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1. Introduction

These lecture notes are the summary of a course on higher-spin theories. The goal was to
present, in a self-contained way, extensions of General Relativity including fields of arbitrary
integer spin, which describe unitary unitary, irreducible representations of the Poincaré or (A)dS
group with arbitrary spin, that we will refer to as higher-spin gravity, and revolving around the
following question: is there an interacting theory of higher-spin gravity? Already at the classical
level, this proves to be a challenging task, but with potentially promising rewards: understanding
higher-spin symmetry could open a new path to quantising gravity and would provide the missing
link between ordinary lower-spin theories and String Theory.

Crossing the spin-two barrier (to borrow the terminology of [1]) is a notoriously difficult task,
met with many famous no-go theorems, some of them presented in appendix A. These theorems
shed doubt on the viability of any higher-spin theory, but mostly rely on 𝑆-matrix arguments.
Crucially, it was realised that going to curved space-time instead of a flat one would allow to bypass
many no-gos, as first suggested by Fradkin and Vasiliev [2–4], and confirmed within the framework
of the higher-spin AdS/CFT correspondence [5, 6].

Starting within the well-known framework of perturbative classical gauge theory, we try to
follow the historical way in which the story of higher-spin gravity unfolded. The free theory,
which can be seen as a generalisation of linearised General Relativity, was built by Fronsdal in any
space-time of constant curvature [7, 8] and soon after, the program of completing the free theory by
adding interactions perturbatively was initiated. The early yes-go results on the existence of cubic
vertices [9] in flat and curved background, culminating in the construction of an interacting theory
in AdS4 [10] and AdS𝑑≥4 [11] was a confirmation that, although more exotic than their lower-spin
cousins, interacting higher-spin theories do exist.

Already at the level of the cubic theory, it was realised that the non-Abelian higher-spin algebra
encoding the symmetry was a crucial ingredient. A fully interacting theory in AdS4 was then built
[10], proposing a completion to the program of obtaining non-linear higher-spin theories through
the gauging of a higher-spin algebra extending the AdS4 isometry algebra and mirroring Cartan’s
construction of General Relativity through the gauging of the Poincaré or (A)dS algebras. Its
conjectured holographic dual was proposed in [5, 6] and further developed, e.g., in [12, 13].

In these notes, we put the accent on the link between the symmetries of the free theory,
the higher-spin generalisation of linearised diffeomorphisms, the frame-like formulation and the
construction of a higher-spin algebra. We will make some reminders on lower-spin (i.e. spin less
or equal to two) theories along the way, both as a warm-up for the more technical parts and also
to make the case that, despite their rough history, higher-spin theories share many similarities with
the gauge theory of gravity.

The higher-spin algebra in any dimension is then constructed, and we examine the case of
AdS3 separately and its connection with higher-spin gravity in the Chern-Simons formulation.
Some elements of higher-spin holography [14, 15] are also flashed, with a highlight on the the
dual role played by the higher-spin algebra of Fradkin, Vasiliev (in 𝑑 = 4, [3]) and Eastwood
(generalisation to all dimensions [16]), serving the dual role of an algebra of higher endomorphisms
of the singleton module on the boundary and a higher-spin algebra in the bulk.

The material presented in these notes is by no means new, and we refer to [1, 17–31] for
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a complete overview of the subject, ranging from non-technical presentations to more in-depth
reviews.

1.1 Motivations

We begin by giving some motivation as to why we want to study such theories. Although
it constitutes an interesting mathematical and field-theoretic problem on its own, the higher-spin
program may find motivations in String Theory, quantum gravity and holography, of which we
sketch some elements.

From String Theory

In String Theory, excited states are built as tensor products of oscillators. As an example, the
first excited state of bosonic closed String Theory in 𝑑 = 26 contains a rank-two tensor which can
be split into a rank-two symmetric traceless tensor 𝐺 (`a) (the graviton), a two-form 𝐵[`a ] (the
Kalb-Ramond field) and a scalar 𝜙 (the dilaton). The second excited state is built as the product
of up to 4 oscillators and has a much more complicated spectrum, involving higher representations
of the Lorentz group. Higher-spin excitations appear naturally in String Theory (also in fermionic
theories with both open and closed strings), as the decomposition in irreducible components of the
Lorentz group of higher excited states

|𝑁; 𝑝⟩ = Y`1 · · ·`𝑁𝐿
a1 · · ·a𝑁𝑅

�̃�
`1
−𝑚1 · · · �̃�

`𝑁𝐿
−𝑚𝑁𝐿

𝛼a1
−𝑛1 · · · 𝛼

a𝑁𝑅
−𝑛𝑁𝑅

|0; 𝑝⟩ , (1.1)

with Y`1 · · ·`𝑁𝐿
a1 · · ·a𝑁𝑅

a polarisation tensor and 𝑁 =
∑𝑁𝐿

𝑘=1 𝑚𝑘 =
∑𝑁𝑅

𝑘=1 𝑛𝑘 due to level-matching.
The 𝑁 > 1 states are usually disconsidered in the low-energy regime, because of their mass

𝑀2 =
4
𝛼′

(𝑁 − 1) , (1.2)

which becomes very large1 when 𝛼′ → 0, as opposed to the (super-)gravity multiplet 𝑁 = 1 which
remains massless.

Nevertheless, higher-spin modes are relevant for the UV-complete character of String Theory.
In fact, string scattering amplitudes possess a hidden symmetry relating scattering amplitudes
of states with different spins, as was first observed by Gross in [32]. Moreover, if one probes
the tensionless limit of String Theory 𝛼′ → ∞, higher-spin excitations become massless. This
observationhas led to the conjecture that String Theory could be described as the broken phase
of a higher-spin gauge theory, in which all massless higher-spin excitations are treated equally.
Concerning the treatment of higher-spin excitations in String Theory, and the relation between
String Theory and higher-spin gauge theories, one may refer to [22, 27, 33].

From quantising gravity

The old attempt of quantising gravity using techniques of Quantum Field Theory turned out
to be inconsistent because of divergences requiring the introduction of infinitely many counter-
terms [34], thereby losing predictive power. One way out of this would be to require that a powerful

1Strictly speaking, one needs to compare the string scale
√
𝛼′ to another quantity with dimension of length 𝑅,

furnished by e.g. a curvature. In string compactification, such a length scale is naturally there.
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symmetry fixes the form of all counter-terms, making the theory UV-finite or at least renormalisable.
One may wonder if higher-spin fields have any place within this program: is higher-spin symmetry
powerful enough to cure the UV divergences of gravity, or is it simply making the problem of
quantising gravity more difficult?

Such a procedure indeed finds a realisation in String Theory, where higher-spin excitations of
the string arise naturally as a way to keep the UV behaviour of the string under control. Starting
from General Relativity, one may hope that the introduction of inifinitely many higher-spin fields
would help ‘soften’ the bad UV behaviour of gravity. The problem is therefore to define a theory
extending General Relativity and with manifest higher-spin gauge symmetry.

Such a theory would not only serve as a toy model for the tensionless limit of String Theory
but also as a candidate to quantise gravity from the bottom up (no strings attached, but the end
goal would be to relate this construction to String Theory). The candidate we will study is one of
the simplest as it involves only symmetric fields with arbitrary spin. While this setup qualitatively
differs from String Theory (as the latter also involves fields with mixed symmetry), we expect that
we can learn a lot on the latter by the study of the former.

From holography

One of the distinguishing features of String Theory is its holographic character [35, 36].
Holographic duals of String Theories (e.g. the original IIB / N = 4 SYM duality) usually involve
some large-𝑁 regime of lower-spin theories such as (super-)Yang-Mills, but in accordance with the
intuition on the tensionless limit of String Theory, the putative holographic dual of the tensionless
limit of type IIB String Theory is conjectured to be a theory of higher-spin gravity on AdS5 × 𝑆5

[37].
While a proof of this conjecture seems still far away, there is evidence that Vasiliev’s theory of

massless symmetric gauge fields in AdS has a very simple holographic dual [5, 6], namely a free or
critical (Wilson-Fischer) 𝑂 (𝑁) vector model at large 𝑁 , making it an ideal toy model to study the
holographic correspondence. These models also have interesting phenomenological applications
in condensed-matter physics (the Ising model).

In these notes, we will briefly touch on the holographic dual of AdS higher-spin theory,
explaining in particular the link between the symmetries in the bulk and the boundary. Finally, let
us mention the Gaberdiel-Gopakumar duality between three-dimensional higher-spin gravity and
two-dimensional W𝑁 -minimal models built as Wess-Zumino-Witten models [38, 39].

1.2 Plan

In section 2 we recall the necessary tools from group theory in order to define higher-spin fields
as unitary irreducible representations of the vacuum isometry group of maximally symmetric space-
times. In section 3 we present the metric-like formulation of Fronsdal, which is the simplest way
of formulating the dynamics, and present the general construction of interactions in a Lagrangian
theory. In section 4 we move on to the frame-like formulation, which makes full use of the gauge
symmetries found in the previous sections. This paves the way to section 5 where we explain the
construction of higher-spin symmetry algebras and explain the link between a non-Abelian algebra
and cubic vertices in AdS. Finally, we provide some perspective on the higher-spin program in
section 6. In appendix A, we recall some facts about no-go theorems for interacting higher-spin
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theories, as well as possible ways out, while B.2 and C are technical appendices concerning Young
tableaux manipulation and the realisation of the higher-spin algebra as the enveloping algebra of
conformal isometries, realised on the singleton module.

1.3 Conventions

The dimension of space-time is 𝑑 ≥ 3, we will mostly be interested on the three maximally
symmetric space-times M𝑑 ≃ R𝑑−1,1 (Minkowski), AdS𝑑 (Anti-de Sitter) or dS𝑑 (de Sitter), with
isometry groups 𝐼𝑆𝑂 (𝑑 − 1, 1), 𝑆𝑂 (𝑑 − 1, 2) or 𝑆𝑂 (𝑑, 1). In these notes, 𝑑-dimensional flat
(Minkowski) space-time M𝑑 has mostly-plus metric [𝑎𝑏 = diag(−, +, . . . , +). The ambient space
R𝑑,1, of which the previous space-times are different sections, has dimension 𝑑 + 1. The conformal
boundary of AdS𝑑 has dimension 𝑑 − 1. Indices in M𝑑 or (A)dS𝑑 space-time will be denoted by
Greek indices `, a if they are space-time indices or lowercase Latin letters 𝑎, 𝑏 if they are fibre
indices. In ambient space they will be denoted by uppercase Latin letters 𝐴, 𝐵. We will work
in the symmetric convention: groups of indices separated by a comma are symmetrised. To ease
the notation, we will refrain from using the comma for the generator of Lorentz transformations
𝐽𝑎,𝑏 = 𝐽𝑎𝑏 = 𝐽[𝑎𝑏] and 𝐽𝐴,𝐵 = 𝐽𝐴𝐵 = 𝐽[𝐴𝐵] .

We use the Einstein summation convention for a repeated index appearing once in the covariant
form and once in the contravariant form. We also use the convention that a set of symmetrised
indices (𝑎1𝑎2 . . . 𝑎𝑘) are represented by the shorter notation 𝑎(𝑘). In other words, repeated indices
that are not summed (either all covariant or all contravariant) are symmetrised, dividing by the
minimum number of terms entering the symmetrisation. More details on our conventions and some
reminders of tensor calculus can be found in appendix B.1.

2. Higher-spin particles as unitary irreducible representations of vacuum isometry
algebras

In this part, we will do some brief reminders of group theory that will allow us to define massless
higher-spin particles as irreducible representations of the Poincaré or AdS algebra. Although we
will not focus on the case of dS, most of the results concerning higher-spin representations in AdS
can be extrapolated to dS.

2.1 Minkowski

We will follow Wigner’s induced representations method [40]. We first fix the action of the
generator of translations of 𝐼𝑆𝑂 (𝑑 − 1, 1). For massless representations, the “little group” which
stabilises this action is given by the group of Euclidean isometries 𝐼𝑆𝑂 (𝑑 − 2). Restricting to its
Lorentz subgroup by imposing a trivial action of the (𝑑 − 2)-dimensional translations means that
we are dealing with truly massless particles (as opposed to continuous spin for example) which are
characterised by symmetric and traceless tensors under 𝑆𝑂 (𝑑 − 2). For this part, we will mainly
follow [41].

6



P
o
S
(
M
o
d
a
v
e
2
0
2
2
)
0
0
4

Introduction to higher-spin theories Simon Pekar

2.1.1 Poincaré algebra

The Poincaré algebra iso(𝑑 − 1, 1) reads

𝑖[𝐽𝑎𝑏, 𝐽𝑐𝑑] = [𝑏𝑐 𝐽𝑎𝑑 − [𝑎𝑐 𝐽𝑏𝑑 − [𝑏𝑑 𝐽𝑎𝑐 + [𝑎𝑑 𝐽𝑏𝑐 , (2.1a)
𝑖[𝐽𝑎𝑏, 𝑃𝑐] = [𝑏𝑐 𝑃𝑎 − [𝑎𝑐 𝑃𝑏 , (2.1b)
𝑖[𝑃𝑎, 𝑃𝑏] = 0 , (2.1c)

where 𝐽𝑎𝑏 are Lorentz transformations and 𝑃𝑎 translations. They correspond to the infinitesimal
transformations of the coordinates 𝑥′` = Λ`

a𝑥
a + 𝑎` and iso(𝑑 − 1, 1) is the Lie algebra of the

group 𝐼𝑆𝑂 (𝑑 − 1, 1) ≃ 𝑆𝑂 (𝑑 − 1, 1) ⋉ R𝑑−1,1. In the following, we will sometimes consider a
version of the algebra where the structure constants on the right-hand side of the Lie bracket [·, ·]
are real. This can be achieved by sending the generators to −𝑖 times themselves.

2.1.2 Casimirs of the Poincaré algebra

Elements in the centre of the Universal Envelopping Algebra (more details in section 5.1.1)
are known as Casimir invariants and are used to characterise representations. The algebras of
isometries of maximally symmetric space-times, so(𝑑 − 1, 2), so(𝑑, 1) and iso(𝑑 − 1, 1), all have
the same number of independent Casimirs [42]. For even 𝑑 = 2𝑘 , there are 𝑘 Casimirs of orders 2,
4, . . . , 2𝑘 , while for odd 𝑑 = 2𝑘 + 1, there are 𝑘 + 1 Casimirs of orders 2, 4, . . . , 2𝑘 , 𝑘 + 1.

In 𝑑 = 3 Both Casimirs are quadratic and are given by 𝑃2 = 𝑃𝑎𝑃
𝑎 and𝑊 = 𝜖𝑎𝑏𝑐𝐽𝑎𝑏𝑃𝑐.

In 𝑑 = 4 Classes of irreducible representations of the Poincaré algebra are characterised by its
two Casimirs, the mass-squared and the square of the Pauli-Lubanski pseudo-vector

𝐶2 = −𝑃2 = −𝑃𝑎𝑃
𝑎 , 𝐶4 = 𝑊2 = 𝑊𝑎𝑊

𝑎 , (2.2)

where 𝑊𝑎 = 1
2𝜖

𝑎𝑏𝑐𝑑𝐽𝑏𝑐𝑃𝑑 . The eigenvalues of 𝐶2 and 𝐶4 are usually parameterised as 𝑃2 = −𝑚2

and𝑊2 = 𝑚2𝑠(𝑠 + 1).

Arbitrary 𝑑 ≥ 5 We have more than two Casimirs, given by the mass-squared 𝑃2 = 𝑃𝑎𝑃
𝑎 and

higher products built from the generalisation of the Pauli-Lubanski pseudo-vector [43, 44]

1
2
𝑊𝑎4 · · ·𝑎𝑑 = 𝜖𝑎1 · · ·𝑎𝑑 𝐽𝑎1𝑎2𝑃𝑎3 ,

1
4
𝑊𝑎6 · · ·𝑎𝑑 = 𝜖𝑎1 · · ·𝑎𝑑 𝐽𝑎1𝑎2𝐽𝑎3𝑎4𝑃𝑎5 , · · · . (2.3)

If the dimension is even, then the squares of the previous tensors are Casimir invariants, if the
dimension is odd, then one of them is already a scalar and is an invariant (the one where the
Levi-Civita tensor saturates the indices of the generators).

2.1.3 Wigner’s classification

We follow the method of induced representations by Wigner [40]. We determine the action of
the translations

𝑃𝑎 |𝑝⟩ = 𝑝𝑎 |𝑝⟩ , (2.4)

and look at the subgroup of Lorentz transformations stabilising the vector 𝑝𝑎, called the little group.
The rank of the little group depends on the value of the mass-squared.
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Massless For the massless case, the little group is 𝐼𝑆𝑂 (𝑑 − 2). One can repeat the Wigner
classification for this little group by first specifying the action of the (𝑑−2)-dimensional translations.
Here, because of the Euclidean signature, there are only two cases: non-trivial (given by a vector of
non-zero norm) or trivial. Discarding the case of non-trivial action which gives rise to continuous
(or infinite) spin representations, the ingredient needed to complete the Wigner classification in
this case is to specify the action of the Lorentz subgroup 𝑆𝑂 (𝑑 − 2). In general, it is given by
a tensor 𝑇𝑎1 · · · 𝑎𝑛1 ,𝑏1 · · · 𝑏𝑛2 , · · · ,𝑐1 · · · 𝑐𝑛𝑘 = 𝑇𝑎 (𝑛1 ) ,𝑏 (𝑛2 ) , · · · ,𝑐 (𝑛𝑘 ) characterised by its symmetry in the
indices, given by the Young tableau

Y𝑑−2(𝑛1, 𝑛2, · · · , 𝑛𝑘) =

𝑛1

𝑛2

· · ·
𝑛𝑘 𝑆𝑂 (𝑑−2)

, (2.5)

where 0 < 𝑛𝑘 ≤ · · · ≤ 𝑛1 and 0 ≤ 𝑘 ≤
⌊
𝑑−2

2
⌋

(any tableau with more rows can be dualised using
the Levi-Civita tensor). The number of components of this tableau will be denoted with absolute
value. The conventions are as follows: the indices are symmetrised in each row, traceless inside
of each row and between rows, and the compatibility condition imposes that symmetrisation of the
indices in a row with an index from the following row gives zero. As an example,

𝑇𝑎 (𝑛1 ) ,𝑎𝑏 (𝑛2−1) ,𝑐 (𝑛3 ) = 0 , 𝑇𝑎 (𝑛1 ) ,𝑏 (𝑛2 ) ,𝑏𝑐 (𝑛3−1) = 0 . (2.6)

In 𝑑 = 4, the non-zero tensors are parameterised by an irreducible representation of 𝑆𝑂 (2),
which are all given by Young tableaux of the type

Y2(𝑠) = 𝑠
𝑆𝑂 (2) for 𝑠 ≥ 0 . (2.7)

Indeed, the only non-vanishing tableau with more than one row, Y2(1, 1), can be dualised to a
scalar using the two-dimensional Levi-Civita tensor. All in all, we found that only symmetric fields
propagate in 𝑑 = 4. We can also evaluate the number of propagating degrees of freedom using the
formula

|Y𝑑−2(𝑠) | =
(
𝑑 − 3 + 𝑠

𝑠

)
−
(
𝑑 − 5 + 𝑠
𝑠 − 2

)
=

(𝑑 + 𝑠 − 5)!
𝑠!(𝑑 − 4)! (𝑑 + 2𝑠 − 4) . (2.8)

For 𝑑 = 4 and 𝑠 ≥ 1, this gives |Y2(𝑠) | = 2, meaning that massless symmetric higher-spin fields in
𝑑 = 4 always carry 2 degrees of freedom.

