the leading twist. The starting point is the free
correlator F (0) , which can be organized as a sum over classical twists

F (0) (𝑧, 𝑧) =
∑︁

𝜏0=2,4,...
𝐻𝜏0 (𝑧, 𝑧) , where 𝐻𝜏0 (𝑧, 𝑧) =

∞∑︁
ℓ=0

⟨𝑎 (0)
𝜏0,ℓ

⟩G𝜏0,ℓ (𝑧, 𝑧) , (14)

Each 𝐻𝜏0 (𝑧, 𝑧) contains huge degeneracy over spins and is known as a twist conformal block (TCB).
In an interacting theory, the twist degeneracies are lifted by the anomalous dimensions and the free
OPE coefficients receive quantum corrections. This leads to the modifications of 𝐻𝜏0 (𝑧, 𝑧) with
the following form:

∑∞
ℓ=0⟨𝑎

(0)
𝜏0,ℓ

⟩𝜅𝜏0 (ℓ)G𝜏0,ℓ (𝑧, 𝑧) .Performing the sum over spin explicitly with a
general 𝜅𝜏0 (ℓ) is extremely challenging. However, to capture the feature of large spin tails, it is
sufficient to expand 𝜅𝜏0 (ℓ) in the large ℓ limit. There is an equivalent expansion of 𝜅𝜏0 (ℓ) around
large conformal spins 𝐽2

𝜏,ℓ
= (ℓ + 𝜏

2 ) (ℓ + 𝜏
2 − 1): 𝜅𝜏0 (ℓ) =

∑∞
𝑚=0

∑𝑁
𝑖=0

𝐾𝑚,𝑖

𝐽2𝑚
𝜏̃0 ,ℓ

log𝑖 𝐽2
𝜏̃0,ℓ

.Here we

introduce shifted twists 𝜏0 = 𝜏0 + 4 to take into account the dimension shift in the decomposition
(10). An interesting feature for using the conformal spin is that only even negative powers appear
in the expansion. Therefore, the correlator should be expanded in terms of a more general class of
TCBs which accommodate large spin suppression and the logarithmic enhancement

𝐻
(𝑚,𝑖)
𝜏0 (𝑧, 𝑧) =

∑︁
ℓ

𝑎
(0)
𝜏0,ℓ

log𝑖 𝐽2
𝜏̃0,ℓ

𝐽2𝑚
𝜏̃0,ℓ

G𝜏0,ℓ (𝑧, 𝑧) . (15)

From the conformal block decomposition (10), the leading twist expansion of F (𝑛) up to NLL
accuracy reads

F (𝑛) = 𝑧3
∑︁

even ℓ
𝑎
(0)
2,ℓ

{ (
𝛾
(1)
2,ℓ

)𝑛
2𝑛𝑛!

𝐿𝑛𝑧 +

(
𝛾
(1)
2,ℓ

)𝑛−1
𝐿𝑛−1
𝑧

2𝑛−1(𝑛 − 1)!


𝑎
(1)
2,ℓ

𝑎
(0)
2,ℓ

+ (𝑛 − 1)
𝛾
(2)
2,ℓ

𝛾
(1)
2,ℓ

+
𝛾
(1)
2,ℓ 𝜕ℓ

2


}
𝑘2ℓ+6(𝑧) + · · · ,

(16)
where we denote the logarithms as log(𝑥) = 𝐿𝑥 to lighten the notation. Expanded the needed
perturbative data [8, 45, 46] in terms of 1/𝐽6,ℓ , we organize the correlator in terms of TCBs

F (𝑛) =
𝐿𝑛𝑧

2𝑛𝑛!

(
𝑛∑︁
𝑖=0

𝑛!(2𝛾𝐸)𝑖
𝑖!(𝑛 − 𝑖)!𝐻

(0,𝑛−𝑖)
2 + 𝑛

3

𝑛−1−𝑖∑︁
𝑖=0

(𝑛 − 1)!(2𝛾𝐸)𝑖
𝑖!(𝑛 − 1 − 𝑖)! 𝐻

(1,𝑛−1−𝑖)
2 + · · ·

)
, (17)

where, up to NLP in the large spin limit, only two kinds of TCBs 𝐻 (0,𝑖)
2 and 𝐻

(1,𝑖)
2 appear.

