
P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
4

Speeding up Science Through Parametric Optimization on
HPC Clusters

Jonas Weßner,0,∗ Rüdiger Berlich,1 Kilian Schwarz2 and Matthias F. M. Lutz0
0GSI Helmholtz Center for Heavy Ion Research,
Planckstrasse 1, Darmstadt, Germany

1Gemfony Scientific UG,
Hermann-von-Helmholtz-Platz 6, Eggenstein-Leopoldshafen, Germany

2Hochschule Darmstadt University of Applied Sciences,
Haardtring 100, Darmstadt, Germany
E-mail: j.wessner@gsi.de, r.berlich@gemfony.eu, kilian.schwarz@h-da.de,
m.lutz@gsi.de

Science is constantly encountering parametric optimization problems whose computer-aided so-
lutions require enormous resources. At the same time, there is a trend towards the development of
increasingly powerful computer clusters. Geneva is currently one of the best available frameworks
for distributed optimization of large-scale problems with highly nonlinear quality surfaces. It is
an excellent tool to be used in wide-area networks such as Grids and Clouds. However, it was
not user-friendly for scheduling on high-performance computing clusters and supercomputers.
Another issue was that it only provided a framework for parallelizing workloads at the popula-
tion level of optimization algorithms, but did not support distributed parallelization of the cost
function itself. For this reason, a new software component for network communication – called
MPI-Consumer – has been developed and published as open-source software. As a complement
to our previous paper, which explained the MPI Consumer’s system design, this article provides
an extensive performance evaluation. Comparing the MPI Consumer with two earlier in Geneva
developed network technologies shows that the MPI Consumer is an overall improvement in terms
of performance. Furthermore, we analyze the impact of system components of the MPI Consumer
by testing different configurations. It is observed that asynchronous client requests speed up the
time to solution by up to 20%. Furthermore, the multithreading design proves to be very scalable,
allowing for a significant speed-up even if on extremely high loads. Tests on GSI’s Green IT Cube
HPC cluster show that our measurements realistically reflect the expected behavior in a production
environment.

International Symposium on Grids and Clouds (ISGC) 2023,
19 - 31 March 2023
Academia Sinica Taipei, Taiwan

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:j.wessner@gsi.de
mailto:r.berlich@gemfony.eu
mailto:kilian.schwarz@h-da.de
mailto:m.lutz@gsi.de
https://pos.sissa.it/


P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
4

Speeding up Science Through Parametric Optimization on HPC Clusters Jonas Weßner

1. Introduction

The Geneva [1][2] library is currently one of the best available frameworks for distributed optimiza-
tion of large-scale problems with highly nonlinear quality surfaces. Recently, we have developed
theMPI Consumer, a new network component for the Geneva optimization library, which increases
its user experience for high-performance computing and also adds the new feature of fine-grained
parallelization. We have discussed the design decisions of the MPI Consumer and also shown first
performance test results on a 128-core machine in the previous publication [3]. Since this paper
builds on top of our last paper, it is recommended to read the last paper before reading this one.
To provide a comprehensive performance evaluation of the MPI Consumer, further test results are
discussed in this paper. To begin with, we make a performance comparison of the MPI Consumer
with the two other network components in the Geneva library (the Boost.Asio and the Boost.Beast
Consumer) in Section 2. After that in Section 3, we analyze the impact of the async client requests
and the server-side multithreading, which have been explained in our previous paper in detail, by
measuring the performance of the MPI Consumer with different configurations. To ensure that our
measurements from the previous sections are also accurate for clusters, we repeat a subset of the
tests on a large HPC cluster and compare the results in Section 4. Finally, we conclude with a
summary of our findings in Section 5 and future research topics in Section 6.

2. MPI Consumer Performance Compared to Other Consumers

In our previous work [3], we have shown a plot of a series of tests measuring the performance of
the MPI Consumer with different numbers of clients and different durations of the user-defined cost
function. Now, we have repeated these tests with the same configuration [3, p. 13] for the two
alternative network components of the Geneva library, which have been developed earlier. In this
section, we compare the test results of the MPI Consumer with those of the other two consumers.

The first networked consumer developed for the Geneva library is the Boost.Asio Consumer and has
been available since 2018. This consumer uses the Boost.Asio C++ network library [4] to distribute
the candidate solutions among the set of computers. Thereby, the server constantly listens for new
TCP connection requests from clients. Once connected, clients send their processed work item
to the server and the server responds with a new raw work item [5, 5-6]. The connection is then
closed and the clients compute the cost function for the received work item. Once the cost function
has been evaluated, the clients establish a new TCP connection to the server and repeat the above
steps. During large-scale production runs for hadron physics research on GSI’s Green IT Cube
HPC cluster, limited scalability has been observed when using a small number of CPU cores or
short cost function. This behavior is also visible in our performance test results. As in our previous
paper, we have plotted the speedup, which is calculated as the quotient of serial execution time (one
client) and the parallel execution time. Ideally, one would like to achieve linear scalability where
the speedup is equal to the number of clients, i.e. multiplying the number of clients by G speeds up
the time to solution by a factor G.