Massive For massive particles, the little group is 𝑆𝑂 (𝑑−1). In 𝑑 = 4, the numbers of propagating
degrees of freedom of a massive symmetric higher-spin field is |Y3(𝑠) | = 2𝑠 + 1.

Other Apart from the vacuum, or zero-momentum representation, there are also “exotic” repre-
sentations of the Poincaré group such as tachyons or continuous spins, which we will not discuss
[40, 41]. For a review of continuous spin representations, and their connection with higher-spin
representations, see [45].

2.2 AdS space-time

Representation theory of AdS is widely different from the one of Minkowski, since the AdS
algebra is semi-simple. However, some representations are present in both classifications, in
particular massless fields of arbitrary spin.

8
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2.2.1 AdS as a maximally symmetric space-time

Similarly to 𝑑-dimensional Minkowski space-time, AdS𝑑 is a space-time of maximal symmetry
(it has 𝑑 (𝑑+1)

2 Killing vectors). We first review its construction as a solution of Einstein’s equations,
as well as a more geometric construction relying on ambient space. Then, we classify the UIR of
the AdS algebra.

Solutions of Einstein’s equations Although Minkowski space M𝑑 is straightforward to define,
this is not so much the case of AdS𝑑 space. Let us, for the sake of completeness, define AdS𝑑 as
the metric �̄� solution to Einstein’s vacuum equations with cosmological constant

𝐺`a [𝑔] + Λ 𝑔 = 0 . (2.9)

It is a space-time of constant curvature, so the only non-vanishing component of the Riemann tensor
is its trace

𝑅[`a ] [𝜌𝜎 ] = − 1
ℓ2 (�̄�`𝜌�̄�a𝜎 − �̄�a𝜌�̄�`𝜎) , (2.10)

where the AdS radius ℓ is related to the cosmological constant as

Λ = − (𝑑 − 1) (𝑑 − 2)
2ℓ2 . (2.11)

Ambient space construction It is also convenient to define AdS𝑑 as a section of 𝑑+1-dimensional
ambient space, given by the constraint

−𝑋2
0 − 𝑋2

𝑑 +
𝑑−1∑︁
𝑖=1

𝑋2
𝑖 = −ℓ2 . (2.12)

We can view AdS as a 𝑑-dimensional hyperboloid embedded into 𝑑 + 1-dimensional flat ambient
space, enjoying 𝑆𝑂 (𝑑 − 1, 2) global symmetry with algebra

𝑖[𝐽𝐴𝐵, 𝐽𝐶𝐷] = [𝐵𝐶 𝐽𝐴𝐷 − [𝐴𝐶 𝐽𝐵𝐷 − [𝐵𝐷 𝐽𝐴𝐶 + [𝐴𝐷 𝐽𝐵𝐶 , (2.13)

where
𝐽𝐴𝐵 = 𝑖(𝑋𝐴 𝜕𝐵 − 𝑋𝐵 𝜕𝐴) . (2.14)

By taking 𝑎 ∈ {0, . . . , 𝑑 − 1} and posing 𝑃𝑎 = ℓ−1 𝐽𝑎𝑑 , we recover the more familiar form of the
AdS algebra

𝑖[𝐽𝑎𝑏, 𝐽𝑐𝑑] = [𝑏𝑐 𝐽𝑎𝑑 − [𝑎𝑐 𝐽𝑏𝑑 − [𝑏𝑑 𝐽𝑎𝑐 + [𝑎𝑑 𝐽𝑏𝑐 , (2.15a)
𝑖[𝐽𝑎𝑏, 𝑃𝑐] = [𝑏𝑐 𝑃𝑎 − [𝑎𝑐 𝑃𝑏 , (2.15b)

𝑖[𝑃𝑎, 𝑃𝑏] =
1
ℓ2 𝐽𝑎𝑏 . (2.15c)

Note that one can recover Poincaré as a limit of flat curvature2 (or large radius) of AdS through
an İnönü-Wigner contraction [46] leaving the Lorentz subalgebra untouched and Abelianising
transvections.

2Formally, one needs to consider the regime of large radius with respect to another dimensionful scale, e.g., the
Planck mass. This limit taken at the level of the Einstein-Hilbert action admits Minkowski space as a solution. In the
following, we will assume that such a length scale is always present (i.e. gravity exists in the bulk).

9
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2.2.2 Unitary irreducible representations of the AdS algebra

In the following, we will focus on lowest-weight irreducible representations of AdS. Let’s take
so(2) ⊕ so(𝑑 − 1) ⊂ so(𝑑 − 1, 2) as a maximally compact subalgebra, with the so(2) part generated
by 𝐸 such that 𝐸† = 𝐸 (real energy) and so(𝑑 − 1) generated by 𝐽𝑖 𝑗 such that 𝐽†

𝑖 𝑗
= −𝐽𝑖 𝑗 . The

generators in the non-compact directions will be called 𝐽±
𝑖

with
(
𝐽±
𝑖

)†
= 𝐽∓

𝑖
. We have the splitting

so(𝑑 − 1, 2) ≃ g+ ⊕ g0 ⊕ g− , (2.16)

where g0 is spanned by 𝐸 and 𝐽𝑖 𝑗 (the Cartan generators associated to this decomposition) and
g± by 𝐽±

𝑖
. Irreducible representations are defined by their eigenvalues on the maximally compact

subalgebra ⊕𝑛∈𝑁 |𝐸𝑛,Y𝑛⟩, with the set 𝑁 possibly being infinite, such that 𝐸0 ≤ 𝐸1 ≤ . . . are
ordered eigenvalues of 𝐸 and the Y𝑛

𝑑−1 characterise the transformation under 𝐽𝑖 𝑗 (the analogue of
the little group in flat space). We define the state with the lowest eigenvalue of 𝐸 to be the lowest
weight (or vacuum in the language of Fock states), i.e. it is annihilated by the lowering operator 𝐽−

𝑖

𝐽−𝑖 |𝐸0,Y0⟩ = 0 . (2.17)

Then, the descendants are
𝐽+𝑖1 . . . 𝐽

+
𝑖𝑚
|𝐸0,Y0⟩ . (2.18)

Unitarity imposes that the squared norm of the state and all such descendants are definite positive.
We find that this condition, for symmetric fields Y0 = Y𝑑−1(𝑠) with 𝑠 > 0 reads

𝐸0 ≥ 𝑠 + 𝑑 − 3 . (2.19)

On the other hand, for a scalar Y0 = •,

𝐸0 ≥ 𝑑 − 3
2

. (2.20)

Note that 𝑃2 is no longer a Casimir of the AdS algebra since it does not commute with transvections.
The quadratic Casimir is instead

𝐶2 |𝐸0,Y0⟩ =
1
2
𝐽𝐴𝐵𝐽

𝐴𝐵 |𝐸0,Y0⟩ = [𝐸0(𝐸0 − 𝑑 + 1) + 𝐶2(so(𝑑 − 1))] |𝐸0,Y0⟩ . (2.21)

where 𝐶2(so(𝑑 − 1)) is the quadratic Casimir of the rotation subalgebra. For totally symmetric
tensors of rank 𝑠,

𝐶2(so(𝑑 − 1)) |𝐸0,Y𝑑−1(𝑠)⟩ = 𝑠(𝑠 + 𝑑 − 3) |𝐸0,Y𝑑−1(𝑠)⟩ . (2.22)

The analogue of a massless spinning field in AdS is one that has the same number of propagating
degrees of freedom as in Minkowski space where the energy saturates the unitarity bound [47].

3. Metric-like formulation

In this section, we will derive the first – and simplest – formulation of the dynamics of free
massless symmetric higher-spin fields for integer spin. It is the Fronsdal formulation [7], which

10
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generalises the Fierz-Pauli action [48]. In the following, indices are raised and lowered with respect
to a background metric �̄�`a , and we have a metric-compatible connection ∇`.

The advantage of the Fronsdal formulation is that it is a clear generalisation of the lower-spin
cases (Maxwell’s theory of electromagnetism and the linearised theory of General Relativity of
Fierz and Pauli). There are however a few inconvenients with this formulation, for instance the fact
that we have to deal with doubly-traceless fields (see section 3.2).

An action principle is also established. We will first have a look at lower-spin theories, namely
Maxwell’s and Einstein’s, before generalising the equations of motion and action to higher-spin,
both in flat and (A)dS space-time. We identify the reducibility parameters of the theory, that is,
the gauge transformations that preserve the vacuum solution. These will play a crucial role in
the algebraic approach of sections 4 and 5. We then move on to the classification of interaction
vertices in a weak-field expansion, within the Noether procedure. At the cubic level, there are
some non-Abelian vertices hinting at a higher-spin algebra, that is constrained by the consistency
of quartic vertices. Finally, we provide some comments on quartic interactions.

3.1 Low-spin examples

We begin by recalling some well-known examples of gauge theories, starting with Maxwell
and linearised General Relativity. We will look at the case of flat space first, then present the
generalisation to curved (AdS) space.

3.1.1 Flat space

We choose the flat Minkowski metric as a background �̄�`a = [`a (and therefore ∇` = 𝜕`).

Spin-1 Maxwell’s equations are formulated in terms of the u(1) gauge potential 𝐴` with

𝜕`𝐹`a [𝐴] = 𝜕2𝐴a − 𝜕` 𝜕 · 𝐴 = 0 , (3.1)

where 𝜕 · 𝐴 = 𝜕`𝐴` and we used the curvature/field-strength tensor

𝐹`a [𝐴] ≡ 2 𝜕[` 𝐴a ] . (3.2)

One can see directly that it is invariant under the following gauge variation

𝛿𝐴` = 𝜕`𝛼 . (3.3)

In 𝑑 ≥ 2 dimensions, we can find the propagating degrees of freedom by reducing the system to
a bunch of Klein-Gordon equations. One can start by imposing the Lorenz3 gauge 𝜕 · 𝐴 = 0 and
fix the residual gauge on the parameter 𝛼 preserving this gauge 𝜕2𝛼 = 0. There are 𝑑 components
in 𝐴` and we imposed two equations by fixing the gauge so the number of propagating degrees of
freedom is 𝑑 − 2.

3Other choices of gauge are useful, e.g. the Coulomb gauge 𝜕𝑖𝐴𝑖 = 0 when studying semi-classical or non-relativistic
regimes of Maxwell’s theory. In the following, we will always remain manifestly Lorentz-covariant.

11
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Spin-2 The equations of motion for a linearised metric tensor ℎ`a (Fierz-Pauli) are

𝑅`a [ℎ] = 0 , (3.4)

by means of the linearised Ricci tensor, i.e. the trace of the linearised Riemann tensor

𝑅`a [ℎ] = 𝜕2ℎ`a − 2 𝜕(`𝜕 · ℎa) + 𝜕`𝜕aℎ′ = 𝜕2ℎ`a − 2 𝜕(`𝐷a) [ℎ] , (3.5)

where 𝜕2 = 𝜕`𝜕
`, ℎ′ = [`a ℎ`a and

𝐷` [ℎ] ≡ 𝜕 · ℎ` − 1
2
𝜕` ℎ

′ . (3.6)

Alternatively, if one knows nothing about General Relativity, one can re-derive this equation of
motion by starting from the two-derivative term 𝜕2ℎ`a and adding traces and divergences such that
this curvature becomes gauge-invariant under

𝛿ℎ`a = 𝜕(`ba) . (3.7)

Exercise: prove that the tensor (3.5) is invariant under (3.7).

Note that this is the linearisation of Einstein’s vacuum equation if the background metric is
already a solution of the full equations, which is the case for Minkowski space-time.

We can find the number of propagating degrees of freedom by imposing the De Donder gauge
𝐷` [ℎ] = 0 and find the residual gauge transformations (i.e. the subset of linearised diffeomor-
phisms) that preserve this gauge. They are given by the harmonic gauge parameters, i.e. satisfying
𝜕2 b` = 0. All in all, we started with 𝑑 (𝑑+1)

2 and imposed 2𝑑 conditions to go back to a harmonic
system so we have (𝑑−1) (𝑑−2)

2 − 1, in accordance with |Y𝑑−2(2) |.
One can fix the gauge even further because both 𝐷` [ℎ] = 0 and 𝜕2b` = 0 carry a Lorentz

index (this does not affect the counting of degrees of freedom, but allows to recast the system in a
more symmetric way). Indeed, on-shell one can impose separately 𝜕 · ℎ` = 0 and ℎ′ = 0, which is
preserved by parameters satisfying 𝜕 · b = 0. Note that one does the same in 𝑑 = 4 by imposing a
transverse-traceless gauge.

The completely reduced system reads

𝜕2ℎ`a = 0 , 𝜕 · ℎ` = 0 , ℎ′ = 0 , (3.8a)
𝜕2b` = 0 , 𝜕 · b = 0 . (3.8b)

3.1.2 (A)dS space

We switch now to space-time of constant curvature, with metric �̄� defined in section 2.2.1 (the
de Sitter case can be recovered by formally sending ℓ2 → −ℓ2 in all formulae) and associated Levi-
Civita connection ∇. The previous analysis remains largely unchanged, with the only modification
being the appearance of terms proportional to the cosmological constant. These arise from the
commutator of two covariant derivatives being non-zero, e.g. for a vector 𝑉𝜌,

[∇`,∇a]𝑉𝜌 = − 2
ℓ2 𝛿

𝜌
[` 𝑉a ] , (3.9)

due to the Riemann tensor taking the expression of eq. (2.10)

12
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Spin-1 Maxwell’s equations in curved space can be written

0 = ∇`𝐹`a [𝐴] = ∇2𝐴a − ∇a𝐷 [𝐴] − [∇`,∇a]𝐴` = ∇2𝐴a − ∇a𝐷 [𝐴] + 𝑑 − 1
ℓ2 𝐴a , (3.10)

in terms of
𝐹`a [𝐴] = 2∇[`𝐴a ] , (3.11)

and 𝐷 [𝐴] = ∇ · 𝐴. Upon gauge fixing, the equations of motion becomes

∇2𝐴` + 𝑑 − 1
ℓ2 𝐴` = 0 , ∇ · 𝐴 = 0 , ∇2𝛼 = 0 , (3.12)

with 𝛿𝐴` = ∇`𝛼.

Spin-2 The equation of motion is the vanishing of the linearised Ricci tensor

0 = 𝑅`a [ℎ] ≡ ∇2ℎ`a − 2∇𝛼∇(`ℎa)𝛼 + ∇`∇aℎ
′ − 2

𝑑 − 1
ℓ2 ℎ`a . (3.13)

This can be recast as

0 = ∇2ℎ`a − 2∇(`𝐷a) [ℎ] +
2
ℓ2

(
ℎ`a − �̄�`aℎ′

)
, (3.14)

with the De Donder tensor 𝐷` [ℎ] = ∇ · ℎ` − 1
2∇`ℎ

′ (note the differences in the mass terms between
this form and eq. (3.13), this is due to the commutation of covariant derivatives). Upon gauge
fixing, the equations of motion read

∇2ℎ`a +
2
ℓ2 ℎ`a = 0 , ∇ · ℎ` = 0 , ℎ′ = 0 , (3.15a)

∇2b` − 𝑑 − 1
ℓ2 b` = 0 , ∇ · b = 0 , (3.15b)

with 𝛿ℎ`a = ∇(` ba) . Note the appearance of the ‘mass-like’ term in eq. (3.13), which is necessary
to guarantee the invariance of the equation of motion under linearised diffeomorphisms.

Exercise: recover the mass-like term in (3.13) by the requirement of gauge-invariance.

3.2 Fronsdal’s equations of motion

After having reviewed in details the spin-1 and 2 cases, one can try to generalise to higher-spins.
In order to remain as close as possible to the case of linearised gravity and write an action principle,
one can start from a completely symmetric, doubly traceless field 𝜙` (𝑠) .

3.2.1 Flat space

For a doubly-traceless field 𝜙` (𝑠) , one defines the Fronsdal tensor [7, 8]

𝐹` (𝑠) [𝜙] = 𝜕2𝜙` (𝑠) − 𝑠 𝜕`𝜕 · 𝜙` (𝑠−1) +
𝑠(𝑠 − 1)

2
𝜕`𝜕`𝜙

′
` (𝑠−2)

= 𝜕2𝜙` (𝑠) − 𝑠 𝜕`𝐷` (𝑠−1) [𝜙] ,
(3.16)

13
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with the De Donder tensor naturally generalising eq. (3.6)

𝐷` (𝑠−1) [𝜙] = 𝜕 · 𝜙` (𝑠−1) −
𝑠 − 1

2
𝜕`𝜙

′
` (𝑠−2) . (3.17)

Fronsdal’s equations in flat space are given by

𝐹` (𝑠) [𝜙] = 0 (e.o.m.) , (3.18)

which are invariant under 𝛿𝜙` (𝑠) = 𝜕`b` (𝑠−1) , with b′` (𝑠−3) = 0. Both the condition that the field
is doubly-traceless and the gauge parameter is traceless are new compared to the usual lower-spin
examples.

Exercise: show that the Fronsdal tensor 𝐹` (𝑠) [𝜙] is invariant under the gauge transformations
𝛿𝜙` (𝑠) = 𝜕`b` (𝑠−1) if and only if the gauge parameter b` (𝑠−1) is traceless.

We want to show that Fronsdal equations of motion propagate the right number of degrees of
freedom, by going completely on-shell. To that end, we proceed like for the linearised spin-2 theory
and fix the gauge by requiring

𝐷` (𝑠−1) [𝜙] = 0 , (3.19)

which is preserved by
𝜕2b` (𝑠−1) = 0 . (3.20)

Furthermore, on-shell we can set the trace of 𝜙` (𝑠) to zero by virtue of 𝛿𝜙′` (𝑠−2) = 𝜕 · b` (𝑠−2) , by
imposing that b is divergence-free. One obtains the set of differential equations known as a Fierz
system

𝜕2𝜙` (𝑠) = 0 , 𝜕 · 𝜙` (𝑠−1) = 0 , 𝜙′` (𝑠−2) = 0 , (3.21a)
𝜕2b` (𝑠−1) = 0 , 𝜕 · b` (𝑠−2) = 0 , b′` (𝑠−3) = 0 , (3.21b)

with 𝛿𝜙` (𝑠) = 𝜕`b` (𝑠−1) .
Let us quickly count the number of propagating degrees of freedom and show it matches those

of a massless field. The Fronsdal tensor has the same symmetries as the field, i.e. it is a rank 𝑠
symmetric doubly traceless tensor with

|Y𝑑 (𝑠) | + |Y𝑑 (𝑠 − 2) | =
(
𝑑 − 1 + 𝑠

𝑠

)
−
(
𝑑 − 5 + 𝑠
𝑠 − 4

)
, (3.22)

while both the gauge fixing using the De Donder tensor 𝐷` (𝑠−1) [𝜙] and the parameters verifying
the residual gauge condition 𝜕2b` (𝑠−1) = 0 are traceless

|Y𝑑 (𝑠 − 1) | =
(
𝑑 − 2 + 𝑠
𝑠 − 1

)
−
(
𝑑 − 4 + 𝑠
𝑠 − 3

)
. (3.23)

In total, we find that there are |Y𝑑 (𝑠) | + |Y𝑑 (𝑠− 2) | − 2|Y𝑑 (𝑠− 1) | propagating degrees of freedom.