The trick to calculate the enhanced divergences in TCBs with logarithms is to make use of
the recursion relations and analytic continuation [32, 46]. The conformal blocks G𝜏0,ℓ satisfy the
shifted Casimir equation with the eigenvalues being the conformal spins

C𝜏̃0G𝜏0,ℓ (𝑧, 𝑧) = 𝐽2
𝜏̃0,ℓ

G𝜏0,ℓ (𝑧, 𝑧) , (18)

where C𝜏 = D2 + 1
4𝜏(2𝑑 − 𝜏 − 2) is the shifted conformal Casimir. This leads to the recursion

relations for TCBs
𝐻

(𝑚,𝑖)
𝜏0 (𝑧, 𝑧) = C𝜏̃0𝐻

(𝑚+1,𝑖)
𝜏0 (𝑧, 𝑧) . (19)
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In 4𝑑, the TCBs take a factorized form when we ignoring the regular part in the 𝑧 → 1 limit

𝐻
(𝑚,𝑖)
𝜏0 (𝑧, 𝑧) =

𝑧 𝑘 𝜏̃0−2(𝑧)
𝑧 − 𝑧

𝐻̄
(𝑚,𝑖)
𝜏0 (𝑧) , (20)

and the recursion relation (19) becomes

𝐻̄
(𝑚,𝑖)
𝜏0 (𝑧) = 𝐷̄𝐻̄

(𝑚+1,𝑖)
𝜏0 (𝑧) , where 𝐷̄ = 𝑧2(1 − 𝑧) 𝑑

2

𝑑𝑧2 − 𝑧(2 − 𝑧) 𝑑
𝑑𝑧

+ 2 − 𝑧 . (21)

We start with 𝐻̄
(0,0)
2 (𝑧) in which sum can be explicitly done

𝐻̄
(0,0)
2 (𝑧) = 𝑧2(2 − 𝑧)

2(1 − 𝑧) + 𝑧 log(1 − 𝑧) = 1
2𝜖

+ regular terms . (22)

Here, we define 𝜖 = 1 − 𝑧 and emphasize the enhanced divergences in the 𝜖 expansion. Repeatedly
acting 𝐷̄ on 𝐻̄

(0,0)
2 (𝑧) gives 𝐻̄

(𝑚,0)
𝜏0 (𝑧) at negative integer 𝑚. The first few terms in small 𝜖 for

negative integer 𝑚 are given by (3.37) of [46]

𝐻̄
(𝑚,0)
2 (𝑧) =1

2
𝜖𝑚−1Γ(1 − 𝑚)2 + 1

6
𝑚

(
2𝑚2 − 6𝑚 + 1

)
𝜖𝑚Γ(−𝑚)2 + · · · . (23)

From the generic negative integer expression, we analytic continue in 𝑚 and expanded around 𝑚 = 0
and 𝑚 = 1 to obtain 𝐻̄

(0,𝑖)
2 (𝜖) and 𝐻̄

(1,𝑖)
2 (𝜖). Substituting in the TCBs, we obtain F (𝑛) at LP in 𝑧

and NLP in 1 − 𝑧

F (𝑛) (𝑧, 𝑧) = (−1)𝑛𝑧3

2𝑛+1𝑛!
𝐿𝑛𝑧 𝐿

𝑛
𝜖

[
1 − 𝜖

𝜖
+ 2𝑛

3𝐿 𝜖
+ 1
𝐿𝑧

+ · · ·
]
+ O(𝑧4) , (24)

