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1. Introduction & Motivation

The study of high-energy photon-photon processes in 𝑒+𝑒− and 𝑒-𝑝 collisions has a history
of over thirty years. In the last two decades, the advent of the Large Hadron Collider (LHC) has
propelled research in this domain, thanks to its extended center-of-mass energies. The LHC’s
multi-TeV energies and high-luminosity beams, capable of accelerating heavy ions with charges up
to 𝑍 = 82 for lead (Pb) ions, have led to novel measurements of 𝛾𝛾-collisions in ultraperipheral
collisions (UPCs) involving proton-proton (p-p), proton-nucleus (p-A), and nucleus-nucleus (A-A)
interactions [1]. One of the fundamental processes contributing only through quantum corrections
is light-by-light scattering. At the leading order, the cross section is of O(𝛼4) through one-loop box
Feynman diagrams. At the next-to-leading order, we need to calculate two-loop box diagrams.

This article discusses the analytic computation of higher-order corrections to light-by-light
scattering in Pb-Pb collisions. The electromagnetic field of any charged particle accelerated at
high energies can be approximated in the equivalent photon approximation (EPA) [2] as a flux of
quasi-real photons whose intensity is proportional to the square of the electric charge, 𝑍2. This
𝑍2 photon-flux boost results in 𝛾𝛾 cross sections being significantly enhanced, by factors of up to
𝑍4 ≈ 50×106 for Pb-Pb, with respect to p-p. Among various photon-fusion processes [3], we focus
on 𝛾𝛾 → 𝛾𝛾. This process has recently been observed by ATLAS [4]. It is intriguing not only in
the Standard Model (SM) but also in probing physics beyond the SM.

So far, theoretical studies of photon-photon physics in UPCs at RHIC, LHC, and FCC have
primarily used dedicated Monte Carlo (MC) event generators, with a subset of selected physical
processes previously coded at leading-order (LO) accuracy. The automated event generation of
arbitrary exclusive final states produced via photon fusion in UPCs of protons and/or nuclei,
𝐴𝐵 → 𝐴 X 𝐵, has been implemented in the gamma-UPC code [1]. Cross sections can be calculated
in the EPA using 𝛾 fluxes derived both from electric dipole and charge form factors. In addition,
the code has hadronic survival probabilities. In the EPA framework, the exclusive production cross
section of a final state X via photon fusion, in a 𝛾𝛾 UPC of hadrons A and B, factorizes into a
product of the elementary cross section at a given centre of mass energy, 𝜎𝛾𝛾→𝑋 (𝑊𝛾𝛾), convolved
with the two-photon differential distribution of the colliding beams. The elementary cross section
consists solely of virtual corrections, and this talk primarily focuses on their analytic computation.

2. Two-loop amplitudes for light-by-light scattering

We calculate the two-loop amplitudes for light-by-light scattering analytically, including mas-
sive corrections arising from the internal propagators. Two-loop QCD and QED corrections were
previously studied in the ultra-relativistic limit [5], where they were found to be small in that
limit. Light-by-light scattering was also investigated in supersymmetric QED [6]. The two-loop
integrals for these corrections with massive internal propagators were studied in [7], revealing the
complications in analytic computations due to the presence of massive propagators.

The process of interest can be expressed as:

𝛾(𝑝1, 𝜆1) + 𝛾(𝑝2, 𝜆2) + 𝛾(𝑝3, 𝜆3) + 𝛾(𝑝4, 𝜆4) → 0, (1)
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where all the momenta 𝑝𝑖 of the photons are incoming, and their helicities are denoted as 𝜆𝑖 . The
amplitude is expressed as:

M =

(
4∏
𝑖=1

𝜀𝜆𝑖 ,𝜇𝑖 (𝑝𝑖)
)
M𝜇1𝜇2𝜇3𝜇4 (𝑝1, 𝑝2, 𝑝3, 𝑝4). (2)