Exercise: check that this agrees with the expectation of eq. (2.8).
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3.2.2 (A)dS space

As with the case of linearised gravity, the basic form of the equations of motion does not
change, except for the appearance of “mass-like” terms. In AdS, the Fronsdal tensor becomes

𝐹` (𝑠) [𝜙] = ∇2𝜙` (𝑠) − 𝑠 ∇`𝐷` (𝑠−1) [𝜙] −
1
ℓ2

(
(ℓ𝑚𝑠)2 𝜙` (𝑠) + 𝑠(𝑠 − 1) �̄�` (2) 𝜙′` (𝑠−2)

)
. (3.24)

with
𝐷` (𝑠−1) [𝜙] = ∇ · 𝜙` (𝑠−1) −

𝑠 − 1
2

∇`𝜙
′
` (𝑠−2) , (3.25)

together with 𝛿𝜙` (𝑠) = ∇`b` (𝑠−1) and b′` (𝑠−3) = 0. There is a precise non-zero value of 𝑚𝑠
2 such

that gauge symmetry and the number of propagating d.o.f. are the same as in flat space. This is
given by

(ℓ𝑚𝑠)2 = (𝑠 − 2) (𝑠 + 𝑑 − 3) − 𝑠 . (3.26)

This mass term can be seen to emerge from the representation theory of the (A)dS𝑑 in the case of
completely symmetric bosonic fields [49]

(ℓ𝑚𝑠)2 = 𝐸 (𝐸 − 𝑑 + 1) − 𝑠 = (𝑠 − 2) (𝑠 + 𝑑 − 3) − 𝑠 , (3.27)

for 𝐸 = 𝑠 + 𝑑 − 3.
By completely fixing the gauge, we obtain the (A)dS Fierz system

∇2𝜙` (𝑠) − 𝑚𝑠
2𝜙` (𝑠) = 0 , ∇ · 𝜙` (𝑠−1) = 0 , 𝜙′` (𝑠−2) = 0 , (3.28a)

∇2b` (𝑠−1) − 𝑚′
𝑠

2b` (𝑠−1) = 0 , ∇ · b` (𝑠−2) = 0 , b′` (𝑠−3) = 0 , (3.28b)

with 𝛿𝜙` (𝑠) = ∇`b` (𝑠−1) and
(ℓ𝑚′

𝑠)2 = (𝑠 − 1) (𝑠 + 𝑑 − 3) . (3.29)

Note that, contrary to flat space, when Λ ≠ 0, there exist other discrete values of the “mass-like”
parameters such that the number of propagating degrees of freedom lies between that of a massless
field and that of a massive field. These points are called partially-massless [50, 51] and for spin 𝑠
there are 𝑠 − 1 of them numbered 𝑚𝑠,𝑡 for 𝑡 ∈ {1 . . . 𝑠 − 1}, with 𝑚𝑠,0 = 𝑚𝑠 corresponding to the
massless case. One famous example is partially-massless gravity corresponding to 𝑠 = 2 and 𝑡 = 1,
with (ℓ𝑚2,1)2 = −𝑑 [52–54].

3.3 Reducibility parameters

One can compute the reducibility parameters of the theory, i.e. the gauge variations preserving
the vacuum solution 𝜙` (𝑠) = 0 for 𝑠 ≥ 1 (to be interpreted in the spin-2 case as the isometries of the
backgroun). These are given in the Fronsdal formulation on a maximally symmetric background
by the solutions of the equation

∇`b` (𝑠−1) = 0 , (3.30)

with traceless gauge parameter b` (𝑠−1) . Eq. (3.30) is a tensorial Killing equation, generalising the
usual vectorial4 Killing equation for 𝑠 = 2. In flat space, its solutions are simply given by

b` (𝑠−1) =
𝑠−1∑︁
𝑡=0

𝑀` (𝑠−1) ,a (𝑡 )𝑥
a · · · 𝑥a , (3.31)

4In maximally symmetric space-times, traceless Killing tensors can always be written as symmetrised traceless
products of Killing vectors.
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for constant tensors 𝑀` (𝑠−1) ,a (𝑡 ) which are in irreducible representations of the Lorentz group

[``𝑀` (𝑠−1) ,a (𝑡 ) = 0 , [`a𝑀` (𝑠−1) ,a (𝑡 ) = 0 , [aa𝑀` (𝑠−1) ,a (𝑡 ) = 0 , (3.32)

and the compatibility condition
𝑀` (𝑠−1) ,`a (𝑡−1) = 0 . (3.33)

One can see that the solutions to the Killing equation (3.30) are tensors with the symmetries (this
is also true in (A)dS space-time) [55, 56]

Y𝑑 (𝑠 − 1) , Y𝑑 (𝑠 − 1, 1) , . . . , Y𝑑 (𝑠 − 1, 𝑠 − 1) . (3.34)

In the 𝑠 = 1 case, this gives rise to a single (scalar) generator of u(1) transformations, while in the
𝑠 = 2 case we recover the canonical realisation of translations and Lorentz transformations

b`𝜕` = 𝑎`𝜕` + 𝜔`,a𝑥a𝜕` , (3.35)

for 𝑡 = 0 and 𝑡 = 1 respectively. For higher-spins 𝑠 ≥ 3, they will be interpreted later as being the
complete set of isometry generators of a spin-𝑠 field, in the frame-like formulation.

Note that these are the reducibility parameters of the Fronsdal theory. As we will see later,
there exist also alternative formulations of the dynamics. However, the traceless tensorial Killing
equation (3.30) always seems to pop up in any manifestly Lorentz-covariant formulation, so we will
refer to these symmetries as higher-spin symmetries.

3.4 Fronsdal Lagrangian

For the equations of motion to have a chance of being Lagrangian, it is usually necessary that
they have the same symmetries as the field 𝜙` (𝑠) itself. This is the case in the Fronsdal formulation.
Let the Einstein-like action

𝑆 =
1
2

∫
𝑑𝑑𝑥

√︁
−�̄� 𝜙` (𝑠)𝐺` (𝑠) [𝜙] , (3.36)

where the Einstein-like tensor is

𝐺` (𝑠) [𝜙] = 𝐹` (𝑠) [𝜙] −
𝑠(𝑠 − 1)

4
�̄�` (2)𝐹

′
` (𝑠−2) [𝜙] . (3.37)

Upon variation of the action (3.36) with respect to 𝜙, one recovers Fronsdal’s equations modified
by a trace term, but essentially

𝐺` (𝑠) [𝜙] = 0 ⇔ 𝐹` (𝑠) [𝜙] = 0 , (3.38)

as long as 𝑑 ≥ 3, because 𝐺′′
` (𝑠−4) [𝜙] = 𝐹′′

` (𝑠−4) [𝜙] = 0. One could wonder why considering
this complicated Lagrangian and not directly 𝜙` (𝑠)𝐹` (𝑠) [𝜙]? This is because of gauge invariance.
Indeed,

𝛿b 𝑆 = −
∫

𝑑𝑑𝑥
√︁
−�̄� b` (𝑠−1)𝐵` (𝑠−1) [𝜙] , (3.39)

where the Bianchi tensor

𝐵` (𝑠−1) [𝜙] = ∇ · 𝐺` (𝑠−1) [𝜙] = ∇ · 𝐹` (𝑠−1) [𝜙] −
𝑠(𝑠 − 1)

4
∇`𝐹

′
` (𝑠−2) [𝜙] (3.40)
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is a pure trace when 𝜙′′` (𝑠−4) = 0 (remember that, for a symmetric tensor, the double trace can be
calculated by contracting any two disjoint pairs of indices, e.g. 𝜙aa𝜌𝜌` (𝑠−4) ). This is enough to
ensure that the action (3.36) is gauge invariant, since in eq. (3.39) the gauge parameter b` (𝑠−1) is
traceless, so its contraction with a pure trace gives zero.

Exercise: verify that this is indeed the Bianchi tensor is a pure trace if an only if 𝜙` (𝑠) is
doubly-traceless.

3.5 Alternative metric-like formulations

While the Fronsdal formulation is rather natural, there exist other formulations, each coming
with their own set of benefits and disadvantages.

Maxwell-like One can find another formulation of spin 𝑠 ≥ 2 that generalises the Maxwell action
with traceless fields (instead of doubly traceless fields for (3.16) and (3.36)) [57, 58]. The number
of propagating degrees of freedom of the Maxwell-like theory is the same, although the Lagrangian
and the gauge transformations take a different form

𝑀` (𝑠) [𝜙] = ∇2𝜙` (𝑠) − 𝑠 ∇`∇ · 𝜙` (𝑠−1) − 𝑚2
𝑠 𝜙` (𝑠) , (3.41)

with 𝜙′` (𝑠−2) = 0, 𝛿𝜙` (𝑠) = ∇`b` (𝑠−1) and b′` (𝑠−3) = ∇·b` (𝑠−2) = 0. This theory can be viewed as
a partial gauge fixing of the Einstein-like theory. The differential constraint on the gauge parameter
b` (𝑠−1) being divergence-free is here to ensure that the field 𝜙` (𝑠) remains traceless upon gauge
variation. There is a Lagrangian formulation for the Maxwell-like theory

𝑆 =
1
2

∫ √︁
−�̄� 𝜙` (𝑠)𝑀` (𝑠) [𝜙] . (3.42)

Maxwell-like Lagrangians for theories with mixed-symmetry fields were built in [58], while cubic
interactions were constructed in [59].

The unifying language of de Wit-Friedman curvatures One can recast the previous two for-
mulations (Fronsdal or Einstein-like and Maxwell-like) into a unified setup by defining generalised
curvatures. The de Wit-Friedman curvatures [60] are tensors with an increasing number of deriva-
tives on the field. In the Fierz-Pauli theory for the field ℎ` (2) , we have

Γ0
` (2) = ℎ` (2) , (3.43a)

Γ1
` (2) ,a = 𝜕aℎ` (2) − 2 𝜕`ℎ`a , (3.43b)

Γ2
` (2) ,a (2) = 2

(
𝜕a𝜕aℎ` (2) − 2𝜕`𝜕aℎ`a + 𝜕`𝜕`ℎa (2)

)
, (3.43c)

where Γ0
` (2) is the field ℎ` (2) itself, Γ1

` (2) ,a is proportional to the linearised Christoffel symbol
and Γ2

` (2) ,a (2) is proportional to the linearised Riemann tensor. The latter is invariant under
𝛿ℎ` (2) = 𝜕`b`. The higher-spin generalisation of this is given by

Γ0
` (𝑠) = 𝜙` (𝑠) , Γ𝑚

` (𝑠) ,a (𝑚) = 𝑚 𝜕aΓ
𝑚−1
` (𝑠) ,a (𝑚−1) − 𝑠 𝜕`Γ

𝑚−1
` (𝑠−1)a,a (𝑚−1) , (3.44)
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with the last element of the hierarchy, i.e. for 𝑚 = 𝑠, which plays the role of a gauge-invariant
curvature. The variation of the curvatures under linearised diffeomorphisms is given by

𝛿bΓ
𝑚
` (𝑠) ,a (𝑚) ∝ 𝜕` . . . 𝜕`b` (𝑠−𝑚−1)a (𝑚) (3.45)

and it can be seen that for 𝑚 = 𝑠, the curvature Γ𝑠
` (𝑠) ,a (𝑠) is automatically invariant. The Fronsdal

tensor is built out of the second curvature

𝐹` (𝑠) = [
a (2)Γ2

` (𝑠) ,a (2) , (3.46)

while the Maxwell tensor out of the first curvature

𝑀` (𝑠) = 𝜕
aΓ1

` (𝑠) ,a . (3.47)

Theories built out of higher-order curvatures were formulated in [61]. They are higher-derivative
and have in general a more complicated spectrum than a single massless fields, possibly with
ghosts [62]. They can be recast in a two-derivative form by multiplying with inverse powers of the
Laplacian 1

𝜕2 at the expense of locality.

Compensator form One might wonder what happens if we relax the doubly-traceless condition.
This is known as the unconstrained formulation, and in this case the equations of motion are
non-Lagrangian. Consider a Fronsdal equation for a traceful 𝜙` (𝑠) and gauge parameter b` (𝑠−1)

𝐹` (𝑠) [𝜙] = 3 𝜕`𝜕`𝜕`𝛼` (𝑠−3) , (3.48)

where 𝛼` (𝑠−3) is called a compensator field such that

𝛿𝛼` (𝑠−3) = b
′
` (𝑠−3) . (3.49)

The equations of motion for this system reproduce the same dynamics upon gauge fixing since the
gauge transformation of 𝛼 is algebraic [63–65].

Dual formulations If one performs a dualisation (contraction with a Levi-Civita tensor) of the
field strengths defined in 3.5, one obtains one of the dual formulations of the dynamics, in terms of
fields with mixed symmetry. For gravity, this was studied in [66, 67]. For higher-spin fields, see
[65, 68–70]. The interest in studying these seemingly exotic (and more complicated) formulations
relies on the difficulty of constructing interactions (see the next section). While cubic interactions
can be constructed without problems from the Fronsdal Lagrangian. Even if it has been shown
that for gravity, no quartic interactions can be constructed in this form [71], it might be that
quartic interactions are easier to construct (or only exist in a local form) in the dual formulation of
higher-spin fields. The dual formulation also has the advantage of making some symmetries more
visible.

3.6 Constructing interactions

Now that the free theory is identified, we turn to the task of constructing interactions order
by order, perturbatively in a small coupling constant. We will follow the method of [72], which
reproduces the full Yang-Mills and gravity theory from the free action.
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3.6.1 Noether procedure

In this section, we follow the review [73]. Let us start with a Lagrangian depending on a set of
fields 𝜓 (Maxwell, linearised graviton, Fronsdal etc.) and try to add interaction terms

𝑆[𝜓] = 𝑆2 [𝜓] + 𝑔 𝑆3 [𝜓] + O(𝑔2) , (3.50)

where 𝑆2 [𝜓] is quadratic in 𝜓, 𝑆3 [𝜓] cubic, etc. The action should be invariant under the gauge
transformations

𝛿𝜓 = 𝛿0𝜓 + 𝑔 𝛿1𝜓 + O(𝑔2) , (3.51)

where 𝛿0𝜓 is field-independent, 𝛿1𝜓 is linear in 𝜓 etc. We expand 𝛿𝑆[𝜓] = 0 order-by-order to
obtain equations of the form

𝛿0𝑆2 [𝜓] = 0 , 𝛿1𝑆2 [𝜓] + 𝛿0𝑆3 [𝜓] = 0 , . . . . (3.52)

In the case of Fronsdal theory, 𝑆2 [𝜓] is given by the Fronsdal Lagrangian (3.36), and we have at
lowest order

𝛿0𝜙` (𝑠) = ∇`b` (𝑠−1) , (3.53)

generating Abelian gauge transformations (more on this in the next section). The goal is to find
next 𝛿1 and 𝑆3 that verify these conditions, and possibly higher order conditions, known as quartic
consistency conditions.

Note that as we go on, we have more and more complicated equations with more and more
unknowns (actions and gauge transformations) that are subject to field-redefinition ambiguities (see,
e.g., the discussion in [31]).

3.6.2 Abelian vs non-Abelian gauge transformations

There is a natural associative structure associated to gauge transformations that gives rise to a
bracket. For two gauge transformations 𝛿𝛼 and 𝛿𝛽 acting on a field 𝜓, we define

[𝛿𝛼, 𝛿𝛽]𝜓 = (𝛿𝛼𝛿𝛽 − 𝛿𝛽𝛿𝛼)𝜓 . (3.54)

It will prove interesting to distinguish between two classes of gauge transformations for higher-spin
fields: Abelian and non-Abelian. Abelian gauge transformation 𝛿b are such that

[𝛿b , 𝛿b ′]𝜙` (𝑠) = 0 . (3.55)

It is trivial to see that the gauge transformations 𝛿0 given in (3.53) are Abelian, since they do not
depend on the field. On the other hand, non-Abelian gauge transformations 𝛿𝜒 are such that

[𝛿𝜒, 𝛿𝜒′]𝜙` (𝑠) ≠ 0 . (3.56)

We need at least gauge transformations that are linear in 𝜙 for the right-hand side to be non-zero,
so non-Abelian gauge transformations are generated by 𝛿1 at least. At lowest order, the non-
Abelian gauge transformations evaluated on reducibility parameters are field-independent, and so
they generate a Lie algebra, provided that all necessary fields and gauge parameters are introduced.5

5For higher orders, we will have in general an algebroid since the structure constants are field-dependent.
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In practice, higher-spin self-interaction can only be made gauge invariant if one introduces fields
of all spin [72] (this also emerges as a consistency requirement at the quartic order), pointing
to an infinite-dimensional Lie algebra (see, however [74] for obstructions in the case of spin-3
self-interactions).

Furthermore, the action of gauge transformation is associative on the space of fields, so the
algebra generated by non-Abelian gauge transformations must satisfy the Jacobi identity

[[𝛿𝜒, 𝛿𝜒′], 𝛿𝜒′′]𝜙` (𝑠) + cyclic = 0 . (3.57)

At lowest order, this means simply that the algebra is Lie. However, if we write [𝛿𝜒, 𝛿𝜒′]𝜙 = 𝛿𝛼𝜙

with 𝛼 a function of 𝜙, 𝜒 and 𝜒′ as it is the case for higher-order structure constant, this turns into
a non-trivial statement to be verified at each order for the consistency of the theory. A summary of
the procedure is displayed in table 1.

Order Theory Gauge symmetries Algebraic quantities
Quadratic 𝑆2 given in eq. (3.36) 𝛿0𝜙 = ∇b Spectrum of generators

Cubic 𝑆3 = O(𝜙3) 𝛿1𝜙 = O(𝜒, 𝜙) Structure constants
Quartic 𝑆4 = O(𝜙4) 𝛿2𝜙 = O(𝜒, 𝜙2) Jacobi identity, ?...

Table 1: Strategy for the Noether procedure and translation in terms of the underlying algebraic structure.

The hope is that the identification of a non-Abelian Lie algebra emerging from the non-Abelian
cubic gauge transformations in the case of higher-spin would be enough to completely determine
the fully interacting theory, as is the case in the gauge (or Cartan) formulation of General Relativity.
In the following, we will see that, although a gauge algebra can be defined (only in AdS space-time
within this procedure), some obstructions arise at the level of quartic interactions.

3.6.3 Cubic vertices

We apply the previous procedure to the case of Yang-Mills, gravitational and higher-spin self-
interactions. In the case of higher-spin, the algebra does not close already at the level of spin-3
self-interactions. We then discuss the coupling of higher-spin fields to gravity.