2



P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
4

Speeding up Science Through Parametric Optimization on HPC Clusters Jonas Weßner

Figure 1: Results of performance tests evaluating the
Boost.Asio Consumer’s scalability on a 128-core com-
puter. The speedup is calculated as the quotient of
serial and parallel time to solution.

As can be seen in Figure 1, the Boost.Asio Con-
sumer comes close to the desired behavior for
up to 200 clients. As more clients are used, the
performance does not further increase but drops
again. This phenomenon becomes more severe
for shorter cost functions. The limited scala-
bility is most likely the cause of the need for
opening new TCP connections for each work
item: as the number of clients increases and
the cost function evaluation time decreases, the
frequency of incoming connection requests at
the server increases. Eventually, the server is
overloaded with the TCP handshakes and not able to answer the requests adequately.

To provide an improvement over the Boost.Asio Consumer in terms of scalability, the Geneva team
developed the Boost.Beast Consumer shortly after. This network component works very similarly
but uses the WebSocket protocol [6] on top of TCP to communicate between server and clients. It
does not open new connections between server and clients for delivering every work item. Instead,
the clients open one persistent connection to the server at the time of startup.

Figure 2: Results of performance tests evaluating
the Boost.Beast Consumer’s scalability on a 128-Core
computer. The speedup is calculated as the quotient of
serial and parallel execution time.

The test results using theBoost.Beast Consumer
are shown in Figure 2. As can be clearly seen,
the scalability of the system is improved com-
pared to using the Boost.Asio Consumer. With
a cost function evaluation time of 5 seconds
or more, the system reaches near-perfect scala-
bility and an efficiency of ≈ 91%1. Note that
perfect scalability i.e. efficiency of 100% is
not feasible, since sending and receiving of
work items and executing the optimization al-
gorithm are non-parallelizable computations on
the server that limit the scalability of the system
according to Amdahls’s law [7]. For the same
reason, the system is less scalable when using cost functions that take less time to compute, since
this decreases the length of the parallelizable computations and thereby increases the impact of
non-parallelizable sections. We think that the scalability of the Boost.Beast Consumer is very
reasonable. In our production runs for hadron physics at GSI, we regularly work with cost functions
that take about 5 seconds to evaluate. Of course, if we work with shorter cost functions, the (serial)
execution time will also decrease, so fewer clients will be needed to finish the optimization process
in an acceptable time. For instance, for physics research at GSI we regularly require 1000 iterations
and 10000 candidate solutions per iteration, where evaluating candidates takes about 5 seconds. If

1Efficiency is calculated as the quotient of ideal execution time (serial execution time divided by the number of clients)
and actual execution time.

3



P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
4

Speeding up Science Through Parametric Optimization on HPC Clusters Jonas Weßner

done serially, this would take about 1000 ·10000 ·5 · 1
60·60·24 ≈ 579 days. For parallel execution with

1000 clients and 90% efficiency, the execution time can be reduced to ≈ 15 hours (divide execution
time by 900). Similarly, if the cost function evaluation time is 0.5 seconds, the user can achieve the
same parallel execution time with 100 clients, since this configuration achieves a speedup of > 90,
as can be seen in Figure 2.

The latest network component, the MPI Consumer, which we have developed in 2022, improves
the usability of Geneva for high-performance computing and allows for fine-grained user-defined
parallelization of the cost function. We have already shown the results of the performance tests
for this consumer in our last paper [3]. Figure 3 illustrates the relative performance improvement
provided by the MPI Consumer over the Boost.Beast Consumer. A z-value of G% (or −G%) means
that the time to solution decreases (or increases) by G%. Note that for better visibility, we have used
symmetric-logarithmic scaling for the z-axis.

Figure 3: Relative improvement of time to solu-
tion when using the MPI Consumer instead of the
Boost.Beast Consumer

One can see that the performance of the MPI
Consumer is similar to that of the Boost.Beast
Consumer when working with cost functions
that take 5 seconds or longer to compute. For
shorter cost functions, the MPI Consumer is a
significant improvement over the already very
efficiently working Boost.Beast Consumer, re-
ducing the time-to-result by up to 3000%. Only
for very short cost functions and more than
500 clients is the Boost.Beast consumer slightly
faster. But as shown earlier, even with this
configuration, the Boost.Beast Consumer only
achieves poor performance with about 20% ef-
ficiency. For this reason, this part of the graph
is irrelevant, as a user should not use more than
300 clients with either consumer when the cost
function evaluation time is shorter than 1 second.