The Lorentz decomposition of the scattering tensor M𝜇1𝜇2𝜇3𝜇4 is given as (cf. eq.(3.3) in [6]):

M𝜇1𝜇2𝜇3𝜇4 =𝐴1𝑔
𝜇1𝜇2𝑔𝜇3𝜇4 + 𝐴2𝑔

𝜇1𝜇3𝑔𝜇2𝜇4 + 𝐴3𝑔
𝜇1𝜇4𝑔𝜇2𝜇3

+
3∑︁

𝑗1, 𝑗2=1
(𝐵1

𝑗1 𝑗2
𝑔𝜇1𝜇2 𝑝

𝜇3
𝑗1
𝑝
𝜇4
𝑗2
+ 𝐵2

𝑗1 𝑗2
𝑔𝜇1𝜇3 𝑝

𝜇2
𝑗1
𝑝
𝜇4
𝑗2
+ 𝐵3

𝑗1 𝑗2
𝑔𝜇1𝜇4 𝑝

𝜇2
𝑗1
𝑝
𝜇3
𝑗2

+ 𝐵4
𝑗1 𝑗2

𝑔𝜇2𝜇3 𝑝
𝜇1
𝑗1
𝑝
𝜇4
𝑗2
+ 𝐵5

𝑗1 𝑗2
𝑔𝜇2𝜇4 𝑝

𝜇1
𝑗1
𝑝
𝜇3
𝑗2
+ 𝐵6

𝑗1 𝑗2
𝑔𝜇3𝜇4 𝑝

𝜇1
𝑗1
𝑝
𝜇2
𝑗2
)

+
3∑︁

𝑗1, 𝑗2, 𝑗3, 𝑗4=1
𝐶 𝑗1 𝑗2 𝑗3 𝑗4 𝑝

𝜇1
𝑗1
𝑝
𝜇2
𝑗2
𝑝
𝜇3
𝑗3
𝑝
𝜇4
𝑗4
. (3)

The coefficients 𝐴𝑖 , 𝐵𝑖
𝑗𝑘

, and 𝐶𝑖 𝑗𝑘𝑙 are functions of the Mandelstam variables 𝑠 = (𝑝1 + 𝑝2)2,
𝑡 = (𝑝2 + 𝑝3)2, and 𝑢 = (𝑝1 + 𝑝3)2, as well as the masses of the particles in the loops. Thanks to
parity invariance in QCD and QED, the term proportional to the Levi-Civita tensor is prohibited.
Equation (3) comprises 138 independent functions, which can be related through transversity, Bose
symmetry, and Ward identities resulting from gauge symmetry, reducing the number of independent
functions to 3 [6].

Upon obtaining the independent form factors, we represent all the involved integrals in terms
of master integrals using integration by parts identities (IBPs). For the two-loop corrections, we
generated 60 diagrams through Qgraf [8] and Feynarts [9]. Prior to applying the IBPs, we identified
7798 integrals in the amplitudes. Through the use of IBPs, we subsequently express all the diagrams
as 18 top-level topologies, as shown in Figure 1.
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Figure 1: Top-level diagram sufficient to generate all the families needed for the NLO corrections to light-
by-light scattering. Thin lines represent massless particles whereas solid lines represent massive internal
propagators.

3. Analytic computation of master integrals

In this talk, we discuss the analytical computation of scattering amplitudes, focusing on NLO
QCD and QED corrections for light-by-light scattering. Our approach involves expressing the
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Figure 2: Two-loop top-sector diagram appearing in the scattering amplitudes. Thin lines represent massless
particles whereas solid lines represent massive internal propagators.

results of the master integrals in a format suitable for phenomenological applications. To start, we
define a set of two-loop Feynman integrals using the following expression:

𝐼𝑎1, · · · ,𝑎9 =

(
𝑒𝜖 𝛾𝐸

𝑖𝜋
𝑑
2

)2 ∫ 2∏
𝑖=1

𝑑𝑑𝑘𝑖
𝐷

𝑎8
8 𝐷

𝑎9
9

𝐷
𝑎1
1 𝐷

𝑎2
2 𝐷

𝑎3
3 𝐷

𝑎4
4 𝐷

𝑎5
5 𝐷

𝑎6
6 𝐷

𝑎7
7
. (4)

Here, 𝑑 = 4 − 2𝜖 represents the space-time dimension, and 𝑎 𝑗 ∈ Z are integer parameters. The
loop momenta are denoted as 𝑘𝑖 , the Euler-Mascheroni constant as 𝛾𝐸 , and the inverse propagators
as 𝐷 𝑗 = 𝑞2

𝑗
− 𝑚2

𝑗
+ 𝑖0+, where 𝑞 𝑗 and 𝑚 𝑗 respectively denote momentum and mass. The integral

family is constructed using a set of inverse propagators:{
𝑘2

1 − 𝑚2, (𝑘1 + 𝑝1)2 − 𝑚2, (𝑘1 + 𝑝1 + 𝑝2)2 − 𝑚2, (𝑘2 − 𝑘1)2, (𝑘2 − 𝑝1 − 𝑝2)2 − 𝑚2,

(𝑘2)2 − 𝑚2, (𝑘2 + 𝑝1 + 𝑝2 + 𝑝3)2 − 𝑚2, (𝑘1 + 𝑝1 + 𝑝2 + 𝑝3)2, (𝑘2 + 𝑝1)2} , (5)

In this set, 𝑚 represents the mass of the quarks that appears in the loop. We established a system
of IBPs using KIRA [10] and LiteRed [11] (as implemented in FiniteFlow) [12], resulting in 103
master integrals. Among these 103 master integrals, only 30 need to be calculated, while the rest
can be casted into these 30 integrals. One of the 30 integrals is a box one-loop integral times a
tadpole one-loop integral, which can be easily computed. Our next task is to evaluate the remaining
29 master integrals. To derive the analytic expressions for these master integrals, we employed
the method of differential equations. Given the presence of massive propagators, it is inevitable
to encounter square roots. The square roots we encountered in our context include

√︁
𝑠(𝑠 − 4𝑚2),√︁

𝑡 (𝑡 − 4𝑚2),
√︁
𝑠𝑡 (𝑠𝑡 − 4𝑚2(𝑠 + 𝑡)), and

√︁
𝑠(𝑚4𝑠 − 2𝑚2𝑡 (𝑠 + 2𝑡) + 𝑠𝑡2).

For simplicity, we chose to set 𝑚2 to 1, creating a two-variable system of differential equations
for us to solve. Our choice of a canonical basis is based on [7]. To simplify our expressions, we
simultaneously rationalized the first three square roots by selecting a specific set of variables, as
detailed in [7]

𝑠 =
−4(𝑤 − 𝑧)2

(1 − 𝑤2) (1 − 𝑧2)
,

𝑡 =
−(𝑤 − 𝑧)2

(𝑤𝑧) . (6)

However the square root 𝑟 , given by
√︁
−2𝑤𝑧 + 𝑧2 + 𝑤4𝑧2 − 2𝑤3𝑧3 + 𝑤2(1 + 𝑧2 + 𝑧4), cannot be

rationalized further. Nevertheless, we present the analytic results in terms of iterated integrals
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with polylogarithmic kernels, with explicit representation in terms of Goncharov’s polylogarithms
wherever possible.

For the analytic representation of our scattering amplitudes we use Chen’s iterated integrals.
Chen’s iterated integrals are defined as follows. Let M be an 𝑛-dimensional manifold, where 𝑛 is
the number of coordinates and 𝜔’s be the one-forms. Let there be a path 𝛾 onM, 𝛾 : [0, 1] → M,
where 𝛾(0) is the starting point and 𝛾(1) is the end point. Let the pullbacks of the one-forms to
the interval [0, 1] be given as 𝑓 𝑗 (𝜆)𝑑𝜆 = 𝛾∗𝜔 𝑗 . The 𝑘-fold iterated integral over the one-forms is
defined as

𝐼𝛾 (𝜔1, ..., 𝜔𝑘 ;𝜆) =
∫ 𝜆

0
𝑑𝜆1 𝑓1(𝜆1)

∫ 𝜆1

0
𝑑𝜆2 𝑓2(𝜆2)...