Yang-Mills In the case of Yang-Mills theory (one needs a non-Abelian gauge group for odd spin
self-interactions), one finds that the only cubic terms allowed by gauge invariance and that are not
subject to field redefinition contain either one or three derivatives. The terms with three derivatives
are of Born-Infeld type (constructed from curvatures) and do not deform the algebra of gauge
transformations, while the terms with only one derivative can be shown to generate Yang-Mills
couplings

𝑆3 [𝐴] =
∫

𝑑𝑑𝑥 𝑓𝑎𝑏𝑐𝐴`
𝑎𝜕`𝐴a

𝑏𝐴a𝑐 , (3.58)

for some structure constants 𝑓𝑎𝑏𝑐 that are antisymmetric in the last two indices and

𝛿1𝐴`
𝑎 = − 𝑓 𝑎𝑏𝑐b𝑏𝐴`

𝑐 . (3.59)

By pushing the procedure to the next order, we find the full Yang-Mills theory with a quartic
term, together with the requirement that the structure constants 𝑓𝑎𝑏𝑐 verify the Jacobi identity. The
deformation procedure stops (i.e. 𝛿2 = 0 and 𝑆𝑛≥5 [𝐴] = 0) at this order.
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Gravity For spin-2 self-interaction, the work of deriving the spin-2 self-interaction was first
done in [75–79]. It was shown that the Noether procedure indeed reproduces the weak-field
expansion of Einstein’s General theory of Relativity, together with the correct linearisation of
general diffeomorphism transformations, up to cubic order.

Higher-spin The spin-three self-coupling term constructed through the Noether procedure [80]
was shown [72] to generate non-Abelian gauge transformations that do not close (i.e. they do not
form an algebra). This was the first hint that any candidate higher-spin algebra should be infinite
dimensional.

The classification of all cubic vertices 𝑠1 − 𝑠2 − 𝑠3 for higher-spin fields of spin 𝑠1, 𝑠2 and 𝑠3

was performed in [9, 74, 81–92], see also [22, 59]. One remarkable feature is that, in flat space the
number of derivatives for the cubic coupling to gravity (i.e. of the form 𝑠 − 𝑠 − 2) is bounded by
below. Indeed one can try an Ansatz of the form

𝑆2 [ℎ] + 𝑆2 [𝜙] + 𝑔
∫

𝑑𝑑𝑥 𝑊` (2) ,a (2) 𝛽
` (2) ,a (2) (𝜙, 𝜙) , (3.60)

where 𝑆2 [ℎ] and 𝑆2 [𝜙] are the Fierz-Pauli and Fronsdal actions respectively, 𝑊` (2) ,a (2) is the
linearised (spin-2) Weyl tensor and 𝛽` (2) ,a (2) is a tensorial expression quadratic in higher-spin field
𝜙` (𝑠) . It turns out that this expression is the most general one for a 𝑠 − 𝑠 − 2 cubic coupling (since
the spin-2 free equation of motion sets the linearised Ricci to zero, only the Weyl can contribute)
and can never be gauge invariant, for any choice of 𝛽` (2) ,a (2) .

In AdS instead, this type of cubic vertex can be made gauge invariant by adding terms with
higher derivatives. This is known as the Fradkin-Vasiliev mechanism (see [4] or [1] for a review,
while the uniqueness of the Fradkin-Vasiliev mechanism was proven in [88]). The structure of cubic
vertices with gravity is the following

# of derivatives 2 4 · · · 2𝑠 − 4 2𝑠 − 2 2𝑠 2𝑠 + 2
Flat × × · · · × ✓ ✓ ✓

(A)dS ✓ ✓ · · · ✓ ✓ ✓ ✓

Table 2: Cubic vertices for the coupling of a spin 𝑠 > 2 field with gravity. The 2𝑠 and 2𝑠 + 2-derivative
vertices are of Born-Infeld type. Only the 2𝑠 − 2 vertex is non-Abelian and starting from it, one is able
to reconstruct the tail of lower-derivative terms in (A)dS from gauge invariance, while in flat space it is
automatically gauge-invariant. For 𝑠 > 2 in flat space, there is no minimal (2-derivative) deformation of
the Fronsdal Lagrangian coupled to gravity, in agreement with the Weinberg low-energy theorem A.1, while
such a 2-derivative coupling exists when Λ ≠ 0 as a consequence of [∇,∇] ≠ 0. In flat space and in the
light-cone formulation, a 2-derivative vertex has been found [81, 93, 94] and is at the centre of the light-cone
formulation of higher-spin gravity [95].

The non-Abelian cubic vertex with (2𝑠 − 2) derivatives hints at a (non-Abelian) algebra of
gauge transformations. This algebra will play a central role in the frame-like formulation of the
dynamics, see section 4. The full set of cubic vertices arising from the gauging of the (AdS)
higher-spin algebra are presented in [2, 4], while their relations with CFT 3-point functions in the
holographic setup was summarised in [96].
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3.6.4 Beyond cubic vertices

While the cubic story is well under control, some obstructions arise at the level of quartic
coupling (see [23, 97–99] for a summary). The difficulty is four-fold:

• first, there is a technical difficulty due to the increasing number of terms that we have to
consider for quartic vertices,

• secondly, quartic vertices are subject to field-redefinition ambiguities,

• thirdly, there is a difficulty to construct perturbatively local quartic vertices within the Noether
procedure,

• lastly, as we will briefly discuss below, there is evidence supporting the non-locality of the
theory from CFT arguments.

The CFT non-locality argument [98, 99] is as follows: within the AdS/CFT correspondence,
higher-spin bulk 𝑛-point interactions can be matched with CFT 𝑛-point correlation functions. The
conjectured CFT dual of Vasiliev theory being particularly simple [5, 6], correlators are easily
computed. One can then compare, in a certain regime of the kinematical data, the CFT 4-point
function and AdS quartic amplitudes arising from tree-level exchange diagrams in the 𝑠, 𝑡 and 𝑢
channels. The difference between the two should correspond to the ‘truly quartic’ contribution,
i.e. the contact term. Surprisingly, one finds that the contribution of the contact term to the total
amplitude is proportional to the contribution of the exchange diagrams, which is a non-local object
since it involves interactions computed at two points in AdS with separation ≫ ℓ). Whether this
indicates a complete breakdown of the local character of the higher-spin theory, or that a different
formulation should be found is still not completely clear.

Note that there are also different approaches to writing down interactions, for instance the
BV-BRST one (see [100–106]).

4. Frame-like formulation

Having presented the metric-like formulation, and highlighted the existence of an underlying
non-Abelian gauge algebra responsible for the non-Abelian cubic vertices coupling higher-spin
fields to gravity, we now begin our quest for an independent definition of a higher-spin algebra
that would capture the known non-Abelian cubic vertices and help towards the definition of a fully
interacting theory.

We begin with some reminders of Einstein-Cartan theory with and without a cosmological
constant, putting emphasis on the linearised theory. Then, we explain how to recover the metric-
like Fronsdal theory from a generalisation of the Cartan approach to gravity setup, using gauge
potentials with higher indices. Contrary to the linearised spin-2 case, more fields are necessary
to make the formulation gauge-invariant and we explain how the extra fields relate to the Fronsdal
field, as well as their role in respect to the symmetry generators of the free theory found in section
3.3. We conclude by giving the initial data for a putative higher-spin algebra as well as a tentative
construction.

In this section, we will deal with differential forms. For example, a 1-form 𝑀 = 𝑀`𝑑𝑥
` has

exterior derivative 𝑑𝑀 = 𝜕[`𝑀a ] 𝑑𝑥
` ∧ 𝑑𝑥a .
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4.1 Reminder: (linearised) gravity à la Cartan

The Cartan view of General Relativity is that of local observers with their own coordinate
frames. In mathematical terms, gravity is formulated geometrically as a theory over a principal
bundle, whose base manifold is space-time and whose fibre is Lie-algebra-valued. Space-time is
a model (homogeneous) coset space, and the Einstein-Cartan theory is built using the curvature of
the Ehresmann connection associated to Lorentz transformations.

In physical terms, we write gravity as a gauge theory based on the Poincaré (or (A)dS) algebra,
and gauge symmetry is given by local Lorentz transformations. From the connection one-form
known as the vielbein 𝑒`

𝑎 and spin connection 𝜔`
𝑎𝑏, associated to translations and Lorentz

transformations respectively, one can build the quantities 𝑔`a = 𝑒`
𝑎𝑒a

𝑏[𝑎𝑏 and 𝑒`𝑎𝑒a𝑏𝑅`a
𝑎𝑏,

invariant under local Lorentz transformations and interpreted as the metric and the Riemann tensor.

4.1.1 Flat space

Let’s start again with a real form of the Poincaré algebra, where we eliminated the factor of 𝑖
in (2.1). The indices of the generators whose indices will now be named as fibre indices.

[𝐽𝑎𝑏, 𝐽𝑐𝑑] = [𝑏𝑐 𝐽𝑎𝑑 − [𝑎𝑐 𝐽𝑏𝑑 − [𝑏𝑑 𝐽𝑎𝑐 + [𝑎𝑑 𝐽𝑏𝑐 , (4.1a)
[𝐽𝑎𝑏, 𝑃𝑐] = [𝑏𝑐 𝑃𝑎 − [𝑎𝑐 𝑃𝑏 , (4.1b)
[𝑃𝑎, 𝑃𝑏] = 0 , (4.1c)

with flat Minkowski metric [𝑎𝑏. We introduce a gauge potential taking values in this algebra

𝐴` = 𝑒`
𝑎𝑃𝑎 +

1
2
𝜔`

𝑎𝑏𝐽𝑎𝑏 , (4.2)

where we require that 𝑒`𝑎 be non-degenerate (local frame), and gauge parameters

b = b𝑎𝑃𝑎 +
1
2
_𝑎𝑏𝐽𝑎𝑏 , (4.3)

such that 𝛿𝐴` = 𝐷`b = 𝜕`b + [𝐴`, b]. The curvature of the gauge potential is 𝐹 = 𝐷𝐴 =

𝑑𝐴 + 1
2 [𝐴, 𝐴], or in components

𝐹`a = 2 𝜕[`𝐴a ] + [𝐴`, 𝐴a] = 𝑇`a𝑎𝑃𝑎 +
1
2
𝑅`a

𝑎𝑏𝐽𝑎𝑏 , (4.4)

with

𝑇`a
𝑎 = 2𝐷 [` 𝑒a ]

𝑎 = 2 𝜕[` 𝑒a ]𝑎 + 2𝜔[`
𝑎𝑏 𝑒a ]𝑏 , (4.5a)

𝑅`a
𝑎𝑏 = 2𝐷 [` 𝜔a ]

𝑎𝑏 = 2 𝜕[` 𝜔a ]
𝑎𝑏 + 2𝜔[`

𝑐𝑎 𝜔a ]𝑐
𝑏 , (4.5b)

and

𝛿𝑒`
𝑎 = 𝜕` b

𝑎 + 𝜔`
𝑎
𝑏 b

𝑏 − _𝑎𝑏 𝑒`𝑏 , (4.6a)
𝛿𝜔`

𝑎𝑏 = 𝜕` _
𝑎𝑏 + 2𝜔`

𝑐[𝑎 _𝑏]𝑐 . (4.6b)

In the case of gravity, it is standard to eliminate the spin connection while keeping the vielbein
(representing the metric). This can be achieved by setting𝑇`a𝑎 = 0 (torsionless) and build an action
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which is invariant under local Lorentz transformations (and general coordinate redefinition). This
is the Einstein-Cartan action

𝑆EC =
1

16𝜋𝐺

∫
𝑑𝑑𝑥 det(𝑒) 𝑒`𝑎𝑒a𝑏𝑅`a

𝑎𝑏 , (4.7a)

=
1

(𝑑 − 2)!
1

16𝜋𝐺

∫
𝜖𝑎1 · · ·𝑎𝐷

(
𝑑𝜔𝑎1𝑎2 + 𝜔𝑏𝑎1 ∧ 𝜔𝑏

𝑎2
)
∧ 𝑒𝑎3 ∧ · · · ∧ 𝑒𝑎𝐷 . (4.7b)

To prove that this action is equivalent to the Einstein-Hilbert action, we vary with respect to 𝜔`
𝑎𝑏

and take the wedge product with one extra vielbein to recover the torsion constraint

𝑇`a
𝑎 = 0 (e.o.m.) , (4.8)

which we solve as
𝜔`

𝑎𝑏 = 2 𝑒𝜌 [𝑎𝜕[`𝑒𝜌]𝑏] − 𝑒`𝑐𝑒𝜌𝑎𝑒a𝑏𝜕[𝜌𝑒a ]𝑐 . (4.9)

Let us stress that the torsionless condition is an equation of motion obtained from the Einstein-
Cartan action. Defining 𝑔`a = 𝑒`

𝑎 𝑒a
𝑏 [𝑎𝑏, it then becomes an interesting exercise to plug back

the expression for 𝜔`
𝑎𝑏 inside the action to find the Einstein-Hilbert action.

Exercise: check that the metric 𝑔`a = 𝑒`
𝑎 𝑒a

𝑏 [𝑎𝑏 and the action (4.7) are invariant under
the gauge transformations (4.6) with parameter _𝑎𝑏 (prove first that the determinant det(𝑒)
is gauge invariant, and that 𝑅`a

𝑎𝑏 transforms as a tensor in its fibre indices).

Linearised gravity Let us delve further on the linearised case. Let’s write

𝑒𝑎 = ℎ𝑎 + 𝑒𝑎 , 𝜔𝑎𝑏 = 0 + �̃�𝑎𝑏 , (4.10)

with ℎ`𝑎 = 𝛿`
𝑎 and forget about the tilde. The expansion of the action (4.7) up to quadratic order

in the fields 𝑒 and 𝜔 is, up to a pre-factor,∫
𝜖𝑎1 · · ·𝑎𝑑

(
𝑑𝑒𝑎1 + 1

2
ℎ𝑏 ∧ 𝜔𝑏𝑎1

)
∧ 𝜔𝑎2𝑎3 ∧ ℎ𝑎4 ∧ · · · ℎ𝑎𝑑 . (4.11)

Varying it with respect to 𝜔 yields the equation of motion

𝑑𝑒𝑎 + ℎ𝑏 ∧ 𝜔𝑏𝑎 = 0 (e.o.m.) , (4.12)

which is equivalent to the vanishing of the linearised torsion. This action has an obvious gauge
symmetry given by 𝛿𝑒𝑎 = 𝑑b𝑎 that was absent in the non-linear action. In other words, linearised
diffeomorphisms are a gauge symmetry of the linearised Einstein Cartan action. Since there is an
algebraic gauge transformation

𝛿𝑒`
𝑎 = −_𝑎𝑏 ℎ`𝑏 = _`

𝑎 , (4.13)

we can exploit completely local Lorentz invariance to choose the metric gauge

𝑒 [𝑏;𝑎] = 0 (gauge fixing) , (4.14)

24



P
o
S
(
M
o
d
a
v
e
2
0
2
2
)
0
0
4

Introduction to higher-spin theories Simon Pekar

where the notation 𝑒𝑏;𝑎 = [`𝑏 𝑒`
𝑎 is here to suggest that, in the linearised theory, we can treat the

frame and the world indices on the same footing, but that 𝑒`𝑎 has no particular symmetry. Therefore,
the degrees of freedom of the linearised metric are already accessible6 in 𝑒`𝑎 and it should come
as no surprise that, upon imposing the vanishing of the torsion obtained by varying with respect to
𝜔`

𝑎𝑏, we obtain the Fierz-Pauli action for the linearised spin-2 fluctuation ℎ`a = 2 ℎ (`𝑎 𝑒a) 𝑎.
Note also that studying the integrability of the torsion equation (4.12) gives the Bianchi identity

0 = 𝑑

(
𝑑𝑒𝑎 + ℎ𝑏 ∧ 𝜔𝑏𝑎

)
= −ℎ𝑏 ∧ 𝑑𝜔𝑏𝑎 =

1
2
ℎ𝑏 ∧ 𝑅𝑎𝑏 , (4.15)

where the linearised curvature is 𝑅𝑎𝑏 = 2 𝑑𝜔𝑎𝑏 and we used 𝑑2 = 0 as well as 𝑑ℎ𝑏 = 0. The
equation ℎ𝑏 ∧ 𝑅𝑎𝑏 = 0 is also equivalent, upon expressing 𝜔𝑎𝑏 as a function of the linearised
vielbein, to setting to zero the trace of the linearised Riemann tensor, which is the equation of
motion imposed by the Fierz-Pauli action.

4.1.2 (A)dS space-time

We now turn to the case of (A)dS space-time. The previous results will be largely unaffected by
the presence of the cosmological constant. Indeed, gauging the AdS algebra instead of the Poincaré
one only introduces an extra term appearing in the curvature 𝑅`a

𝑎𝑏 → 𝑅`a
𝑎𝑏 + 2

ℓ2 𝑒 [`
𝑎𝑒a ]

𝑏.
Local Lorentz transformations are the same. One can then reconstruct the Einstein-Hilbert action
with cosmological constant by the requirement that the equations of motion reproduce Einstein’s
equations with a cosmological constant.

In the linearised case, one can choose a background ℎ𝑎 and 𝜛𝑎𝑏 (we will again drop the tilde)

𝑒𝑎 = ℎ𝑎 + 𝑒𝑎 , 𝜔𝑎𝑏 = 𝜛𝑎𝑏 + �̃�𝑎𝑏 , (4.16)

where the background vielbein ℎ𝑎 and covariant derivative ∇ verify

∇ℎ𝑎 = 0 , ∇2𝑠𝑎1 · · ·𝑎𝑠 = − 1
ℓ2

(
ℎ𝑎1 ∧ ℎ𝑏 ∧ 𝑠𝑏𝑎2 · · ·𝑎𝑠 + · · · + ℎ𝑎𝑠 ∧ ℎ𝑏 ∧ 𝑠𝑎1 · · ·𝑎𝑠−1𝑏

)
, (4.17)

for any 𝑝-form 𝑠𝑎1 · · ·𝑎𝑠 (no particular symmetry on the fibre indices is assumed), where the linearised
covariant derivative is defined as ∇ = 𝑑 +𝜛.7

As an example, let us write the vanishing of the linearised torsion

∇𝑒𝑎 + ℎ𝑏 ∧ 𝜔𝑏𝑎 = 0 (e.o.m.) . (4.18)

By studying the integrability of the previous equation under ∇, we get the Bianchi identity

∇𝑇𝑎 = 2
(
∇2𝑒𝑎 − ℎ𝑏 ∧ ∇𝜔𝑏𝑎

)
= ℎ𝑏 ∧

(
𝑅𝑎𝑏 + 4

ℓ2 ℎ
𝑎 ∧ 𝑒𝑏

)
, (4.19)

where 𝑅𝑎𝑏 = 2∇𝜔𝑎𝑏 = 2
(
𝑑𝜔𝑎𝑏 + 2𝜛𝑐[𝑎 ∧ 𝜔𝑐

𝑏] ) . For 𝑇𝑎 = 0, this gives a second equation
of motion, which is the consequence of the zero torsion condition, and is precisely the linearised
Fierz-Pauli equation of motion upon replacing 𝜔 by its expression in terms of 𝑒.

6The linearised metric reads ℎ`a = 𝑔`a − [`a = (ℎ`𝑎 + 𝑒`𝑎) (ℎa𝑏 + 𝑒a𝑏) [𝑎𝑏 − [`a = 2 ℎ (`𝑎 𝑒a) 𝑎 + O(𝑒2).
7What we mean with this notation is that there is a non-zero spin connection piece in the covariant derivative, acting

on the fibre indices, e.g., ∇𝑇𝑎
𝑏 = 𝑑𝑇𝑎

𝑏 +𝜛𝑐
𝑎 ∧ 𝑇𝑐𝑏 −𝜛𝑐

𝑏 ∧ 𝑇𝑎
𝑐 .
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On the other hand, if one wants to generalise the action (4.11), one needs to be more careful.
Upon replacing the exterior derivative 𝑑 with a covariant exterior derivative ∇, one can see that
the action is no longer invariant under the transformations 𝛿𝜔𝑎𝑏 = ∇_𝑎𝑏. This can be cured by
introducing terms proportional to the cosmological constant of the form

1
ℓ2

∫
𝜖𝑎1...𝑎𝑑𝑒

𝑎1 ∧ 𝑒𝑎2 ∧ ℎ𝑎3 ∧ · · · ∧ ℎ𝑎𝑑 , (4.20)

which do not affect the torsionless condition, since they are independent of 𝜔𝑎𝑏.

