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Machine learning (ML) and deep learning (DL) techniques are playing an increasingly pervasive
and dominant role in High Energy Physics, but this is posing several challenges. Effective
computing infrastructures are required for executing AI workflows, and there is a growing demand
for training opportunities to upskill users and developers in exploiting programmable hardware
such as FPGAs. While there are many training opportunities on generic ML/DL concepts, there
is a gap in hands-on tutorials on ML/DL on FPGAs that can cater to a large number of attendants
and provide access to a diverse set of hardware with varying specs. This highlights the need for
the development of scalable and inclusive training tools to bridge this gap.
INFN-Bologna, the University of Bologna, and INFN-CNAF collaborated on a pilot course
on ML/DL on FPGAs, which was successful in paving the way for the creation of a scalable
toolkit for future courses. The course used virtual machines, in-house cloud platforms equipped
with AMD/Xilinx Alveo FPGA, and Amazon AWS instances for project deployment on FPGAs.
Docker containers with full environments for DL frameworks and Jupyter Notebooks were used
for interactive exercises.
Finally, the Bond Machine, a software ecosystem that can dynamically generate computer architec-
tures synthesizable in FPGA, is being explored as an alternative for teaching FPGA programming.
It offers hardware abstraction, which simplifies interaction with FPGAs and avoids the need to
delve into low-level details.

International Symposium on Grids & Clouds (ISGC) 2023 in conjunction with HEPiX Spring 2023
Workshop, ISGC&HEPiX2023
19 - 31 March 2023
Academia Sinica Taipei, Taiwan

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:marco.lorusso11@unibo.it
mailto:daniele.bonacorsi@unibo.it
mailto:riccardo.travaglini@bo.infn.it
mailto:davide@infn.it
mailto:paolo.veronesi@bo.infn.it
mailto:diego.michelotto@cnaf.infn.it
mailto:mirko.mariotti@unipg.it
mailto:giulio.bianchini@studenti.unipg.it
mailto:alessandro.costantini@cnaf.infn.it
mailto:cristina.aiftimiei@cnaf.infn.it
https://pos.sissa.it/


P
o
S
(
I
S
G
C
&
H
E
P
i
X
2
0
2
3
)
0
2
2
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1. Status of Machine Learning education

In the last few years Machine Learning has become one of the most popular topic in computer
science. This is reflected in the number of educational programs, workshops and courses available
to upskill in this sector. In 2020, the AI Index [1], an independent initiative at the Stanford Institute
for Human-Centered Artificial Intelligence (HAI), developed a survey that asked computer science
departments or schools of computing and informatics at top-ranking universities around the world
about four aspects of their AI education: undergraduate program offerings, graduate program
offerings, offerings on AI ethics, and faculty expertise and diversity. The survey was completed by
18 universities from 9 countries. Results from the AI Index survey indicate that universities have
increased both the number of AI courses they offer that teach students how to build and deploy a
practical AI model and the number of AI-focused faculty.

(a) Number of graduate courses that focus on instructing
students in the requisite abilities for constructing or deploy-
ing a functional AI model, AY 2016-20.

(b) Number of tenure-track faculty who primarily focus
their research on AI, AY 2016-20.

Figure 1: Results from a survey that asked top-ranking universities around the world about their AI education
offerings

The survey also looks at course offerings at the graduate or advanced degree level, specifically
at graduate courses that teach students the skills necessary to build or deploy a practical AI model.
These have increased by 41.7% in the last four academic years, from 151 courses in AY 2016–17
to 214 in AY 2019–20 (Figure 1a).

As shown in Figure 1b, the number of tenure-track faculty with a primary research focus on
AI at the surveyed universities grew significantly over the past four academic years, in keeping with
the rising demand for AI classes and degree programs. The number of AI-focused faculty grew by
59.1%, from 105 in AY 2016–17 to 167 in AY 2019–20.

The Joint Research Center (JRC) at the European Commission assessed the academic offerings
of advanced digital skills in 27 European Union member states as well as six other countries: the
United Kingdom, Norway, Switzerland, Canada, the United States, and Australia. Figure 2 shows
the total number of 1,680 specialized AI programs in all countries considered in the 2019–20
academic year. The United States appears to have offered more programs specialized in AI than
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Figure 2: Number of specialized AI programs by geographic area and level, AY 2019-20.

any other geographic area, although the EU comes in a close second in terms of the number of
AI-specialized master’s programs.