5. Power corrections to EEC in N = 4 SYM

The NLP correction in EEC involves both the large spin power correction in the leading twist
and the twist corrections in the large spin limit. The former is addressed using large spin perturbation
theory in the previous section, while extracting the latter requires the dynamical information about
next-leading twists. Remarkably, the crossing symmetry Φ(𝑢, 𝑣) = Φ(𝑣, 𝑢) connects these two
seemingly independent contributions. Using F (𝑛) (𝑧, 𝑧) = 𝑣

𝑢3Φ
(𝑛) (𝑢, 𝑣), we get the NLL prediction

for Φ(𝑛) at NLP in the double lightcone limit

Φ(𝑛) (𝑢, 𝑣) = (−1)𝑛
2𝑛𝑛!

𝐿𝑛𝑢𝐿
𝑛
𝑣

{
1
2
+ (𝑢 + 𝑣) +

[(
𝑛 + 1

2
𝑢 + 𝑛

3
𝑣

)
1
𝐿𝑣

+ (𝑢 ↔ 𝑣)
]
+ · · ·

}
, 𝑛 > 1 ,

which agrees with the perturbative results up to three loops.
Now, we can transform the double lightcone limit of Φ(𝑢, 𝑣) to the back-to-back limit of

EEC(𝜁) based on the position space definition (2). After detector integration, we obtain

EEC(𝑛>1) =
(−1)𝑛

2𝑛 (𝑛 − 1)!

[
1

2𝑦

(
𝐿2𝑛−1
𝑦 + · · ·

)
+

(
𝑛

2𝑛 − 1
𝐿2𝑛−1
𝑦 + 7𝑛 − 5

12
𝐿2𝑛−2
𝑦 + · · ·

)
+ · · ·

]
, (25)

where 𝑦 = 1 − 𝜁 , which is in full agreement with the back-to-back limit expansion of full theory
calculation up to 𝑛 = 3 in [47].
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EEC Back-to-Back Limit Resummation

Figure 2: EEC as a function of 𝜃 in the back-to-back limit. We use 𝑔2/(4𝜋) = 0.118 to mimic the QCD
strong coupling at Z pole. The dashed line refers to LP resummed to NLL, with the inclusion of NLP terms
up to NNLO (𝑛 ≤ 3).

After supplying the one-loop EEC to fix the constant at NLP, we can summing over 𝑛 explicitly
and obtain the following NLL formula at LP and NLP

EEC(𝑦) = −
𝑎𝐿𝑦𝑒

−
𝑎𝐿2

𝑦

2

4𝑦
− 1

4

[√︂
𝜋

2
√
𝑎 erf

(√︂
𝑎

2
𝐿𝑦

)
+ 𝑎𝐿𝑦𝑒

−
𝑎𝐿2

𝑦

2

]
+ 𝑎

48
(7𝑎𝐿2

𝑦−4)𝑒−
𝑎𝐿2

𝑦

2 + 𝑎

12
+· · · ,

(26)
where erf is the error function erf (𝑥) = 2√

𝜋

∫ 𝑥
0 𝑒−𝑡

2
𝑑𝑡. We plot the N = 4 EEC in the back-to-back

limit to illustrate the importance of NLP resummation in Figure 2. It can be seen that the LL and
NLL series at NLP leads to substantial corrections for not too large 𝜃.

6. Discussion

In this work, we have proposed a new method to resum Sudakov logarithms in EEC based on
double lightcone OPE. In this method, the power corrections in the Sudakov region come from twist
expansion and infinite spin expansion. Therefore, the Sudakov resummation is via the standard
renormalization of local operators and the large spin summation with twist conformal blocks. In
addition, we find crossing symmetry plays an important role in simplifying the calculation by
relating higher twist information to the lower twist.