Exercise: find the proportionality constant in front of the gauge-restoring term (4.20) such
that the total action is gauge-invariant.

4.2 Fronsdal’s equations from vielbein and spin connection

The vielbein and spin-connection are the bread and butter of gravity in the Cartan form.
The former contains the physical degrees of freedom while the latter is purely auxiliary and is
related to the former via the torsion constraint. The equations of motion are expressed in terms of
covariant quantities (while the action is gauge-invariant), and the curvature of the spin-connection
is conveniently two-derivative in terms of the vielbein. We will now explain how to extend this two-
field construction to higher-spins. While the spirit of the construction remains the same, contrary
to gravity the higher-spin connection is not completely determined in terms of the higher vielbein
via a torsion constraint, but the remaining portion is pure gauge.

4.2.1 Flat space

One rather unnatural feature of the Fronsdal equation is the fact that we have to deal with fields
which are doubly traceless. This has however a natural interpretation in the frame formulation.
We can guess that the correct embedding of a Fronsdal field inside of a generalised frame has one
space-time index and is symmetric and traceless in its fibre indices. By converting space-time
indices to fibre via the background vielbein ℎ`𝑎 = 𝛿`

𝑎, the frame field 𝑒𝑏;𝑎 (𝑠−1) has the symmetry
of the diagrams given by (see also (B.15))

𝑒𝑏;𝑎 (𝑠−1) ∼ ⊗ 𝑠 − 1 = 𝑠 ⊕ 𝑠 − 2 ⊕ 𝑠 − 1
, (4.21)

that is to say, it contains a traceless symmetric part of rank 𝑠, a traceless symmetric part of rank 𝑠−2
and a traceless hook component. The two symmetric parts can be combined to form a Fronsdal
field 𝜙𝑎 (𝑠) = 𝑒𝑎;𝑎 (𝑠−1) , which is doubly-traceless, since any double trace will necessarily involve
(at least) a single trace in the fibre indices, which vanishes by hypothesis. The field 𝜙𝑎 (𝑠) indeed
transforms in the expected way, with a symmetric and traceless gauge parameter b𝑎 (𝑠−1) such that

𝛿𝑒𝑎;𝑎 (𝑠−1) = 𝜕𝑎b𝑎 (𝑠−1) . (4.22)

Yet, the field 𝑒𝑏;𝑎 (𝑠−1) contains more components than just a Fronsdal field. Let us write an action
which generalises the linearised Einstein-Cartan action of eq. (4.11)∫

𝜖𝑎1...𝑎𝑑

(
𝑑𝑒𝑎1𝑏 (𝑠−2) − 1

2
ℎ𝑐 ∧ 𝜔𝑎1𝑏 (𝑠−2) ,𝑐

)
∧ 𝜔𝑏 (𝑠−2)

𝑎2,𝑎3 ∧ ℎ𝑎4 ∧ · · · ∧ ℎ𝑎𝑑 , (4.23)
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formulated in terms of the generalised vielbein 𝑒𝑎 (𝑠−1) and a ‘spin connection’ 𝜔𝑎 (𝑠−1) ,𝑏. This
action actually does not depend on the hook component of 𝑒𝑏;𝑎 (𝑠−1) , which is manifest in the fact
that it is gauge invariant under the transformations

𝛿𝑒𝑎 (𝑠−1) = 𝑑b𝑎 (𝑠−1) − ℎ𝑏_𝑎 (𝑠−1) ,𝑏 , 𝛿𝜔𝑎 (𝑠−1) ,𝑏 = 𝑑_𝑎 (𝑠−1) ,𝑏 . (4.24)

This allows one to set to zero the unwanted degrees of freedom by imposing a metric-like gauge,

𝑒 [𝑏;𝑎]𝑎 (𝑠−2) = 0 (gauge fixing) . (4.25)

Varying the action with respect to 𝜔, we find the following torsion constraint

𝑇𝑎 (𝑠−1) ≡ 𝑑𝑒𝑎 (𝑠−1) − ℎ𝑏 ∧ 𝜔𝑎 (𝑠−1) ,𝑏 = 0 (e.o.m.) , (4.26)

which allows to express some components of 𝜔 as a function of the derivative of 𝑒. The field
𝜔𝑎 (𝑠−1) ,𝑏 has actually more components than the ones fixed by the vanishing of the torsion, but
they do not enter the action (we will come back to this shortly). When putting the expression for 𝜔
back inside of the action, we should recover the Fronsdal action. Alternatively, one can check the
integrability of eq. (4.26)

0 = 𝑑𝑇𝑎 (𝑠−1) = 𝑑
(
𝑑𝑒𝑎 (𝑠−1) − ℎ𝑏 ∧ 𝜔𝑎 (𝑠−1) ,𝑏

)
= ℎ𝑏 ∧ 𝑑𝜔𝑎 (𝑠−1) ,𝑏 , (4.27)

and one should obtain the Fronsdal equation of motion. This can either be verified directly, or can
be argued on more general grounds, as follows:

• the field 𝑒𝑎 (𝑠−1) (after gauge fixing the hook component to zero) has the same symmetries
and gauge transformations as a Fronsdal field 𝜙𝑎 (𝑠) ,

• the components of 𝜔𝑎 (𝑠−1) ,𝑏 that are expressed in terms of 𝜙𝑎 (𝑠) are first-derivative,

• the action is quadratic in 𝜙𝑎 (𝑠) , contains two derivative and it is gauge invariant,

so it must be the Fronsdal action (or vanish identically).

Exercise (harder): show that the equations of motion are indeed those of Fronsdal.

4.2.2 (A)dS space

As was the case for gravity, if one replaces the exterior derivative with a covariant one, the
action ∫

𝜖𝑎1...𝑎𝑑

(
∇𝑒𝑎1𝑏 (𝑠−2) − 1

2
ℎ𝑐 ∧ 𝜔𝑎1𝑏 (𝑠−2) ,𝑐

)
∧ 𝜔𝑏 (𝑠−2)

𝑎2,𝑎3 ∧ ℎ𝑎4 ∧ · · · ∧ ℎ𝑎𝑑 (4.28)

is no longer gauge invariant under variations involving _𝑎 (𝑠−1) ,𝑏. This can be corrected by adding
terms of the form

1
ℓ2

∫
𝜖𝑎1...𝑎𝑑𝑒

𝑎1𝑏 (𝑠−2) ∧ 𝑒𝑎2
𝑏 (𝑠−2) ∧ ℎ𝑎3 ∧ · · · ∧ ℎ𝑎𝑑 , (4.29)
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which do not affect the torsionless condition, since they do not involve 𝜔𝑎 (𝑠−1) ,𝑏. The variation
with respect to the latter yields the usual equation of motion8

𝑇𝑎 (𝑠−1) ≡ ∇𝑒𝑎 (𝑠−1) − ℎ𝑏 ∧ 𝜔𝑎 (𝑠−1) ,𝑏 = 0 (e.o.m.) . (4.30)

Its integrability under ∇ gives

0 = ∇𝑇𝑎 (𝑠−1) = ∇2𝑒𝑎 (𝑠−1) + ℎ𝑏 ∧ ∇𝜔𝑎 (𝑠−1) ,𝑏 = ℎ𝑏 ∧ 𝑇𝑎 (𝑠−1) ,𝑏 , (4.31)

where the second torsion 𝑇𝑎 (𝑠−1) ,𝑏 is defined as

𝑇𝑎 (𝑠−1) ,𝑏 = ∇𝜔𝑎 (𝑠−1) ,𝑏 + 1
ℓ2𝜎+

(
ℎ𝑏 ∧ 𝑒𝑎 (𝑠−1)

)
, (4.32)

and where 𝜎+ (. . . ) implements the projection of the indices to match the symmetry of the left-hand
side. From there, one can plug back in the action and verify that it is equivalent to the Fronsdal
Lagrangian in (A)dS.

4.3 Complete set of auxiliary fields from the reducibility parameters

As advertised, the equations (4.26) and (4.27) are actually the first of a long series, which is
due to the fact that the spin connection has more components than the ones fixed by the torsion
constraint. This is also closely linked to the reducibility parameters, aka the vacuum-preserving
symmetries of the theory, described in section 3.3.

4.3.1 Flat space

In order to remove the extra component of 𝑒𝑏;𝑎 (𝑠−1) , we introduced a new gauge parameter
_𝑎 (𝑠−1) ,𝑏 which precisely has the structure of a hook, such that 𝛿𝑒`𝑎 (𝑠−1) = −[`𝑏_𝑎 (𝑠−1) ,𝑏. We
can then algebraically fix the hook component in 𝑒`𝑎 (𝑠−1) to zero, similarly to the metric gauge
in linearised Cartan gravity. Since each new gauge parameter are associated to a symmetry, we
have a new generator 𝑍𝑎 (𝑠−1) ,𝑏, and a new field 𝜔`

𝑎 (𝑠−1) ,𝑏 whose components are given by the
right-hand-side of (B.16) for 𝑡 = 1. The only gauge-invariant equation that we can impose at this
stage is

𝑑𝑒𝑎 (𝑠−1) − ℎ𝑏 ∧ 𝜔𝑎 (𝑠−1) ,𝑏 = 0 (by hand) , (4.33)

with the gauge transformation
𝛿𝜔𝑎 (𝑠−1) ,𝑏 = 𝑑_𝑎 (𝑠−1) ,𝑏 . (4.34)

This is precisely the equation of motion (4.26) that we derived from the action (4.21). However,
the field 𝜔𝑎 (𝑠−1) ,𝑏 itself has more components than the ones we can express in terms of 𝑑𝑒𝑎 (𝑠−1)

(this can be observed by using rules for the tensor product given in appendix B.2). Upon imposing
eq. (4.33) (which we will refer to as the first torsion constraint), one can find that all components of
𝜔𝑎 (𝑠−1) ,𝑏 are expressed in terms of 𝑑𝑒𝑎 (𝑠−1) , except for the component9

𝑠 − 1
. (4.35)

8The gauge variation of 𝜔𝑎 (𝑠−1) ,𝑏 also picks up a term proportional to b and linear in the cosmological constant, as
is the case of (linearised) AdS gravity.

9For 𝑠 = 2, this component is absent and there is a one-to-one correspondence between the components of the spin
connection 𝜔`

[𝑎𝑏] and the exterior derivative of the vielbein 𝜕[` 𝑒a ]𝑎 .
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This can be inferred by comparing the components of 𝜔𝑎 (𝑠−1) ,𝑏, given by the right-hand-side of
(B.16) for 𝑡 = 1 and those of 𝑑𝑒𝑎 (𝑠−1) given by eq. (B.18).

In order not to introduce additional degrees of freedom (we already have enough to describe
a Fronsdal field), this component must be gauged away. The idea is to introduce yet another set of
gauge parameters and fields to algebraically gauge away this new component, etc. and repeat the
process until all components of all fields are accounted for (either zero or fixed to zero by torsion
constraint). This procedure yields a chain of torsion equations

𝑇𝑎 (𝑠−1) ,𝑏 (𝑡 ) ≡ 𝑑𝜔𝑎 (𝑠−1) ,𝑏 (𝑡 ) − ℎ𝑏 ∧ 𝜔𝑎 (𝑠−1) ,𝑏 (𝑡+1) = 0 (e.o.m.) , (4.36)

for all 𝑡 ∈ {0, . . . , 𝑠 − 2}, with

𝛿𝜔𝑎 (𝑠−1) ,𝑏 (𝑡 ) = 𝑑_𝑎 (𝑠−1) ,𝑏 (𝑡 ) − ℎ𝑏_𝑎 (𝑠−1) ,𝑏 (𝑡+1) , (4.37)

and does indeed stop, when the last field and gauge parameter are introduced, with two rows of
frame indices

𝑑𝜔𝑎 (𝑠−1) ,𝑏 (𝑠−2) − ℎ𝑏 ∧ 𝜔𝑎 (𝑠−1) ,𝑏 (𝑠−1) = 0 (e.o.m.) , (4.38)

with
𝛿𝜔𝑎 (𝑠−1) ,𝑏 (𝑠−1) = 𝑑_𝑎 (𝑠−1) ,𝑏 (𝑠−1) . (4.39)

The last field strength tensor, that we will call the curvature 𝑅𝑎 (𝑠−1) ,𝑏 (𝑠−1) verifies

ℎ𝑏 ∧ 𝑅𝑎 (𝑠−1) ,𝑏 (𝑠−1) = ℎ𝑏 ∧ 𝑑𝜔𝑎 (𝑠−1) ,𝑏 (𝑠−1) = 0 . (4.40)

All in all, we find that the complete set of auxiliary fields is given by

𝑒`
𝑎 (𝑠−1) , 𝜔`

𝑎 (𝑠−1) ,𝑏 , . . . , 𝜔`
𝑎 (𝑠−1) ,𝑏 (𝑠−1) , (4.41)

together with the gauge parameters

b𝑎 (𝑠−1) , _𝑎 (𝑠−1) ,𝑏 , . . . , _𝑎 (𝑠−1) ,𝑏 (𝑠−1) . (4.42)

Chain of structure equations We have the set of torsion equations (4.36) from 𝑡 = 0 to 𝑡 = 𝑠 − 2,
as well as ℎ𝑏 ∧ 𝑅𝑎 (𝑠−1) ,𝑏 (𝑠−1) = 0. We already know how to move from one torsion equation to
the next (by studying its integrability, yielding a Bianchi identity). For example, one can ensure
that the consequences of eq. (4.33) are properly taken care of. By taking the exterior derivative and
using 𝑑2 = 0, one obtains

𝑑𝑇𝑎 (𝑠−1) = 0 = 𝑑

(
−ℎ𝑏 ∧ 𝜔𝑎 (𝑠−1) ,𝑏

)
= ℎ𝑏 ∧ 𝑑𝜔𝑎 (𝑠−1) ,𝑏 (integrability) , (4.43)

whose general solution is10

𝑑𝜔𝑎 (𝑠−1) ,𝑏 = ℎ𝑏 ∧ �̂�𝑎 (𝑠−1) ,𝑏 (2) (𝜎− cohomology) . (4.44)

10Proving this requires to study the cohomology of the nilpotent operator ℎ𝑏 ∧ . . . , known as 𝜎− . This goes beyond
the scope of these lecture notes and we refer the interested reader to [56] for more details.
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This is indeed the second torsion equation for �̂�𝑎 (𝑠−1) ,𝑏 (2) = 𝜔𝑎 (𝑠−1) ,𝑏 (2) , and so on. Alternatively,
one can take the second torsion equation and take its wedge product with a background vielbein,
contracting one index

ℎ𝑏 ∧ 𝑇𝑎 (𝑠−1) ,𝑏 = 0 = ℎ𝑏 ∧ 𝑑𝜔𝑎 (𝑠−1) ,𝑏 = −𝑑
(
ℎ𝑏 ∧ 𝜔𝑎 (𝑠−1) ,𝑏

)
, (4.45)

which can be written, using the generalised Poincaré lemma [107], as

ℎ𝑏 ∧ 𝜔𝑎 (𝑠−1) ,𝑏 = 𝑑𝑒𝑎 (𝑠−1) , (4.46)

which is the first torsion equation for 𝑒𝑎 (𝑠−1) = 𝑒𝑎 (𝑠−1) . All in all, we have the hierarchy

𝑇𝑎 (𝑠−1) = 0
𝑖𝑛𝑡

⇄
𝑃𝐿

𝑇𝑎 (𝑠−1) ,𝑏 = 0
𝑖𝑛𝑡

⇄
𝑃𝐿

. . .
𝑖𝑛𝑡

⇄
𝑃𝐿

𝑇𝑎 (𝑠−1) ,𝑏 (𝑠−2) = 0
𝑖𝑛𝑡

⇄
𝑃𝐿

ℎ𝑏 ∧ 𝑅𝑎 (𝑠−1) ,𝑏 (𝑠−1) = 0 , (4.47)

where one moves from left to right by using integrability

𝑇𝑎 (𝑠−1) ,𝑏 (𝑡 ) = 0 ⇒ 𝑑𝑇𝑎 (𝑠−1) ,𝑏 (𝑡 ) = 0 ⇒ 𝑇𝑎 (𝑠−1) ,𝑏 (𝑡+1) = 0 , (4.48)

and one moves from right to left by using the generalised Poincaré lemma

𝑇𝑎 (𝑠−1) ,𝑏 (𝑡 ) = 0 ⇒ ℎ𝑏 ∧ 𝑇𝑎 (𝑠−1) ,𝑏 (𝑡 ) = 0 ⇒ 𝑇𝑎 (𝑠−1) ,𝑏 (𝑡−1) = 0 . (4.49)

As in the case of Cartan gravity, the last thing to do is to impose an equation of motion on the
curvature 𝑅𝑎 (𝑠−1) ,𝑏 (𝑠−1) , which fixes the dynamical content. A natural choice is to impose

𝑅𝑎 (𝑠−1) ,𝑏 (𝑠−1) = ℎ𝑎 ∧ ℎ𝑏 𝐶𝑎 (𝑠) ,𝑏 (𝑠) , (4.50)

where 𝐶𝑎 (𝑠) ,𝑏 (𝑠) is a traceless zero-form, to be interpreted as the Weyl11 component of the gen-
eralised curvature of the Fronsdal field (it contains 𝑠 derivatives of 𝜙). One can verify, using
techniques from unfolding [108, 109], that this choice indeed describes the propagation of a single
massless spin-𝑠 field.

4.3.2 (A)dS space

Similarly to the case of linearised gravity, all derivatives 𝑑 are replaced with ∇ and, starting
from 𝑡 = 1, there is an extra piece proportional to the cosmological constant in 𝑇𝑎 (𝑠−1) ,𝑏 (𝑡 ) , as well
as in 𝑅𝑎 (𝑠−1) ,𝑏 (𝑠−1) . It can be proven that the torsions take the form

𝑇𝑎 (𝑠−1) = ∇𝑒𝑎 (𝑠−1) − ℎ𝑏 ∧ 𝜔𝑎 (𝑠−1) ,𝑏 , (4.51)

and

𝑇𝑎 (𝑠−1) ,𝑏 (𝑡 ) = ∇𝜔𝑎 (𝑠−1) ,𝑏 (𝑡 ) − ℎ𝑏 ∧ 𝜔𝑎 (𝑠−1) ,𝑏 (𝑡+1) − 1
ℓ2𝜎+

(
𝜔𝑎 (𝑠−1) ,𝑏 (𝑡−1)

)
, (4.52)

for 𝑡 ≥ 1, and the curvature is

𝑅𝑎 (𝑠−1) ,𝑏 (𝑠−1) = ∇𝜔𝑎 (𝑠−1) ,𝑏 (𝑠−1) − 1
ℓ2𝜎+

(
𝜔𝑎 (𝑠−1) ,𝑏 (𝑠−2)

)
, (4.53)

where 𝜎+ is an operator enforcing the projection in the indices. This is similar to what happens
with the cosmological constant term appearing in General Relativity à la Cartan. Even though
calculations become more involved, the above argument does not change.