2. FPGAs: Combining Performance and Flexibility through Software and
Hardware

In the few decades since field-programmable gate arrays (FPGAs) were introduced, they have
radically changed the way digital logic is designed and deployed [2]. By combining the high per-
formance of application-specific integrated circuits (ASICs) and the flexibility of microprocessors,
FPGAs have made possible entirely new types of applications. This has helped FPGAs supplanting
both ASICs and digital signal processors (DSPs) in some traditional roles. To make the most of this
unique combination of performance and flexibility, designers need to be aware of both hardware
and software issues. Thus, FPGA users must think not only about the gates needed to perform
a computation but also about the software flow that supports the design process. Indeed, FPGAs
provide nearly all of the benefits of software flexibility and development models, and nearly all
of the benefits of hardware efficiency, but compared to a microprocessor, even though they are
typically several orders of magnitude faster and more power efficient, creating efficient programs
for them is more complex.

To effectively use FPGAs, it is important for the user to have a foundational understanding
of both software and hardware technology. Specifically, on the hardware side, the user should
be familiar with digital logic design, including concepts such as gates, multiplexers, flip-flops,
and RAM. They should also have a basic understanding of binary number systems and simple
logic optimization. Knowledge of hardware description languages such as Verilog or VHDL is also
helpful. On the software side, the user should have a basic understanding of computer programming,
including simple data structures and algorithms. Overall, the ideal user would have a background
that combines electrical engineering, computer science, and computer engineering.
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3. The course: Machine learning techniques with FPGA devices for particle physics
experiments

In Section 1 the sheer amount of new courses about Machine Learning and Artificial Intelligence
is evident. However, the same cannot be said when putting together AI and FPGAs. Even though
the pros of fusing these two cutting-edge technologies, namely latency and energy consumption,
could be very useful in a lot of fields, especially in High Energy Physics [3], there have been few
efforts for educating new people on this subject.

Indeed, as can be seen in Figure 3, the range of skills a course should be able to provide to the
students is very wide. From Python and very high-level programming to HDL and electronics, and
it is a challenge to compress such a vast landscape of notions in a single course or workshop.

Figure 3: Different set of skills needed to be proficient in both the world of AI and FPGAs.

From the gap in tutorials on ML on FPGAs, the idea of a course called Machine learning
techniques with FPGA devices for particle physics experiments [4] came up, in order to give a start
in understanding and experimenting the various tools that allow the connection between the world
of AI and FPGAs.

The course took place from 2𝑛𝑑 to 4𝑡ℎ November 2022 and it was organized by the Bologna
division of the Italian National institute for Nuclear Physics (INFN) with the technical support of
CNAF, the main data processing and computing technology research center of INFN. This effort
was funded by the INFN Training program. It represented a first step towards a greater focus on
education in this field in Italy. The course featured leading international lecturers who are involved
in the development of tools to make hardware more approachable at a higher level. The program
also received support from the AMD/Xilinx University Program (XUP).

A lot of topics were addressed in the dense two days of lectures and more than half of the
duration of the course was spent on tutorials:

• Introduction to efficient use of Machine Learning in HEP;

• Crash course on what FPGAs are;

• HLS4ML and how to translate Python to something implementable in hardware (see Section
3.1)

• Vitis-AI, the AMD/Xilinx solution to Artifical Intelligence on programmable hardware;

• A new kind of computer architecture (multi-core and heterogeneous) which dynamically
adapt to the specific computational problem rather than be static: the BondMachine (see
Section 3.2)
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• How Quartus and Intel make ML on FPGA possible;

In the next two Sections a small description of hls4ml and the BondMachine is given, as they were
two topics of major interest for the high-energy physics community.

3.1 HLS4ML

High-level Synthesis (HLS) [5] is the process of automatic generation of hardware circuit from
“behavioral descriptions” contained in a C or C++ program. The target hardware circuit consists
of a structural composition of data path, control and memory elements. HLS acts as a bridge
between hardware and software domains [6], providing an improvement in productivity for hardware
designers who can work at a higher level of abstraction while creating high performance hardware
as well as an improvement in system performance for software designers who can accelerate the
computationally intensive parts of their algorithms on a new compilation target, i.e. the FPGA.

Using HLS design methodology allows to develop algorithms at the C-level (in programming
languages like C and C++) with typically shorter development time. Moreover, it is more easier to
validate functional correctness at this level than with traditional HDLs.