Our results motivates several future research directions. First of all, it is interesting to apply the
same techniques to the QCD case, where one must deal with local correlators consisting of spinning
local operators. The analytic results of EEC in QCD is available up to NLO recently [48–50],
while the four point function of electromagnetic currents in QCD has also been computed at one
loop [51]. We have checked that the lightcone OPE and the large spin perturbation theory can
correctly predict the double lightcone limit of the one-loop electromagnetic currents correlator.
Secondly, incorporating the running coupling effect into this method is important in the non-
conformal theories, as it enters the NLL series and beyond in QCD. Thirdly, one can look forward
to the generalization to more observables and a better comprehension the role of large spin physics
and crossing symmetry in other conventional QCD event shapes.

8



P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
0
6
1

Power corrections to EEC meets conformal bootstrap Hua Xing Zhu

References

[1] G. Hanson, G. S. Abrams, A. Boyarski, M. Breidenbach, F. Bulos, W. Chinowsky, G. J. Feld-
man, C. E. Friedberg, D. Fryberger and G. Goldhaber, et al. Phys. Rev. Lett. 35 (1975),
1609-1612 doi:10.1103/PhysRevLett.35.1609

[2] G. F. Sterman and S. Weinberg, Phys. Rev. Lett. 39 (1977), 1436
doi:10.1103/PhysRevLett.39.1436

[3] C. L. Basham, L. S. Brown, S. D. Ellis and S. T. Love, Phys. Rev. Lett. 41 (1978), 1585
doi:10.1103/PhysRevLett.41.1585

[4] C. L. Basham, L. S. Brown, S. D. Ellis and S. T. Love, Phys. Rev. D 17 (1978), 2298
doi:10.1103/PhysRevD.17.2298

[5] C. L. Basham, L. S. Brown, S. D. Ellis and S. T. Love, Phys. Lett. B 85 (1979), 297-299
doi:10.1016/0370-2693(79)90601-4

[6] C. L. Basham, L. S. Brown, S. D. Ellis and S. T. Love, Phys. Rev. D 19 (1979), 2018
doi:10.1103/PhysRevD.19.2018

[7] L. J. Dixon, I. Moult and H. X. Zhu, Phys. Rev. D 100 (2019) no.1, 014009
doi:10.1103/PhysRevD.100.014009 [arXiv:1905.01310 [hep-ph]].

[8] M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, JHEP 01 (2021), 128
doi:10.1007/JHEP01(2021)128 [arXiv:1905.01311 [hep-th]].

[9] G. P. Korchemsky, JHEP 01 (2020), 008 doi:10.1007/JHEP01(2020)008 [arXiv:1905.01444
[hep-th]].

[10] H. Chen, I. Moult, X. Zhang and H. X. Zhu, Phys. Rev. D 102 (2020) no.5, 054012
doi:10.1103/PhysRevD.102.054012 [arXiv:2004.11381 [hep-ph]].

[11] H. Chen, I. Moult and H. X. Zhu, Phys. Rev. Lett. 126 (2021) no.11, 112003
doi:10.1103/PhysRevLett.126.112003 [arXiv:2011.02492 [hep-ph]].

[12] X. L. Li, X. Liu, F. Yuan and H. X. Zhu, [arXiv:2308.10942 [hep-ph]].

[13] Y. Li, I. Moult, S. S. van Velzen, W. J. Waalewijn and H. X. Zhu, Phys. Rev. Lett. 128 (2022)
no.18, 182001 doi:10.1103/PhysRevLett.128.182001 [arXiv:2108.01674 [hep-ph]].

[14] M. Jaarsma, Y. Li, I. Moult, W. Waalewijn and H. X. Zhu, JHEP 06 (2022), 139
doi:10.1007/JHEP06(2022)139 [arXiv:2201.05166 [hep-ph]].

[15] P. T. Komiske, I. Moult, J. Thaler and H. X. Zhu, Phys. Rev. Lett. 130 (2023) no.5, 051901
doi:10.1103/PhysRevLett.130.051901 [arXiv:2201.07800 [hep-ph]].

[16] J. Holguin, I. Moult, A. Pathak and M. Procura, Phys. Rev. D 107 (2023) no.11, 114002
doi:10.1103/PhysRevD.107.114002 [arXiv:2201.08393 [hep-ph]].