11For the case 𝑠 = 2, it is precisely the linearised Weyl tensor, i.e. the traceless part of the linearised Riemann tensor.
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4.4 Initial data for a gauge algebra

Having seen the complete set of fields and gauge transformations in the frame-like formulation
of higher-spin dynamics, we now wish to answer the following question: is there an algebra
underlying the dynamics? In other words, can we find a Lie algebra containing generators associated
the complete set of reducibility parameters presented in section 3.3, and whose Cartan equations
(at the linearised level) reproduce the system of torsions and curvature presented in section 4.3?

4.4.1 Looking for a non-Abelian algebra

Let us first reformulate the initial data of this problem algebraically. A putative higher-spin
symmetry algebra should contain generators whose spectrum is described in 3.3, denoted by⊕

𝑠≥1
0≤𝑡≤𝑠−1

𝑍𝑎 (𝑠−1) ,𝑏 (𝑡 ) , (4.54)

with the following commutation relations with Lorentz generators (fixed by Lorentz covariance)

[𝐽𝑎𝑏, 𝑍𝑐 (𝑠−1) ,𝑑 (𝑡 ) ] = 2 (𝑠 − 1) [𝑐[𝑏 𝑍𝑎]𝑐 (𝑠−2) ,𝑑 (𝑡 ) + 2 𝑡 𝑍𝑐 (𝑠−1) ,𝑑 (𝑡−1) [𝑎 [𝑏]𝑑 . (4.55)

By looking at the form of the torsions and curvatures in flat and (A)dS space, we can read off the
structure constants

[𝑃𝑎, 𝑍𝑏 (𝑠−1) ,𝑐 (𝑡 ) ] = 𝛼
(
[𝑎𝑐 𝑍𝑏 (𝑠−1) ,𝑐 (𝑡−1) + permutations − traces

)
+ 𝛽 1

ℓ2 𝑍𝑏 (𝑠−1) ,𝑎𝑐 (𝑡 ) , (4.56)

where 𝛼 and 𝛽 are non-vanishing, spin- and dimension-dependent structure constants, and the terms
referred to as “permutations” and “traces” within brackets can be determined in such a way that the
symmetries of the fibre indices on the right-hand side of eq. (4.56) matches those on the left-hand
side. The convention that 𝑍𝑏 (𝑠−1) ,𝑐 (𝑡 ) = 0 whenever 𝑡 < 0 or 𝑡 > 𝑠 − 1 is also assumed. At this
stage, we can rescale the generators such that 𝛼 = 𝑡 without loss of generality. This fixes all the
commutators of the linearised algebra between a spin-2 field and a higher-spin field (also spin 2,
closes on Poincaré or (A)dS) and constitutes the initial data for a candidate non-Abelian higher-spin
symmetry algebra, where [𝑍𝑎 (𝑠−1) ,𝑏 (𝑡 ) , 𝑍𝑐 (𝑠′−1) ,𝑑 (𝑡 ′ ) ] ≠ 0 in general.

4.4.2 Structure constants from global symmetries

As a side note, although there is not a unique candidate to generalise the Lie bracket, one can
compute the Lie derivative of a Killing tensor of eq. (3.31) along a Killing vector corresponding to
translations in flat space

L^𝑐𝜕𝑐

𝑀𝑎 (𝑠−1) ,𝑏 (𝑡 ) 𝑥
𝑏 · · · 𝑥𝑏︸    ︷︷    ︸

𝑡

 = 𝑡 ^𝑐𝑀𝑎 (𝑠−1) ,𝑐𝑏 (𝑡−1) 𝑥
𝑏 · · · 𝑥𝑏︸    ︷︷    ︸
𝑡−1

, (4.57)

and remark that they agree with the structure constants of the linearised unfolding strategy for
ℓ → ∞ of eq. (4.56). Below, we present some attempts to define a Lie algebra fulfilling this rule.
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Schouten bracket One generalisation of the Lie bracket to higher-rank tensors is the so-called
Schouten(-Nĳenhuis) bracket [110–113]. Given two symmetric tensors 𝑣𝑎 (𝑝) and 𝑤𝑎 (𝑞) , their
Schouten bracket is given by

[𝑣, 𝑤]𝑎 (𝑝+𝑞−1)
S ≡ (𝑝 + 𝑞 − 1)!

𝑝!𝑞!

(
𝑝 𝑣𝑏𝑎 (𝑝−1)𝜕𝑏𝑤

𝑎 (𝑞) − 𝑞 𝑤𝑏𝑎 (𝑞−1)𝜕𝑏𝑣
𝑎 (𝑝)

)
. (4.58)

It is easy to prove that the Schouten bracket of Killing tensors remains a Killing tensor, however
the Schouten bracket of two traceless tensors is not necessarily a traceless tensor (nor can it be
decomposed into a sum of traceless tensors in general), thus making it a poor candidate for our
needs.12

Weyl algebra A particularly useful representation of Killing symmetries of the type defined in
eq. (3.30) is obtained using (Weyl-ordered) polynomials in the variables 𝑋𝑎 and 𝑃𝑎 with [𝑋𝑎, 𝑃𝑏] =
𝑖[𝑎𝑏 [20]. In this basis, Minkowski translations are realised by 𝑃𝑎 and Lorentz transformations by

𝐽𝑎𝑏 = 𝑋[𝑎𝑃𝑏] . (4.59)

One can therefore try to construct higher-spin isometries using higher products of these oscillators,
and an algebra will be given by using the Leibniz rule.13 This approach gives a meaningful answer
in (A)dS space but fails in Minkowski, again due to the problem of trace constraints pointed out
earlier.

(In)existence of the algebra Without specifying any particular representation, one can try to see
if, within the Fronsdal formulation, there exist a non-Abelian algebra with the initial data (4.55) and
(4.56) that satisfies the Jacobi identity and some other assumptions on the form of the commutators
(see appendix A.2). It was found that the answer is no in the case of Poincaré [73, 74] (see also the
comments [73, 115–120]), and that there is only one answer [121] in (A)dS (was first constructed
in 𝑑 = 4 in [3], then generalised to 𝑑 ≥ 4 in [16, 20, 122–125]): the Fradkin-Vasiliev-Eastwood
(FVE) algebra (the precise set of assumptions is spelled out in appendix A.2).

Towards the gauging of the FVE algebra The gauging of this algebra was performed in [10,
11, 126] and non-linear equations of motion were obtained. Eventually, it was proven in [121]
that the FVE algebra reproduces all known higher-spin cubic vertices in 𝑑 = 4 and 𝑑 ≥ 7, making
it the best (and only) candidate algebra for higher-spin symmetry. In particular, the non-Abelian
cubic vertices for the 2 − 𝑠 − 𝑠 case in flat-space are precisely the seeds (highest-derivative term,
non-Abelian gauge transformations) for the cubic vertices found by Fradkin and Vasiliev through
their gauge-restoration procedure in (A)dS. The idea is to start from the non-Abelian vertex and
add a ‘tail’ of lower-derivative couplings that render the action gauge-invariant. The fact that this
algebra only exists in the case of non-vanishing cosmological constant was interpreted as yet another
no-go for higher-spin theories in flat space, see appendix A.2.

12In some sense, the non-closure of the algebra mimics the non-closure of non-Abelian gauge transformations at the
cubic order in the metric-like formulation. It looks like, in flat space, the trace constraint is at odds with the problem of
finding a higher-spin symmetry algebra, as was pointed in [20].

13Another option is to start instead with commuting variables 𝑥𝑎 and 𝑝𝑎 and to deform the pointwise product into a
star product à la deformation quantisation [114].
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5. Higher-spin algebras

Having stressed the importance of a non-Abelian, infinite-dimensional symmetry algebra un-
derlying any candidate gauge theory of interacting higher-spin gauge theory (in the frame-like
formulation of the dynamics), we present a way to build such an algebra using the tensor algebra of
space-time isometries, which was shown to be the unique algebra reproducing known cubic vertices
in 𝑑 = 4. We make a number of remarks in the direction of higher-spin holography.

We also spend some time on the 𝑑 = 3 version of these algebras, as well as other candidates,
describing the propagation and interaction of a finite number fields. Although the associated
theories are topological (they can be built as Chern-Simons theories) the construction admits some
contractions and deformations which makes it interesting for massive and flat higher-spin gravity.

5.1 Fradkin-Vasiliev-Eastwood algebra in general 𝑑 ≥ 4

We present first the general construction [16, 127, 128] in any 𝑑 ≥ 4. The case 𝑑 = 3 also
works, but due to the low dimensionality (and the fact that there is a more refined construction that
only works in this dimension) we will present it later.

5.1.1 Universal enveloping construction

Let us present first the construction in general 𝑑 ≥ 4 through a Universal Enveloping Algebra
(UEA). In 𝑑 = 3 and 𝑑 = 4 there are some specific realisations that we will briefly address. We are
now in AdS space, whose isometry generators are embedded in ambient space in the following way:

[𝐽𝐴𝐵, 𝐽𝐶𝐷] = [𝐵𝐶 𝐽𝐴𝐷 − [𝐴𝐶 𝐽𝐵𝐷 − [𝐵𝐷 𝐽𝐴𝐶 + [𝐴𝐷 𝐽𝐵𝐶 , (5.1)

with, e.g. 𝐽0𝑎 = ℓ−1 𝑃𝑎. One can then construct the algebra as a quotient of the AdS UEA

hs𝑑 ≡ U(so(𝑑 − 1, 2))
⟨I𝐴𝐵𝐶𝐷 ⊕ I𝐴𝐵⟩

, (5.2)

where U(so(𝑑 − 1, 2)) denotes the UEA of so(𝑑 − 1, 2), and ⟨I𝐴𝐵𝐶𝐷 ⊕ I𝐴𝐵⟩ is generated by the
contraction of U(so(𝑑 − 1, 2)) on the left or the right of the elements I𝐴𝐵𝐶𝐷 and I𝐴𝐵 given below.

This construction deserves more explanations. To construct the UEA of a (real) Lie algebra g,
one starts with an associative product (denoted here by ★, omitted in the following) such that

[𝑎, 𝑏] = 𝑎 ★ 𝑏 − 𝑏 ★ 𝑎 , (5.3)

for any 𝑎, 𝑏 ∈ g. The tensor algebra of g is given (as a vector space) by

T (g) = R ⊕ g ⊕ (g★ g) ⊕ · · · , (5.4)

and the UEA is given by

U(g) = T (g)
⟨[𝑎, 𝑏] − 𝑎 ★ 𝑏 + 𝑏 ★ 𝑎⟩ , (5.5)

where T (g) is quotiented by the equivalence relation defined by (5.3). A two-sided ideal generated
by an element I ∈ U(g) is given by

⟨I⟩ = U(g) ★I ★U(g) . (5.6)
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Let us take higher symmetric products of generators of AdS𝑑 . At the quadratic order, we have

K𝐴𝐵,𝐶𝐷 ≡ 𝐽𝐶 (𝐴 ⊙ 𝐽𝐵)𝐷 − 2
𝑑 − 1

(
[𝐴𝐵I𝐶𝐷 + [𝐶𝐷I𝐴𝐵 − [𝐶 (𝐴I𝐵)𝐷 − [𝐷 (𝐴I𝐵)𝐶

)
+ 1
𝑑 (𝑑 + 2)

(
[𝐴𝐵[𝐶𝐷 − [𝐶 (𝐴[𝐵)𝐷

)
𝐶2 , (5.7a)

I𝐴𝐵𝐶𝐷 ≡ 𝐽[𝐴𝐵 ⊙ 𝐽𝐶𝐷 ] , (5.7b)

I𝐴𝐵 ≡ 𝐽𝐶 (𝐴 ⊙ 𝐽𝐵)𝐶 + 2
𝑑 + 1

[𝐴𝐵 𝐶2 , (5.7c)

𝐶2 ≡ 1
4
𝐽𝐴𝐵 ⊙ 𝐽𝐵𝐴 , (5.7d)

where 𝑎 ⊙ 𝑏 = 𝑎 ★ 𝑏 + 𝑏 ★ 𝑎, and in terms of Young diagrams

⊙ = ︸︷︷︸
keep

⊕ ⊕

︸         ︷︷         ︸
kill

⊕ •︸︷︷︸
fixed

. (5.8)

It can be shown that the generator with the symmetries of the second tableau spans an ideal and
therefore can be factorised and so does the third one. Using the relation

3
4
I𝐴𝐵𝐶𝐷 𝐽

𝐶𝐷 − I𝐶 [𝐴 𝐽𝐵]
𝐶 + 𝑑 − 1

𝑑 + 1

(
𝐶2 +

(𝑑 + 1) (𝑑 − 3)
4

)
𝐽𝐴𝐵 = 0 , (5.9)

and requiring that the algebra be non-trivial (i.e. 𝐽𝐴𝐵 is not factorised), the scalar generator 𝐶2

(which is the quadratic Casimir) must take a precise value which is determined to be a multiple of
the identity by the previous relation, thereby avoiding multiplicity in the spectrum.

Exercise (harder): prove the relation (5.9).

Among quadratic generators, we are only left with the ‘window’ combination (5.7a) as an
independent quadratic generator, which is what we wanted. Upon quotienting by just these two
elements, all higher products in the UEA reduces to reduce to only the two-row traceless diagrams14⊕

𝑠≥1

𝑠 − 1
𝑠 − 1

. (5.10)

This is precisely what we want, since the branching of the Young diagrams in (5.10) from 𝑑 +
1-dimensional ambient space to 𝑑-dimensional physical space-time reproduces the spectrum of
generators (4.54) (see appendix B.2).

Note that in 𝑑 = 4, in the case of the Fradkin-Vasiliev construction (which relied on a particular
oscillator representation of the AdS4 algebra making use of a vector-spinor dictionary, see [3]), the
elements I𝐴𝐵𝐶𝐷 and I𝐴𝐵 were automatically factorised. See also [17, 130–132] for representations
of this algebra in various dimensions.

14This is not at all obvious and requires a careful study, see e.g. [129]. For instance, factorising either I𝐴𝐵 or I𝐴𝐵𝐶𝐷

fixes the higher-order Casimirs as polynomial functions of the quadratic one 𝐶2, and it is remarkable that the value
− (𝑑+1) (𝑑−3)

4 is the unique one for which all polynomials agree.
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5.1.2 The Eastwood algebra as the higher symmetries of the d’Alembertian

The FVE algebra has an interpretation in the dual CFT𝑑−1: it corresponds to the algebra
of higher differential symmetries of the d’Alembertian operators. The higher symmetries of the
on-shell equation

𝜕2𝜑 ≈ 0 , (5.11)

for a scalar field 𝜑 with fixed conformal dimension Δ, are differential operators �̂� that weakly
commute with the Laplacian [16]

𝜕2 ◦ �̂� = �̂�′ ◦ 𝜕2 , (5.12)

in the sense that it maps solutions of eq. (5.11) to themselves

𝛿

(
𝜕2𝜑

)
= 𝜕2 𝛿𝜑 = 𝜕2 ◦ �̂�𝜑 = �̂�′ ◦ 𝜕2𝜑 ≈ 0 . (5.13)

The space of differential operators is naturally graded by the order, and a differential operator �̂� of
order 𝑠 − 1 can be decomposed as follows

�̂� = 𝑉 ` (𝑠−1)𝜕` . . . 𝜕` + lower derivative , (5.14)

where 𝑉 ` (𝑠−1) is called the symbol of the operator �̂�. Eastwood showed that there is a one-to-one
correspondence between the symbols of the �̂�’s that verify the condition (5.12) (quotiented by
trivial solutions of the form �̂� = �̂� ◦ 𝜕2) and the Young tableaux having the symmetry of (5.10),
this time viewed as conformal Killing tensors of R𝑑−2,1, which shows that the algebra of higher
symmetries of the d’Alembertian in 𝑑 − 1 dimensions has the same spectrum as the higher-spin
algebra in AdS𝑑 .

In fact, they are the same algebra. To view this, we now take a closer look at the field 𝜑 in
eq. (5.11), known as a singleton and which plays a central role in higher-spin holography.

5.1.3 Defining module: the singleton

The singleton is a scalar AdS𝑑 field whose degrees of freedom are localised on the conformal
boundaryM𝑑−1. It carries a conformal weight Δ = 𝑑−3

2 , sitting right at the unitarity bound, and is
‘shortened’ as compared to an ordinary massless scalar.

As a Verma module From the point of view of representations of 𝑆𝑂 (𝑑 − 1, 2), the singleton is
an ultrashort representation. It is the conformal (quasi-)primary |𝜑⟩ corresponding to the unitary
scalar field in conformally flat space-time verifying

𝐾` |𝜑⟩ = 0 , 𝐽`a |𝜑⟩ = 0 , 𝐷 |𝜑⟩ = Δ|𝜑⟩ , (5.15)

where the conformal algebra is spanned by {𝐽`a , 𝑃`, 𝐷, 𝐾`} representing Lorentz transformations,
translations, dilations and special conformal transformations and Δ = 𝑑−3

2 (see appendix C for the
definition of the generators of conformal isometries). It gives rise to the Verma module

D ≃ {𝑃`1 . . . 𝑃`𝑛 |𝜑⟩, 𝑛 ≥ 0}
/
{[`1`2𝑃`1 . . . 𝑃`𝑛 |𝜑⟩, 𝑛 ≥ 2} , (5.16)

where the quotient is understood as the factorisation of the maximal sub-module (see, e.g., [133])
corresponding the equation of motion 𝑃2 |𝜑⟩ = 0.
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As an AdS representation In AdS𝑑/CFT𝑑−1 representation theory, the singleton is called “ultra-
short” because it is a massless scalar field in AdS that is described by a massles field in the dual
CFT.15 It is often denoted |𝑅𝑎𝑐⟩ since its 𝑑 = 4 avatar was first found by Dirac [134].

It has an energy (or conformal dimension in CFT language) 𝐸 = 𝑑−3
2 (right at unitarity bound)

and the conjugated one is 𝑑 − 1 − 𝐸 = 𝑑+1
2 , therefore the Casimir takes value

𝐶2 = 𝐸 (𝐸 − 𝑑 + 1) = − (𝑑 − 3) (𝑑 + 1)
4

. (5.17)

Note that this is the same value appearing in eq. (5.9). This is no coincidence! The higher-spin
algebra (5.2) is precisely the UEA of AdS𝑑 , evaluated on the singleton representation. The two
elements of the ideal I𝐴𝐵𝐶𝐷 and I𝐴𝐵 can be understood as the manifestation of the field being
scalar, and verifying a wave equation respectively.16

As an AdS field The Fefferman-Graham expansion of a massless scalar field with energy 𝐸 = 𝑑−3
2

in AdS (using in Poincaré coordinates) close to the boundary 𝑧 → 0 reads

𝜑 = 𝑧
𝑑−3

2

(
�̄� + O(𝑧2)

)
. (5.18)

The singleton is captured by quotienting by the subleading contributions in 𝑧, so it is an AdS scalar
field whose degrees of freedom are localised on the boundary. If one performs this quotient, the fact
that 𝜑 verifies the d’Alembert equation in AdS𝑑 implies that �̄� also verifies the d’Alembert equation
in the CFT𝑑−1 (see, e.g., [133, 135, 136]), so we are back in the situation of eq. (5.11).