The ℎ𝑙𝑠4𝑚𝑙 package [3, 7] was developed by members of the High Energy Physics (HEP)
community to translate ML algorithm, built using frameworks like TensorFlow, into HLS code. In
this way a trained Neural Network (NN), defined by its architecture, weights, and biases, can be
made ready for hardware synthesis with few lines of code. A schematic of a typical workflow is
illustrated in Figure 4.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a NN for a specific task. The blue section of the workflow is the task of hls4ml, which
translates a model into an HLS project that can be synthesized and implemented to run on an FPGA.
Some code snippets are shown in the following to explain how an already trained model can be
converted into an HLS project using the hls4ml Python API.

Firstly, the model must be loaded:
1 impo r t h l s4ml
2 impo r t t e n s o r f l o w as t f
3

4 model = t f . k e r a s . model . l o ad ( " model . h5 " )

Then, a 𝑐𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 has to be created:
1 c o n f i g = h l s4ml . u t i l s . c on f i g_ f r om_ke r a s_mode l ( model ,
2 g r a n u l a r i t y = ’name ’ )

The config_from_keras_model() function returns a Python 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 and takes the following
compulsory arguments:

• The Python object containing the NN;

• The 𝑔𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 (name, type or model). This flag sets the level of fineness wanted for
the parameter tuning. By using name, it is possible to configure each layer and activation
function individually. While, type is used if the developer wants to share the configuration
between all layers of the same type. And finally, with model a single configuration is used
for the entire model.
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By modifying the configuration dictionary it is possible to change the arithmetic precision used
for weights, biases and results. After the configuration, the model can be converted by specifying,

Figure 4: A typical workflow to translate a model into an FPGA implementation using hls4ml.

other than the model object and configuration, the output folder and the FPGA model where the
project will be implemented:

1 h l s_mode l = h l s4ml . c o n v e r t e r s . c onve r t _ f r om_ke r a s_mode l ( model , h l s _ c o n f i g = con f i g
, o u t p u t _ d i r = ’ HLS_Pro jec t ’ , f p g a _ p a r t = ’ xczu9eg−f fvb1156 −2−e ’ )

Now, typing hls_model.compile(), the hls_model can be compiled, i.e. scripts for Vivado
HLS [6] are generated containing the instructions for synthesizing the model with the provided
device as target hardware. It is possible to synthesize the project inside a Python session with the
hls_model.build() function.

It is clear by the couple of lines of code shown, how it is easy to create the HLS project, making
it feasible also for people who are not expert in FPGAs or hardware in general. Indeed, the goal of
the hls4ml package is to empower a HEP physicist to accelerate ML algorithms using FPGAs, thanks
to its tools for ML models conversion into HLS. Indeed, hls4ml makes the translation of Python
objects into HLS, and its synthesis, parts of an automatic workflow, allowing fast deployment times
also for those who know how to write software, yet are not experts on FPGAs.

3.2 The BondMachine

BondMachine (BM) [8] is an open-source framework that enables the creation of computational
systems with co-designed hardware and software. This approach maximizes the use of existing
resources in terms of concurrency and heterogeneity. The unique feature of BM is the creation of a
dynamic architecture that adapts to the specific problem, rather than being static. The hardware is
customized to meet the software requirements, implementing only the necessary processing units,
resulting in significant advantages in terms of energy consumption and performance. Furthermore,
BM is vendor and board independent, allowing for the creation of clusters of heterogeneous FPGAs
to solve one or multiple tasks, following the cloud paradigm.
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Compared to the use of Hardware Description Language (HDL) code, BM introduces an archi-
tecture abstraction layer with minimal overhead, allowing for the use of a standard computational
model. This toolkit makes full use of the main features of Field Programmable Gate Arrays (FPGAs)
and can be used as an High-Level tool to generate custom firmware for accelerated computation.

Figure 5: An example of a BondMachine architecture. This specific BM is made of two inputs and tree
outputs interconnected between the input/output registers of the processors. Shared objects, such as memory,
Channel and Barrier, are connected among the processors.

The BM architecture is particularly suitable for computational models and graphs. The project’s
flagship activity involves generating firmware with the aim of developing accelerated systems on
FPGA to solve different computational problems with a particular focus on machine learning
inference [9]. The firmware for accelerated inference generated starting from an high-level trained
model with standard machine learning libraries, is highly customizable according to the needs of the
specific problem. Different hardware and software optimization techniques have been implemented,
starting from the choice of the numerical precision, up to the collapse and pruning of the processors,
in order to reduce the resource usage and the energy consumption while improving the inference
speed at the same time.