9



P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
0
6
1

Power corrections to EEC meets conformal bootstrap Hua Xing Zhu

[17] H. Chen, I. Moult, J. Thaler and H. X. Zhu, JHEP 07 (2022), 146
doi:10.1007/JHEP07(2022)146 [arXiv:2205.02857 [hep-ph]].

[18] L. Ricci and M. Riembau, Phys. Rev. D 106 (2022) no.11, 114010
doi:10.1103/PhysRevD.106.114010 [arXiv:2207.03511 [hep-ph]].

[19] X. Liu and H. X. Zhu, Phys. Rev. Lett. 130 (2023) no.9, 9
doi:10.1103/PhysRevLett.130.091901 [arXiv:2209.02080 [hep-ph]].

[20] H. Y. Liu, X. Liu, J. C. Pan, F. Yuan and H. X. Zhu, Phys. Rev. Lett. 130 (2023) no.18, 18
doi:10.1103/PhysRevLett.130.181901 [arXiv:2301.01788 [hep-ph]].

[21] E. Craft, K. Lee, B. Meçaj and I. Moult, [arXiv:2210.09311 [hep-ph]].

[22] C. Andres, F. Dominguez, R. Kunnawalkam Elayavalli, J. Holguin, C. Marquet and
I. Moult, Phys. Rev. Lett. 130 (2023) no.26, 262301 doi:10.1103/PhysRevLett.130.262301
[arXiv:2209.11236 [hep-ph]].

[23] C. Andres, F. Dominguez, J. Holguin, C. Marquet and I. Moult, JHEP 09 (2023), 088
doi:10.1007/JHEP09(2023)088 [arXiv:2303.03413 [hep-ph]].

[24] K. Devereaux, W. Fan, W. Ke, K. Lee and I. Moult, [arXiv:2303.08143 [hep-ph]].

[25] D. de Florian and M. Grazzini, Nucl. Phys. B 704 (2005), 387-403
doi:10.1016/j.nuclphysb.2004.10.051 [arXiv:hep-ph/0407241 [hep-ph]].

[26] A. Gao, H. T. Li, I. Moult and H. X. Zhu, Phys. Rev. Lett. 123 (2019) no.6, 062001
doi:10.1103/PhysRevLett.123.062001 [arXiv:1901.04497 [hep-ph]].

[27] H. T. Li, I. Vitev and Y. J. Zhu, JHEP 11 (2020), 051 doi:10.1007/JHEP11(2020)051
[arXiv:2006.02437 [hep-ph]].

[28] H. T. Li, Y. Makris and I. Vitev, Phys. Rev. D 103 (2021) no.9, 094005
doi:10.1103/PhysRevD.103.094005 [arXiv:2102.05669 [hep-ph]].

[29] J. C. Collins and D. E. Soper, Nucl. Phys. B 193 (1981), 381 [erratum: Nucl. Phys. B 213
(1983), 545] doi:10.1016/0550-3213(81)90339-4

[30] I. Moult and H. X. Zhu, JHEP 08 (2018), 160 doi:10.1007/JHEP08(2018)160
[arXiv:1801.02627 [hep-ph]].

[31] C. Duhr, B. Mistlberger and G. Vita, Phys. Rev. Lett. 129 (2022) no.16, 162001
doi:10.1103/PhysRevLett.129.162001 [arXiv:2205.02242 [hep-ph]].

[32] L. F. Alday, Phys. Rev. Lett. 119 (2017) no.11, 111601 doi:10.1103/PhysRevLett.119.111601
[arXiv:1611.01500 [hep-th]].

[33] G. P. Korchemsky and E. Sokatchev, JHEP 12 (2015), 133 doi:10.1007/JHEP12(2015)133
[arXiv:1504.07904 [hep-th]].

10



P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
0
6
1

Power corrections to EEC meets conformal bootstrap Hua Xing Zhu

[34] B. Eden, P. Heslop, G. P. Korchemsky and E. Sokatchev, Nucl. Phys. B 862 (2012), 193-231
doi:10.1016/j.nuclphysb.2012.04.007 [arXiv:1108.3557 [hep-th]].