5.1.4 Flato-Fronsdal theorem

Not only does the singleton provide a natural realisation of the higher-spin algebra, but it is
also a central object in higher-spin holography. Indeed, from the product of two singletons, it is
possible to create conserved higher-spin currents, whose spectrum is in one-to-one correspondence
with the spectrum of Vasiliev theory. This is known a the Flato-Fronsdal theorem [14]

|𝑅𝑎𝑐⟩ ⊗ |𝑅𝑎𝑐⟩ =
∑︁
𝑠≥0

𝐷 (𝑠 + 𝑑 − 3, 𝑠) , (5.19)

where the notation 𝐷 (𝐸, 𝑠) refers to an irreducible representation of the isometry algebra of AdS𝑑

with energy 𝐸 and spin 𝑠. The value of the energy 𝐸 = 𝑠+𝑑−3 corresponds to a Fronsdal (massless)
field.

This theorem can be understood as follows: bulk massless higher-spin fields couple to a
boundary theory through higher-spin conserved currents, built as bilinears in the singleton field.
These bilinear currents actually have a simple expression

𝐽` (𝑠) (x) ∼ 𝑖𝑠 �̄�∗(x)
↔
𝜕 ` · · ·

↔
𝜕 `︸      ︷︷      ︸

𝑠

�̄�(x) − traces . (5.20)

15One way to make this statement more precise is to use the Gelfand-Kirillov (GK) dimension. A massless field in
AdS𝑑 has GK dimension 𝑑 − 1 (the dimension of space minus the number of equations) whereas the singleton has GK
dimension 𝑑 − 2, i.e. it lives effectively on the CFT.

16This statement can be proven easily via ambient space techniques, a more pedestrian proof making use of the
differential representation of the CFT𝑑−1 algebra is presented in appendix C.
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For spin 𝑠 = 0, and 𝑠 = 1, one recovers the usual scalar and electromagnetic current densities �̄�∗�̄�
and 𝑖(�̄�∗𝜕` �̄�− �̄�𝜕` �̄�∗), while for 𝑠 = 2 and greater, one obtains the stress-energy tensor and higher-
spin analogues obtained via an appropriate transformation subtracting the traces. The 𝐽` (𝑠) (x) can
be generated thanks to a function of an auxiliary variable p` [15]

𝐽 (x; p) ≡ �̄�∗(x + p) �̄�(x − p) =
∑︁
𝑠≥0

𝑖𝑠

𝑠!
𝐽` (𝑠) (x)p` · · · p` . (5.21)

Exercise: check that the generating function of currents verifies 𝜕x · 𝜕p 𝐽 (x; p) = 0 and
deduce that the currents 𝐽` (𝑠) (x) are conserved. Verify that

(
𝜕x · 𝜕x + 𝜕p · 𝜕p

)
𝐽 (x; p) = 0

and explain how to obtain traceless currents from there.

In higher-spin holography and according to the AdS/CFT dictionary [35, 36, 137], bulk (higher-
spin) gauge fields 𝜙` (𝑠) are dual to boundary (higher-spin) conserved currents 𝐽` (𝑠) . They couple
to each other through the canonical term∫

𝑑𝑑−1x 𝐽` (𝑠) (x) 𝜙` (𝑠) (x) , (5.22)

where 𝜙` (𝑠) (x) is the boundary value of the field 𝜙` (𝑠) (𝑥) that are defined as the leading part of a
bulk field in a Fefferman-Graham expansion 𝑥 = (𝑧, x), see e.g. [121].

5.2 The three-dimensional case

Although the previous construction of the FVE algebra also applies to the case of 𝑑 = 3,
higher-spin gravity in 3 dimensions has followed another route historically, associated to the higher-
spin extensions of Chern-Simons theory. There are a number of key features that distinguishes
𝑑 = 3 from the other dimensions: gravity and higher-spin theories are topological since they do not
propagate any degrees of freedom; and it is possible to cook up higher-spin theories with a finite
number of fields, both in (A)dS and flat space-time. The fact that these theories exist and admit
a tractable Chern-Simons formulation makes them ideal candidates to study quantum gravity as
well as holography in three dimensions [138–142]. For a review on three-dimensional higher-spin
theories and their Chern-Simons formulation, see [143].

5.2.1 Pure gravity

Recall that the 𝑑 = 3 Anti de Sitter algebra so(2, 2) is not semi-simple since it can be split as
two orthogonal copies so(2, 2) ≃ so(1, 2) ⊕ so(1, 2)

[𝐽𝑎, 𝐽𝑏] = 𝜖𝑎𝑏𝑐𝐽𝑐 , [𝐽𝑎, 𝑃𝑏] = 𝜖𝑎𝑏𝑐𝑃𝑐 , [𝑃𝑎, 𝑃𝑏] =
1
ℓ2 𝜖𝑎𝑏𝑐𝐽

𝑐 , (5.23)

where we used the 𝑑 = 3 Levi-Civita tensor 𝜖𝑎𝑏𝑐 to dualise the generator of Lorentz transformations
into a vector 𝐽𝑎. Alternatively, using so(1, 2) ≃ sl(2,R), we can write

[𝐽𝑚, 𝐽𝑛] = (𝑚 − 𝑛)𝐽𝑚+𝑛 , [𝐽𝑚, 𝑃𝑛] = (𝑚 − 𝑛)𝑃𝑚+𝑛 , [𝑃𝑚, 𝑃𝑛] =
1
ℓ2 (𝑚 − 𝑛)𝐽𝑚+𝑛 . (5.24)
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The two orthogonal copies can be recovered by considering

L𝑚 =
1
2
(𝐽𝑚 + ℓ𝑃𝑚) , L̄𝑚 =

1
2
(𝐽𝑚 − ℓ𝑃𝑚) , (5.25)

verifying

[L𝑚,L𝑛] = (𝑚 − 𝑛)L𝑚+𝑛 , [L̄𝑚, L̄𝑛] = (𝑚 − 𝑛)L̄𝑚+𝑛 , [L𝑚, L̄𝑛] = 0 . (5.26)

We can rewrite the Einstein-Cartan action as a difference of two Chern-Simons terms [141]

𝑆 = 𝐼CS [𝐴] − 𝐼CS [ �̄�] (5.27)

where
𝐼CS [𝐴] =

∫
Tr

(
𝐴 ∧ 𝑑𝐴 + 2

3
𝐴 ∧ 𝐴 ∧ 𝐴

)
, (5.28)

and where 𝐴, �̄� take values in the two copies of sl(2,R), with Tr denoting the invariant bilinear
form of the algebra, also known as the Killing-Cartan form.

Exercise: prove this. By using the Killing metric on sl(2,R) and the change of basis (5.25),
you should find Tr(𝑃𝑎𝐽𝑏𝑐) = 𝜖𝑎𝑏𝑐.

5.2.2 Algebra for higher-spin gravity in AdS3

First, let us remark that most of the extra fields and generators found in section 4.3 do not exist
because of low dimensionality. Indeed, the tableaux |Y3(𝑠−1, 𝑡) | = 0 for 𝑠 ≥ 2 for all 2 ≤ 𝑡 ≤ 𝑠−1.
This means that the two-field frame formulation of section 4.2 is actually complete! Moreover,
we can dualise a Y3(𝑠 − 1, 1) to Y3(𝑠 − 1), so we will be working with two completely symmetric
traceless one-forms (like in three-dimensional gravity)

𝑒`
𝑎 (𝑠−1) , 𝜔`

𝑎 (𝑠−1) . (5.29)

Discrete family We can have a complete (perturbative) non-linear description of higher-spin
gravity in three dimensions by writing a Chern-Simons theory for a higher-spin extension of the
potentials 𝐴, �̄� taking values in a higher-spin algebra. We can take the finite-dimensional algebras
sl(𝑁,R) ⊕ sl(𝑁,R) as the improvement of sl(2,R) ⊕ sl(2,R).

Taking the adjoint representation 𝑁2 − 1
𝑁

of a single sl(𝑁,R) and decomposing it into irre-
ducible representations 𝑛2 of sl(2,R), we have

𝑁2 − 1
𝑁
= 2𝑁 − 12 ⊕ 2𝑁 − 32 ⊕ · · · ⊕ 52 ⊕ 32 , (5.30)

where the final 32 is the adjoint representation of sl(2,R). Since the gauge fields 𝑒𝑎 (𝑠−1) and
𝜔𝑎 (𝑠−1) each have |Y3(𝑠 − 1) | = 2𝑠 − 1 components in their fibre indices, we can deduce that the
algebra sl(𝑁,R) ⊕ sl(𝑁,R) is a candidate to describe the propagation and interaction of massless
fields of spin 𝑠, . . . , 2 in AdS3.17

17Note that in this construction, there is actually no generator of spin-1 isometries. The latter can be added as an extra
Abelian u(1) generator.
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Change of basis We have already flashed the change of basis from so(1, 2) to sl(2,R) in (5.26),
making it possible to rewrite the spin-2 isometry generators as L𝑚 and L̄𝑚 with |𝑚 | ≤ 1. For
higher spins 𝑠, the isometry generators will be denoted by W𝑠

𝑚 and W̄𝑠
𝑚, with |𝑚 | ≥ 𝑠 − 1.

In order to construct a Chern-Simons action, we take the Cartan-Killing18 metric of sl(𝑁,R)
in our W𝑠

𝑚 basis, which reads

Tr(W𝑠
𝑚W𝑡

𝑛) = Tr(W̄𝑠
𝑚W̄𝑡

𝑛) = 𝛿𝑠,𝑡𝐴𝑠^
𝑠
𝑚,𝑛 , (5.31)

where 𝐴𝑠 is a spin-dependent normalisation factor and

^𝑠𝑚,𝑛 =

2𝑠−2∑︁
𝑘=0

(−1)𝑘
(
2𝑠 − 2
𝑘

)
[𝑠 − 1 + 𝑚]2𝑠−2−𝑘 [𝑠 − 1 − 𝑚]𝑘 [𝑠 − 1 + 𝑛]𝑘 [𝑠 − 1 − 𝑛]2𝑠−2−𝑘 , (5.32)

with [𝑎]𝑏 = 𝑎(𝑎 − 1) · · · (𝑎 − 𝑏 + 1) the falling Pochhammer symbol.

UEA construction In the basis of eq. (5.25), it can be proven (see, e.g., [145]) that factorising
the ideal of the construction (5.2) factorises all products that mix L𝑚 and L̄𝑚

I𝐴𝐵 ↔ L𝑚L̄𝑛 , (5.33)

as well as set the value of the quadratic Casimir in each chiral sector

𝜖 𝐴𝐵𝐶𝐷I𝐴𝐵𝐶𝐷 ⊕ 𝐶2 ↔ L2 ⊕ L̄2 , (5.34)

where L2 = 𝛾𝑚𝑛L𝑚L𝑚 and similarly for the barred sector. In the end, the algebra hs3 is actually
the direct sum of the universal enveloping algebra of sl(2,R) in the zero-Casimir representation.
This algebra is infinite-dimensional (as is the case of the general 𝑑 construction).

Continuous family It is possible to relax the latter conditions (5.34) by imposing a weaker set
of conditions, leading to a one-parameter19 family hs3 [_] ≃ hs[_] ⊕ hs[_] of bosonic algebras
constructed as follows

1 ⊕ hs[_] = U (sl(2,R))〈
L2 − _2−1

4 1
〉 , (5.35)

and similarly for the anti-holomorphic sector, with the identity element denoted by 1̄. This time,
the Casimirs of AdS3 are not zero and given by

𝐶2 = 𝑃2 + 𝐽2 = 2(L2 + L̄2) = _2 − 1
2

(1 + 1̄) = _2 − 1
2

𝑖𝑑 , (5.36a)

𝑊 = 𝐽𝑎𝑃𝑎 = L2 − L̄2 =
_2 − 1

4
(1 − 1̄) = _2 − 1

4
^ , (5.36b)

where we defined
𝑖𝑑 ≡ 1 + 1̄ , ^ ≡ 1 − 1̄ , (5.37)

18For this construction to work, it is important that the spin-2 subalgebra sl(2,R) be principally embedded within
sl(𝑁,R), see e.g. [144].

19One can also construct a two-parameter family [146] by considering hs[_1] ⊕ hs[_2], which are relevant for
partially-massless higher-spin gravity in three dimensions, see [147].

39



P
o
S
(
M
o
d
a
v
e
2
0
2
2
)
0
0
4

Introduction to higher-spin theories Simon Pekar

with the extra scalar denoted ^ verifying ^2 ∼ 𝑖𝑑. Moreover,

^L𝑚 = L𝑚 , ^L̄𝑚 = −L̄𝑚 , (5.38)

so that the product of ^with any element ofU(so(2, 2)) can be reduced to an element ofU(so(2, 2)).
The generators are 𝑃𝑠

𝑚 and 𝐽𝑠𝑚 for 2 ≤ 𝑠 ≤ 𝑁 and with |𝑚 | ≤ 𝑠−1. Schematically, the structure
constants of sl(𝑁,R) ⊕ sl(𝑁,R) look like

[𝐽𝑠𝑚, 𝐽𝑡𝑛] =
𝑠+𝑡−2∑︁

𝑢= |𝑠−𝑡 |+2
𝑠+𝑡+𝑢 even

𝑔(𝑠, 𝑡, 𝑢, 𝑚, 𝑛;_)𝐽𝑢𝑚+𝑛 , (5.39a)

[𝐽𝑠𝑚, 𝑃𝑡
𝑛] =

𝑠+𝑡−2∑︁
𝑢= |𝑠−𝑡 |+2
𝑠+𝑡+𝑢 even

𝑔(𝑠, 𝑡, 𝑢, 𝑚, 𝑛;_)𝑃𝑢
𝑚+𝑛 , (5.39b)

[𝑃𝑠
𝑚, 𝑃

𝑡
𝑛] =

1
ℓ2

𝑠+𝑡−2∑︁
𝑢= |𝑠−𝑡 |+2
𝑠+𝑡+𝑢 even

𝑔(𝑠, 𝑡, 𝑢, 𝑚, 𝑛;_)𝐽𝑢𝑚+𝑛, (5.39c)

with 𝑔(𝑠, 𝑡, 𝑢, 𝑚, 𝑛;_) known functions (see [148–150]).
The previous algebras (finite and infinite-dimensional) can be unified in a single UEA construc-

tion, of which they are particular cases: it was noted in [148] that the algebra hs[_ = 𝑁] develop
an infinite dimensional ideal corresponding to generators of spin 𝑠 > 𝑁 which, upon factorisation,
reduces to sl(𝑁,R). The higher-spin theories with an infinite spectrum can formally be recovered
as the 𝑁 → ∞ limit of the algebras sl(𝑁,R) ⊕ sl(𝑁,R) studied in [151, 152]. Moreover, the algebra
hs3 can be recovered by setting _ to 1 in the one-parameter family.

Deformations and contractions of the hs3 [_] family From a mathematical perspective, it is
tempting to see what happens if we relax the restriction on the range of the index𝑚 in the generators
W𝑠

𝑚. Similarly to the Witt (resp. Virasoro) algebra being the centreless (resp. central) infinite-
dimensional enhancement of the sl(2,R) algebra, there exist infinite-dimensional enhancement
of the sl(𝑁,R) algebra, called 𝑤𝑁 algebras (centreless) or W𝑁 (central, built as a non-linear
deformations [148] of the former), as well as the one-parameter families 𝑤∞ [_] and W∞ [_] that
extend hs[_].

In full similarity with the BMS3 algebra being the double copy of two Virasoro algebras with
equal central charges, the centralW𝑁 andW∞ [_] algebras turn out to be related to asymptotic sym-
metries of 𝑑 = 3 higher-spin gravity [144, 153]. Moreover, these algebras admit a straightforward
ℓ → ∞ contraction, giving rise to higher-spin asymptotic symmetries in flat space [154–157].

Massive higher-spin theories in three dimensions can also be obtained through star-product
deformations of the hs[_] algebras [158], while a quantum deformation of the W𝑁 and W∞ [_]
algebras play a role in the context of minimal model holography, as was pointed out in [38, 39].
Finally, the algebra 𝑤1+∞, which is a central extension of (the classical contraction of) the 𝑤∞
algebras was recently shown to play a role in celestial holography [159] and in the higher-spin
dynamics of a subsector of General Relativity [160].
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6. Conclusion and outlook

In these notes, we reviewed the construction of higher-spin theories, guided by the principle
of symmetry. After determining the free theory in the metric-like form, we moved on to the
construction of higher-spin symmetry algebras, motivated by the Cartan approach to Einstein’s
General Relativity and made the link between the metric-like and the frame-like formulations.
The existence of such algebras is established in AdS space-time with 𝑑 ≥ 3, and we showed the
strong relation between the symmetries of the free theory and the construction of these algebras, in
particular how the elimination of the extra gauge fields is performed thanks to its structure constants
describing the coupling of higher-spin fields to gravity. Thanks to the frame-like formulation and
the study of symmetries, we have paved the way to understanding the construction of the theory of
higher-spin gravity with cubic interactions performed in [2–4, 126, 161–163].

The next logical step is to move on to a fully non-linear interacting theory including terms
beyond the cubic order, for an infinite-dimensional multiplet transforming in the higher-spin algebra
hs𝑑 . The construction of such a theory is due to Vasiliev [11], and reviewed, e.g. in [56]. When
it comes to constructing an interacting theory of higher-spin fields in flat space-time, there seems
to be a general tension between unitarity, locality and a spin greater than two. Dropping one of
these assumptions, for instance the first one, it is possible to write a local higher-spin theory in flat
space – albeit with a different spectrum than the one we discussed in these notes – that generalises
conformal General Relativity: conformal higher-spin gravity [164–166].

Stepping away from the manifestly Lorentz-covariant setup gives interesting results. While the
free theory is generally construction-insensitive, working directly with the physical (i.e. non-gauge)
degrees of freedom offers more possibilities for interaction terms. Theories in the light-cone gauge
were constructed [95], based on the cubic vertices found in [81, 93, 94] and chiral higher-spin
theories were studied in [167–169], as well as their connections with Yang-Mills-like theories
[170–172], showing interesting quantum properties.

In these notes, we considered only bosonic higher-spin fields. The free theory of higher-spin
fermions was determined in [173, 174], generalising the Dirac and Rarita-Schwinger actions, and
the supersymmetric N = 1 extension of the higher-spin algebras was built in [131, 162]. Cubic
interactions between fermionic and bosonic fields were computed in [85]. The inclusion of gauge
fermions does not fundamentally change the general picture of higher-spin gravity that we tried to
paint in these notes.

Similarly, higher-spin theories with a different spectrum than the one described here were
considered. Free and interacting theories for partially-massless (see section 3.2.2) and mixed-
symmetry fields, as well as symmetry algebras for these theories were described in [129, 175–180].
The goal of considering more complicated spectrum is to progressively bridge the gap between
the relatively simple spectrum of a gauge theory à la Vasiliev and String Theory. On the other
hand, theories of massive higher-spin fields is an entirely different subject, since they do not rely
on gauge symmetries. They are however better connected to String Theory in the finite-𝛼′ regime
and interestingly do not suffer from the same no-go constraints that massless fields. Apart from the
free theory [181–183] which is similar to Fronsdal’s theory, we refer to [26, 27] for more details.