3. Evaluating the Effect of the MPI Consumer’s Design

In our previous publication [3], we explained the system design of the MPI Consumer in detail.
The two features (1) asynchronous client requests and (2) multithreading have been implemented
specifically to achieve great scalability. Having seen the test results in Section 2, we want to examine
how the two features contribute to the high scalability. The asynchronous client requests can be
disabled using the command line parameter −−mpi_worker_asyncRequests. To evaluate the impact
of the asynchronous request feature, we have repeated the test series from Section 2 for the MPI
Consumer with this feature deactivated.

4



P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
4

Speeding up Science Through Parametric Optimization on HPC Clusters Jonas Weßner

Figure 4: Relative improvement of the time to solution
when using the MPI Consumer with its asynchronous
request feature compared to using synchronous re-
quests

In Figure 4, we have visualized the improve-
ment from using asynchronous requests com-
pared to using synchronous requests by plot-
ting the relative difference of the time to so-
lution of optimizations. Analogous to Figure
3, a z-value of G% (or −G%) indicates that the
time to solution is decreased (or increased) by
G% when using asynchronous requests instead
of synchronous requests. As can be seen, the
asynchronous request feature has an overall pos-
itive effect, reducing the time required for op-
timization by up to 20%. We also observe that
the effect increases with shorter cost functions.
The reason for this is that with a shorter cost
function, the time required for network com-
munication takes up a larger portion of the to-
tal runtime. Since asynchronous requests are
an optimization to reduce the time needed for
communication, it is more impactful when the time spent on computing cost functions is shorter.
Similarly, the impact of the asynchronous requests is slightly greater if more clients are used. This
is because additional clients place a heavier load on the server process, slowing its responses and
increasing the time it takes a client to retrieve a new work item. The peak with one client and
cost function evaluation time of 0.001 seconds is a single data point and has presumably been
caused by concurrent multi-user access on the used computer. Overall, it can be concluded that a
significant performance improvement was achieved by the asynchronous request feature. Looking
back at Figure 3, we can see that the performance gain of up to 20% accounts for a large part of the
improvements that the MPI consumer achieved compared to the Boost.Beast consumer. Moreover,
we consider it positive that the feature has a stronger impact for shorter cost function evaluation
times, since the system already runs with near-to-perfect when using longer cost functions, as shown
in our previous paper in Section 5.2 [3].

The number of threads used by the MPI Consumer’s server process can be configured with the
command line parameter mpi_master_nIOThreads. To analyze the impact of the multithreading of
the MPI Consumer server and evaluate the multithreading design described in our previous paper
in Section 4.4 [3], we have run a series of tests with 400 clients and different numbers of threads
as well as different lengths of cost functions on a 128-core machine. To illustrate the results, we
have plotted the efficiency of the runs, calculated as the ratio between the ideal runtime and the
actual runtime, in Figure 5. Again, note that an ideal runtime is not feasible due to communication
overhead and non-parallelizable code fragments. One notices that more threads for the server
process generally increase the system efficiency. However, for higher system efficiency, additional
threads have less impact because there is less room for improvement.

5



P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
4

Speeding up Science Through Parametric Optimization on HPC Clusters Jonas Weßner

Figure 5: Efficiency of optimizations with MPI Con-
sumer with different numbers of server threads and
different lengths of the cost function evaluation time
with 400 clients on a 128-core machine

With a cost function that takes 10 seconds to
compute, the efficiency reaches ≈ 99% when
the server process has 64 threads. Furthermore,
even at maximum load on the server process,
i.e. for a cost function with a length of 0.001
seconds, increasing the number of threads from
32 to 64 leads to a 53% efficiency gain. From
this, we can conclude that the multithreading of
the MPI consumer has not yet reached its lim-
its. If the receiver thread was not able to accept
and forward new connections fast enough, there
would be a sudden limit where more threads
would not lead to further efficiency gains. How-
ever, as we see gradual saturation, this is more
indicative of a hardware-side limit to our test
setup. Since the server process’s threads and
all 400 clients run on the same 128-core ma-
chine, the server threads are not continually scheduled on the CPU. For this reason, we assume
that the MPI Consumer could perform even better than in our tests when used in production on a
dedicated machine with one physical core per server thread.

4. MPI Consumer Performance on HPC Cluster

For cost reasons, we have executed the extensive test series shown in Section 2 and 3 on a single
128-core machine rather than on an HPC cluster. However, since the target platform for the MPI
Consumer is clusters, we now repeat a subset of the tests on GSI’s Green IT Cube supercomputer.
The purpose of those tests is to see whether the test results shown earlier are reproducible on a
cluster with reasonable error.