4. A scalable classroom using Cloud Computing

The course aimed to provide an avenue for participants to gain hands-on experience with
FPGA technology and the workflows that will be used to create a functional ML design. However,
the development of ML algorithms and FPGA firmware requires specific software and libraries,
which means a dedicated development machine must be available to attendees. On the other hand,
despite the desire to use actual hardware to test the firmware, it is typically not possible for multiple
individuals to access FPGAs simultaneously for programming. At the same time it is evident that
providing a board for each attendee would be cost-prohibitive and impractical. As a result, the
solution was to utilize FPGAs in the cloud.

A system with two different machines was set up (Figure 6): a Development machine and a
Deployment machine.

7
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Figure 6: Layout of the two virtual machines made available to each attendee of the course.

The Development machines consist in CentOS 7 Virtual Machines (VM) created in the INFN
Cloud infrastructure. By utilizing Anaconda [10], a Python environment was made accessible
which contained all the necessary tools to manipulate data and construct Neural Networks such as
TensorFlow, Keras, QKeras [11] for quantization and optimization, and HLS4ML. To access the
machines, SSH with X11 support has been used. The Vivado Design Suite was installed to enable
the creation of FPGA firmware, equipped with the relevant libraries to target the available board in
the deployment machine. To guarantee remote access to the machines, a public floating IP (FIP)
address has been assigned to each VM. In order to let the users play with the available resources
and services after the working period of the workshop, they have been maintained for few weeks
after the workshop end.

The Deployment machines deployed on AWS are EC2 F1 instances [12], equipped with Xilinx
FPGA acceleration cards. F1 instances are equipped with tools to develop, simulate, debug, and
compile a hardware acceleration code, including an FPGA Developer Amazon Machine Image
(AMI) and supporting hardware level development on the cloud. In order to test the Vitis-AI toolkit
[13], the Docker Daemon was added to the AMI.

Using F1 instances to deploy hardware accelerations can be useful in many applications to
solve complex science, engineering, and business problems that require high bandwidth, enhanced
networking, and very high compute capabilities. A variety of target applications can benefit from
F1 instance acceleration, including but not limited to genomics, search/analytics, image and video
processing, network security, electronic design automation (EDA), image and file compression, and
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big data analytics.
F1 instances provide diverse development environments: from low-level hardware developers

to software developers who are more comfortable with C/C++ and OpenCL environments. Once
an FPGA design is complete, it can be registered as an Amazon FPGA Image (AFI), and deployed
to every F1 instance needed.

The course has been used as a test to exploit the potential benefits of a seamless integration
between INFN Cloud and a cloud provider like AWS. The proposed sketch of how this integration
could work are listed hereafter:

• The user would authenticate themselves on INFN Cloud using a federated authentication
system;

• They would then select the type of resource they need, even FPGAs from various vendors;

• If the desired FPGA resource is not available on INFN Cloud, it could be instantiated on
AWS transparently;

• The user would be provided with an endpoint to connect to, without the need for a different
authentication or interface.

This proof of concept is part of the effort by the people behind INFN Cloud to continuously
expand the services that they can offer and keep up with the ever-growing interest in heterogeneous
computing.

5. Conclusions

In conclusion, machine learning and deep learning techniques are becoming increasingly
important in High Energy Physics, which presents several challenges. To effectively implement AI
workflows, there is a need for computing infrastructures, as well as training opportunities to upskill
users and developers in using programmable hardware like FPGAs. While there are many training
opportunities available, there is a gap in hands-on tutorials for ML/DL on FPGAs that can cater to a
large number of attendees and provide access to a diverse set of hardware with varying specifications.
To bridge this gap, INFN-Bologna, the University of Bologna, and INFN-CNAF collaborated on a
pilot course on ML/DL on FPGAs using virtual machines, in-house cloud platforms, and Amazon
AWS instances.

While the course was successful and garnered significant interest, there is still room for
improvement. For example, attendees could benefit from more tutorial time and access to the
machines before the training begins to better prepare. The lack of established teaching methods
for this topic presents an opportunity to test new and more effective teaching techniques, such as
inverted learning.

Finally, creating a VM template that includes all the necessary tools for this type of development
and publishing an AMI for deployment could streamline the setup process and increase productivity
for both educational purposes and research work.
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