∫ 𝜆𝑘−1

0
𝑑𝜆𝑘 𝑓𝑘 (𝜆𝑘)

=

∫
0
𝑑𝜆1 𝑓1(𝜆1)𝐼𝛾 (𝜔2, ..., 𝜔𝑘 ;𝜆1), (7)

with 𝐼𝛾 (;𝜆) = 1 [13]. Feynman integrals often give rise to homotopy-invariant one-forms 𝜔’s,
which are expressible in the form dlog 𝑝𝑖 (𝑥1, .., 𝑥𝑚) where 𝑥1, ..., 𝑥𝑚 are the coordinates and
𝑝𝑖 (𝑥1, ..., 𝑥𝑚) is a rational or an algebraic function. Multiple polylogarithms (MPLs) are special
cases of iterated integrals where 𝑝𝑖 is rational and linear-reducible in the variables 𝑥 𝑗 . In this
work, the iterated integrals are expressed in terms of dlog-forms with algebraic dependence on the
coordinates 𝑥𝑖 in the form of the square root 𝑟 . To bring the canonical differemtial equation to a
dlog-form we match them against a suitable ansatz and simplify the letters, as explained in [14]. The
entries of the differential equation matrix are Q-linear combination of dlog-forms of 15 letters. The
scattering amplitudes is then expressed in a very compact way using these analytic representations.

For numerical evaluation of our analytic results, several methods are at our disposal. The
iterated integral representation can be numerically integrated by expanding the one-forms along
specific one-dimensional paths, as guided in [16]. It’s worth noting that we can express all but seven
integrals in terms of MPLs, and we maintain this notation wherever feasible. For the numerical
evaluation of the master integrals that aren’t represented in the MPLs, we employ a technique known
as the "ibp trick," elucidated in the following references [7][17]. The fundamental concept behind
this approach is the conversion of the last two-fold integrations into one-fold integrals. Additionally,
we express the results of the first two orders of integration by matching symbols in both the 𝑤, 𝑧

as well as 𝑠, 𝑡 coordinate systems, in terms of logarithms and classical polylogarithms, following
the methods outlined in [15]. The next task is to evaluate the whole analytic system in all the
phase-space regions of interest. For us, the physical phase-space region of interested are:

𝑠 < 0, 𝑡 < 0, 𝑢 > 0 (8)

𝑠 > 0, 𝑡 < 0, 𝑢 < 0

𝑠 < 0, 𝑡 > 0, 𝑢 < 0.

For numerical integration in all these regions, we employ a technique more suitable for phenomeno-
logical applications. Rather than integrating our results within a single region and then relying on
analytic continuation to cross the boundaries into other regions, we obtain distinct analytic results
that are specifically valid within each of these regions. Consequently, our numerical evaluations
of the integrals are tailored to the specific phase-space region. We also obtain analytic boundary
constants in all these regions.

5



P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
1
0
0

Two-loop QCD and QED corrections to light-by-light scattering Ekta Chaubey

4. Conclusions

In conclusion, we have discussed the two-loop QCD and QED corrections to light-by-light
scattering in ultraperipheral Pb-Pb collisions. These corrections are essential for a precise the-
oretical understanding of 𝛾𝛾 → 𝛾𝛾, which have gained prominence in the context of modern
high-energy physics experiments. We have provided insights into the analytic computation of these
corrections, emphasizing the challenges posed by massive internal propagators. The results of this
study will contribute to our knowledge of the theoretical framework underlying 𝛾𝛾 interactions in
ultraperipheral heavy-ion collisions and further our understanding of physics beyond the SM.
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