Figure 6: Difference of measurements on a 128-core
computer and a cluster. Each data point is the mean
value of 10 measurements.

We have chosen a test setup with a range of 1
to 4 server threads, 0.001 to 10 seconds for the
cost function and 400 clients. For each config-
uration, we have run the tests on the multicore
machine and on the cluster 10 times and calcu-
lated the mean value to ensure higher accuracy
of the measurements. On both the multicore
machine and the cluster, the mean absolute er-
ror for all data points is below 0.8 percent of the
respective data point. Hence, we can assume
that all calculated mean values are reasonably
accurate. In Figure 6, we have visualized the
difference in the mean values of measurements

6



P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
4

Speeding up Science Through Parametric Optimization on HPC Clusters Jonas Weßner

on the multicore machine and on the cluster as a percentage relative to the measurements on the
multicore machine. The plot shows that the measurements on the multicore computer are repro-
ducible on the cluster with an error of below 1.5 percent. Thus, when running Geneva with the MPI
Consumer in production on HPC clusters, we can expect a very similar behavior to that shown in
the previous sections of this paper. We also notice that the time to solution on the cluster is slightly
shorter when the cost function takes longer than 1 second to compute, and vice versa for shorter
cost functions. A possible reason for the slightly shorter time to solution on the cluster could be that
each process has its own CPU core in the cluster setup (as explained in Section 3). The marginally
longer time to solution for short cost functions is most likely a cause of higher communication
cost on the cluster due to slightly higher latency compared to a single machine. The reason is that
with shorter cost functions and therefore less time spent on computation, communication between
processes accounts for a larger portion of the runtime.

5. Conclusion

Our performance comparison of different network technologies in the Geneva optimization library
has clearly shown the advantage of theBoost.Beast Consumer compared to theBoost.Asio consumer.
The latest network component for HPC clusters and supercomputers, the MPI Consumer, performs
even better than the Boost.Beast Consumer. By analyzing performancemeasurements using theMPI
Consumer with different configurations, we have found that its asynchronous request feature can
reduce the time to solution by up to about 20%. In addition, we have found that the multithreading
design of theMPI Consumer is highly scalable, since even at maximum load, additional threads lead
to a significant performance improvement. Finally, by repeating subsets of the tests on GSI’s Green
IT Cube supercomputer, we have observed that all previous test results are realistic for production
runs on high-performance computing clusters.

6. Future Work

In a few months, the MPI consumer is expected to be brought into production on GSI’s Green
IT Cube supercomputer with 1000 clients or more. We also plan to implement new optimization
algorithms and metrics for the Geneva optimization library.

References

[1] Gemfony Scientific. (2022) Geneva github repository. [Online]. Available: https:
//github.com/gemfony/geneva

[2] R. Berlich, S. Gabriel, and A. Garcıa. (2022) Parametric optimization with
the geneva library collection - version: 1.6 (ivrea). [Online]. Available: http:
//www.gemfony.eu/fileadmin/documentation/geneva-manual.pdf

7

https://github.com/gemfony/geneva
https://github.com/gemfony/geneva
http://www.gemfony.eu/fileadmin/documentation/geneva-manual.pdf
http://www.gemfony.eu/fileadmin/documentation/geneva-manual.pdf


P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
0
4

Speeding up Science Through Parametric Optimization on HPC Clusters Jonas Weßner

[3] J. Weßner, R. Berlich, K. Schwarz, and M. F. Lutz, “Parametric optimization on hpc clusters
with geneva,” 2023.

[4] C. M. Kohlhoff. (2020) Boost.asio homepage. [Online]. Available: https://www.boost.org/doc/
libs/1_75_0/doc/html/boost_asio.html

[5] R. Berlich, S. Gabriel, and A. García, “Geneva 1.6: Improving the performance of highly
concurrent workloads in parametric optimization,” in International Symposium on Grids and
Clouds, vol. 15, no. 20, 2015. [Online]. Available: https://pos.sissa.it/239/026/pdf

[6] I. Fette and A. Melnikov, “The websocket protocol,” Tech. Rep., 2011.

[7] G. M. Amdahl, “Computer architecture and amdahl’s law,” Computer, vol. 46, no. 12,
pp. 38–46, 2013. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=6689270

8

https://www.boost.org/doc/libs/1_75_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_75_0/doc/html/boost_asio.html
https://pos.sissa.it/239/026/pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6689270
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6689270

	Introduction
	MPI Consumer Performance Compared to Other Consumers
	Evaluating the Effect of the MPI Consumer's Design
	MPI Consumer Performance on HPC Cluster
	Conclusion
	Future Work