[35] J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington and V. A. Smirnov, JHEP 08 (2013),
133 doi:10.1007/JHEP08(2013)133 [arXiv:1303.6909 [hep-th]].

[36] F. A. Dolan and H. Osborn, Nucl. Phys. B 599 (2001), 459-496 doi:10.1016/S0550-
3213(01)00013-X [arXiv:hep-th/0011040 [hep-th]].

[37] F. A. Dolan and H. Osborn, Nucl. Phys. B 678 (2004), 491-507
doi:10.1016/j.nuclphysb.2003.11.016 [arXiv:hep-th/0309180 [hep-th]].

[38] L. F. Alday and J. M. Maldacena, JHEP 11 (2007), 019 doi:10.1088/1126-6708/2007/11/019
[arXiv:0708.0672 [hep-th]].

[39] A. L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, JHEP 12 (2013), 004
doi:10.1007/JHEP12(2013)004 [arXiv:1212.3616 [hep-th]].

[40] Z. Komargodski and A. Zhiboedov, JHEP 11 (2013), 140 doi:10.1007/JHEP11(2013)140
[arXiv:1212.4103 [hep-th]].

[41] L. F. Alday and A. Bissi, JHEP 10 (2013), 202 doi:10.1007/JHEP10(2013)202
[arXiv:1305.4604 [hep-th]].

[42] L. F. Alday, A. Bissi and T. Lukowski, JHEP 11 (2015), 101 doi:10.1007/JHEP11(2015)101
[arXiv:1502.07707 [hep-th]].

[43] L. F. Alday and A. Zhiboedov, JHEP 06 (2016), 091 doi:10.1007/JHEP06(2016)091
[arXiv:1506.04659 [hep-th]].

[44] L. F. Alday and A. Zhiboedov, JHEP 04 (2017), 157 doi:10.1007/JHEP04(2017)157
[arXiv:1510.08091 [hep-th]].

[45] F. A. Dolan and H. Osborn, Annals Phys. 321 (2006), 581-626 doi:10.1016/j.aop.2005.07.005
[arXiv:hep-th/0412335 [hep-th]].

[46] J. Henriksson and T. Lukowski, JHEP 02 (2018), 123 doi:10.1007/JHEP02(2018)123
[arXiv:1710.06242 [hep-th]].

[47] J. M. Henn, E. Sokatchev, K. Yan and A. Zhiboedov, Phys. Rev. D 100 (2019) no.3, 036010
doi:10.1103/PhysRevD.100.036010 [arXiv:1903.05314 [hep-th]].

[48] L. J. Dixon, M. X. Luo, V. Shtabovenko, T. Z. Yang and H. X. Zhu, Phys. Rev. Lett. 120 (2018)
no.10, 102001 doi:10.1103/PhysRevLett.120.102001 [arXiv:1801.03219 [hep-ph]].

[49] M. X. Luo, V. Shtabovenko, T. Z. Yang and H. X. Zhu, JHEP 06 (2019), 037
doi:10.1007/JHEP06(2019)037 [arXiv:1903.07277 [hep-ph]].

[50] J. Gao, V. Shtabovenko and T. Z. Yang, JHEP 02 (2021), 210 doi:10.1007/JHEP02(2021)210
[arXiv:2012.14188 [hep-ph]].

11



P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
0
6
1

Power corrections to EEC meets conformal bootstrap Hua Xing Zhu

[51] D. Chicherin, J. M. Henn, E. Sokatchev and K. Yan, JHEP 02 (2021), 053
doi:10.1007/JHEP02(2021)053 [arXiv:2001.10806 [hep-th]].

12


	Introduction
	Position space techniques: Back-to-back v.s. double lightcone
	Twist expansion and large spin expansion
	Large spin perturbation theory
	Power corrections to EEC in Lg SYM
	Discussion