Higher-spin holography is a fascinating subject and the elements given in section 5.1 barely
begin to scratch its surface. The original higher-spin AdS/CFT conjecture of [5, 6] has received
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numerous checks, as well as generalisations, for instance in dS holography [184] or Chern-Simons
matter models [12, 13], related to 3-dimensional bosonisation [185, 186]. The results of [187–189]
indicate that CFTs with an exact higher-spin symmetry, which is the case of the𝑂 (𝑁) vector models
at large 𝑁 , have a trivial holographic 𝑆-matrix, in perfect analogy with Weinberg’s low-energy or
Coleman-Mandula’s no-go theorems. The check of the higher-spin holographic correspondance at
finite 𝑁 is a subject of active research. We refer to the excellent [190] for a more detailed review.

Finally, due to their relative simplicity, higher-spin theories in three dimensions have received
a lot of developments in the direction of asymptotic symmetries, starting with the generalisation of
the work of Brown and Henneaux for pure gravity [140] to higher spins [144, 153, 155, 191–193] as
well as in more general contexts, involving asymptotically flat space-times [146, 157], cosmology
[156], black holes [194] and generic horizons [195]. More recently, three-dimensional higher-spin
theories formulated on non-Lorentzian backgrounds were considered in [196–201]. Asymptotic
symmetries of (free) higher-spin fields in higher dimensional asymptotically flat space-time were
also studied in [202, 203] and their link with asymptotic symmetry algebras studied in [204, 205].

Acknowledgements

I would like to thank the organisers and the participants of the 2022 Modave summer
school for all the questions and stimulating discussions. I also would like to thank particu-
larly I. Ahlouche Lahlali, I. Basile, N. Boulanger, A. Campoleoni, A. Delfante, M. Vilatte and
E. Skvortsov for useful discussions and/or comments on the manuscript. This work is supported
by the Fonds de la Recherche Scientifique - FNRS under Grant No. FC.36447, as well as by the
SofinaBoël Fund for Education and Talent.

A. No-go and yes-go theorems in flat space

In addition to the set of frequently presented no-go theorems on massless higher-spin in flat
space [1, 206–208] (see also [74, 209] for a review), we also recall another one based purely on
algebraic arguments, as well as possible ways out.

A.1 Symmetries of the 𝑆-matrix

Most of the no-go theorems concern the symmetries of the perturbative 𝑆-matrix. As such,
they are only valid in flat space in their original form.

The Weinberg low-energy theorem [206] Consider a scattering event with 𝑁 particles with
momenta 𝑝1, . . . , 𝑝𝑁 and one spin-𝑠 massless particle with momentum 𝑞, becoming soft (𝑞 → 0).
Under the assumptions of locality, Poincaré-invariance and analyticity of the poles of the 𝑆-matrix,
Weinberg showed that in the limit 𝑞 → 0, the 𝑆-matrix element is dominated by the contribution

𝑆(𝑝1, . . . , 𝑝𝑁 , 𝑞) ∼
𝑁∑︁
𝑖=1

𝑔𝑠𝑖
𝑝𝑖

` · · · 𝑝𝑖 `Y` (𝑠) (𝑞)
2𝑞 · 𝑝𝑖

𝑆bare(𝑝1, . . . , 𝑝𝑁 ) , (A.1)

where 𝑔𝑠
𝑖

is the coupling constant of the spin-𝑠 particle to the particle 𝑖, Y` (𝑠) is the polarisation
tensor of the higher-spin particle, which is traceless and transverse and where 𝑆bare(𝑝1, . . . , 𝑝𝑁 )
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represents the amplitude of the 𝑁 particles scattering together, computed in the absence of the
higher-spin leg. Since the 𝑆-matrix element (A.1) must satisfy the Ward identity associated to
invariance under (super)translations, it was found that

𝑁∑︁
𝑖=1

𝑔𝑠,𝑖 𝑝𝑖
` · · · 𝑝𝑖 `︸       ︷︷       ︸
𝑠−1

= 0 . (A.2)

This can be understood by saying that the limit in which the external higher-spin particle acquires a
zero momentum 𝑞 = 0 should describe the same physics as having no external higher-spin particle
at all, meaning that the pre-factor in eq. (A.1) encoding the pole 𝑞 → 0 must vanish, producing the
conservation law (A.2).

For 𝑠 = 1 or 𝑠 = 2, this is the usual charge
∑𝑁

𝑖=0 𝑔1,𝑖 = 0 and momentum
∑𝑁

𝑖=0 𝑝𝑖
` = 0

conservation, as well as the universal coupling of gravity to other fields, 𝑔2,𝑖 = 𝑔2. For 𝑠 > 2 there
is simply no solution to the conservation law, unless 𝑔𝑠,𝑖 = 0 (in this simple case, 𝑔𝑠,𝑖 = 𝑔𝑠 and
elastic scattering, i.e. the momenta are shuffled, also satisfies the conservation equation).

Therefore, as a by-product of the low-energy theorem, Weinberg showed that massless higher-
spin particles in flat space cannot produce non-trivial scattering amplitudes in the low-energy limit.
In other words, they do not carry long-range interactions. For the moment, massive higher-spin
particles are safe (although they suffer from their own type of no-go theorems [210]), and so are
gauge theories of (massless) higher-spin particles, provided they undergo some sort of confinement
à la QCD and are not visible as individual particles in the low-energy regime.

The Coleman-Mandula theorem [207] Coleman and Mandula classified all possible symmetries
of the 𝑆-matrix, under the hypothesis of analyticity and that the spectrum is gapped. They found
that, apart from the product of Poincaré symmetry and an internal symmetry, any other symmetry
of the 𝑆-matrix makes it trivial. The generalisation [211] also includes supersymmetry to the list
of admissible space-time symmetries, while dropping the hypothesis of a mass gap, ruling out
massless theories as well.

Possible ways out It seems that the only way out of the Weinberg low-energy theorem is to
accept the fact that the higher-spin sector is gauged and that fields with a spin strictly greater than
two will never be seen in scattering experiments with finite energy, just like individual gluons in
QCD. Recently however [212], it was pointed out that the Weinberg low-energy theorem has to be
understood as a statement about the number of derivatives in the coupling to gravity, rather than a
no-go on higher-spin interactions per se. It is expected that moving to a different formulation of the
dynamics than the one of Fronsdal could also cure the problem of scattering in flat space.

A.2 (In)existence of a gauge algebra

The theorem Let g be the Poincaré or (A)dS algebra in 𝑑 ≥ 4. Taking (4.55) and (4.56) as
initial data for a non-Abelian higher-spin Lie algebra extending g with the spectrum of (5.10) with
the hypothesis that g is contained as a subalgebra and that at least one ‘higher-spin’ bracket of the
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form [𝑍 𝑠1 , 𝑍𝑠2] is non-vanishing for 𝑠1 and 𝑠2 strictly greater than two20 yields no solution if g is
the Poincaré algebra and exactly one if g is the (A)dS algebra [3, 73, 121]. This solution is the
Fradkin-Vasiliev-Eastwood algebra hs𝑑 described in (5.2) (there are also some dimension-dependent
constructions, e.g. for 𝑑 = 5, see [121, 125, 129, 213]).

Possible way out Surprisingly, there exists an Inonu-Wigner contraction of the higher-spin algebra
that contains Poincaré as a subalgebra [145]. It is built as follows

ihs𝑑 ≡ U (iso(1, 𝑑 − 1))
⟨I′

𝑎𝑏𝑐𝑑
⊕ I′

𝑎𝑏𝑐
⊕ I′

𝑎𝑏
⊕ I′

𝑎⟩
, (A.3)

where

I′
𝑎𝑏𝑐𝑑 ≡ 𝐽[𝑎𝑏 ⊙ 𝐽𝑐𝑑 ] , I′

𝑎𝑏𝑐 ≡ 𝐽[𝑎𝑏 ⊙ 𝑃𝑐] , I′
𝑎𝑏 ≡ 𝑃𝑎 ⊙ 𝑃𝑏 , I′

𝑎 ≡ 𝐽𝑎𝑏 ⊙ 𝑃𝑏 . (A.4)

Note that, as a result of factorising I′
𝑎 and I′

𝑎𝑏𝑐
, the value of the quadratic Casimir of the Lorentz

algebra so(𝑑 − 1, 1) is fixed

I′
𝑎𝑏𝑐𝐽

𝑏𝑐 − 2
3
𝐽𝑎

𝑏I′
𝑏 − 𝑑 − 3

3
I′
𝑎 + 4

3

(
𝐽2 + (𝑑 − 1) (𝑑 − 3)

4

)
𝑃𝑎 = 0 , (A.5)

where 𝐽2 = 1
2 𝐽𝑎𝑏𝐽

𝑏𝑎. The reason this algebra was not in the classification of [4] is because it does
not reproduce the initial data (4.56). However, the unfolded dynamics of this algebra is equivalent
to the usual one, which we will show in [214].

B. Reminders of tensor calculus

This section provides some basics of tensor calculus for higher representations of the Lorentz
group, that is beyond the usual vector Y𝑑 (1), rank-2 symmetric traceless Y𝑑 (2) and rank-2 anti-
symmetric Y𝑑 (1, 1) representations.

B.1 Conventions

As explained in the introduction, we work in the symmetric convention, i.e. indices within
groups separated by commas are symmetrised. We also use the shorthand that repeated indices that
are not summed are symmetrised as well. For example, for a generic tensor

𝑇𝑎 (𝑛1 ) ,𝑏 (𝑛2 ) , · · · ,𝑑 (𝑛𝑘 ) ∼ 𝑇(𝑎1 · · · 𝑎𝑛1 ) , (𝑏1 · · · 𝑏𝑛2 ) , · · · , (𝑑1 · · · 𝑑𝑛𝑘 ) . (B.1)

Symmetrisation and product As an example of symmetrisation between indices belonging to
different tensors, consider the product of the mixed-symmetry tensor 𝑇𝑎 (𝑘−1) ,𝑏 and a vector𝑉𝑎, the
quantity 𝑉𝑎𝑇𝑎 (𝑘−1) ,𝑏 represents the tensor

𝑉 (𝑎1𝑇𝑎2 · · ·𝑎𝑘 ) ,𝑏 =
1
𝑘

(
𝑉𝑎1𝑇𝑎2 · · ·𝑎𝑘 ,𝑏 +𝑉𝑎2𝑇𝑎1𝑎3 · · ·𝑎𝑘 ,𝑏 + · · · +𝑉𝑎𝑘𝑇𝑎1 · · ·𝑎𝑘−1,𝑏

)
, (B.2)

where the 1/𝑘 factor ‘normalises’ the sum of 𝑘 terms within brackets to one, and we used cyclic
permutations to implement the symmetrisation since 𝑇 is already symmetric in the indices of the
first row.

20In [4], there is also the technical hypothesis that the bracket [𝑍𝑠 , 𝑍𝑠] always gives a generator of the base algebra
(i.e. Poincaré or (A)dS). Relaxing this hypothesis leads to a contraction of the higher-spin algebra hs𝑑 and the latter can
always be recovered by deformation.
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Compatibility condition The fact that all tensors have the symmetries of the Young tableau
Y𝑑 (𝑛1, 𝑛2, · · · , 𝑛𝑘) is encoded in the compatibility condition: symmetrisation of the indices in a
row with (at least) one index from the following row gives zero, i.e.

𝑇𝑎 (𝑛1 ) ,𝑎𝑏 (𝑛2−1) , · · · ,𝑑 (𝑛𝑘 ) ∼ 𝑇(𝑎1 · · · 𝑎𝑛1 ,𝑎𝑛1+1 )𝑏2 · · · 𝑏𝑛2 , · · · ,𝑑1 · · · 𝑑𝑛𝑘 = 0 , (B.3a)

𝑇𝑎 (𝑛1 ) ,𝑏 (𝑛2 ) ,𝑏𝑐 (𝑛3−1) , · · · ,𝑑 (𝑛𝑘 ) ∼ 𝑇𝑎1 · · · 𝑎𝑛1 , (𝑏1 · · · 𝑏𝑛2 ,𝑏𝑛2+1 )𝑐2 · · · 𝑐𝑛3 , · · · ,𝑑1 · · · 𝑑𝑛𝑘 = 0 , (B.3b)

and so on. For example, for a Y𝑑 (1, 1) tensor 𝐽𝑎,𝑏, the compatibility condition reduces to

𝐽(𝑎,𝑏) =
1
2
(
𝐽𝑎,𝑏 + 𝐽𝑏,𝑎

)
= 0 , (B.4)

which means that 𝐽𝑎,𝑏 is antisymmetric. The projections Y𝑑 (1, 1, · · · , 1) are the only ones where
antisymmetrisation between indices is manifest (this is because we are using the symmetric con-
vention, in the antisymmetric convention the opposite statement will be true). For aY𝑑 (2, 1) tensor
𝑀𝑎𝑏,𝑐, the compatibility condition requires

𝑀(𝑎𝑏,𝑐) =
1
3
(
𝑀𝑎𝑏,𝑐 + 𝑀𝑏𝑐,𝑎 + 𝑀𝑐𝑎,𝑏

)
= 0 , (B.5)

where we used that the tensor𝑀𝑎𝑏,𝑐 is symmetric in its first two indices to reduce the symmetrisation
to a cyclic permutation. For completeness, let us also show the example of the Y𝑑 (2, 2) ‘window’
tensor

𝐾 (𝑎𝑏,𝑐)𝑑 =
1
3
(
𝐾𝑎𝑏,𝑐𝑑 + 𝐾𝑏𝑐,𝑎𝑑 + 𝐾𝑐𝑎,𝑏𝑑

)
= 0 . (B.6)

Tracelessness The tensors we work with are furthermore in irreducible representations of the
Lorentz group, which means that they are traceless on any pair of indices. As an example, in
Minkowski space-time with metric [𝑎𝑏,

[𝑎 (2)𝑇𝑎 (𝑛1 ) ,𝑏 (𝑛2 ) , · · · ,𝑑 (𝑛𝑘 ) = 0 , [𝑎𝑏𝑇𝑎 (𝑛1 ) ,𝑏 (𝑛2 ) , · · · ,𝑑 (𝑛𝑘 ) = 0 , . . . . (B.7)

Thanks to the compatibility conditions, it is enough to require tracelessness in the first row. Indeed,
taking again the example of 𝑀𝑎𝑏,𝑐, we have

0 = [𝑎𝑏𝑀(𝑎𝑏,𝑐) = [
𝑎𝑏 1

3
(
𝑀𝑎𝑏,𝑐 + 𝑀𝑏𝑐,𝑎 + 𝑀𝑐𝑎,𝑏

)
=

1
3
[𝑎𝑏𝑀𝑎𝑏,𝑐 +

2
3
[𝑎𝑏𝑀𝑐𝑎,𝑏 , (B.8)

so tracelessness in the indices of the first row implies tracelessness in the indices between the first
and the second row (there is no trace in the indices of the second row in this example). For the
‘window’

0 = [𝑎𝑏𝐾 (𝑎𝑏,𝑐)𝑑 = [𝑎𝑏
1
3
(
𝐾𝑎𝑏,𝑐𝑑 + 𝐾𝑏𝑐,𝑎𝑑 + 𝐾𝑐𝑎,𝑏𝑑

)
=

1
3
[𝑎𝑏𝐾𝑎𝑏,𝑐𝑑 + 2

3
[𝑎𝑏𝐾𝑐𝑎,𝑏𝑑 , (B.9a)

0 = [𝑐𝑑𝐾 (𝑎𝑏,𝑐)𝑑 = [𝑐𝑑
1
3
(
𝐾𝑎𝑏,𝑐𝑑 + 𝐾𝑏𝑐,𝑎𝑑 + 𝐾𝑐𝑎,𝑏𝑑

)
=

1
3
[𝑐𝑑𝐾𝑎𝑏,𝑐𝑑 + 2

3
[𝑐𝑑𝐾𝑐𝑎,𝑏𝑑 , (B.9b)

so tracelessness in the indices of the first row implies tracelessness in all pairs of indices. Note
that the Fronsdal field 𝜙𝑎 (𝑠) is not in an irreducible representation of the Lorentz group, since for
𝑠 ≥ 4 it is doubly traceless (the double trace can be computed on any pairs of indices because of
the symmetry between indices)

𝜙′′𝑎 (𝑠−4) ∼ [𝑎1𝑎2[𝑎3𝑎4𝜙𝑎1 · · · 𝑎𝑠 . (B.10)
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It can however be decomposed into a traceless components Y𝑑 (𝑠) ⊕ Y𝑑 (𝑠 − 2)

𝜙𝑎1 · · · 𝑎𝑠 =

(
𝜙𝑎1 · · · 𝑎𝑠 −

𝑠(𝑠 − 1)
2𝑑 + (𝑠 − 2) (𝑠 + 1) [ (𝑎1𝑎2𝜙

′
𝑎3 · · · 𝑎𝑠 )

)
+ 𝑠(𝑠 − 1)

2𝑑 + (𝑠 − 2) (𝑠 + 1) [ (𝑎1𝑎2𝜙
′
𝑎3 · · · 𝑎𝑠 ) ,

(B.11)
where 𝜙′𝑎3 · · · 𝑎𝑠 = [𝑏𝑐𝜙𝑏𝑐𝑎3 · · · 𝑎𝑠 . Both the term within parenthesis and the second term are in the
traceless projection of their indices.

Exercise: check this.

B.2 Young tableaux manipulation

Young tableaux are used to depict symmetries pictorially. Each box represents an index, and
indices within each rows are symmetrised. Except in section B.2.1, where we explain the ‘branching
rules’ to relate Young tableaux in different space-time dimensions, the dimensionality of space-time
is fixed. In section B.2.2, we display the decomposition in Lorentz-irreducible components of some
tensor products.

B.2.1 Branching rules

The branching rule [215] states that the restriction of a 𝑆𝑂 (𝑑) diagram Y𝑑 (𝑎1, 𝑎2, · · · , 𝑎𝑛) to
𝑆𝑂 (𝑑 − 1) yields several diagrams Y𝑑−1(𝑏1, 𝑏2, · · · , 𝑏𝑛), which we will denote by an arrow

Y𝑑 (𝑎1, 𝑎2, · · · , 𝑎𝑛) −→
⊕
𝑏𝑖

Y𝑑−1(𝑏1, 𝑏2, · · · , 𝑏𝑛) (B.12)

such that
0 ≤ 𝑏𝑛 ≤ 𝑎𝑛 ≤ 𝑏𝑛−1 ≤ · · · ≤ 𝑏2 ≤ 𝑎2 ≤ 𝑏1 ≤ 𝑎1 . (B.13)

In practice, we will only use the branching for two-row Young diagrams, which greatly simplifies
the branching rule. As an example, the branching of a rectangular two-row Young tableau of length
𝑠 − 1 from 𝑑 + 1 to 𝑑-dimensional space-time reads

Y𝑑+1(𝑠 − 1, 𝑠 − 1) −→
𝑠−1⊕
𝑡=0
Y𝑑 (𝑠 − 1, 𝑡) , (B.14)

which shows that for each spin 𝑠 ≥ 1, the traceless Killing tensors of eq. (3.31) can be embedded
inside of a two-row Young tableau as shown in eq. (5.10).

B.2.2 Tensor products

We work with trace-irreducible Young tableaux. For one-forms (gauge fields), we have the
multiplication rules

⊗ 𝑠 − 1 = 𝑠 ⊕ 𝑠 − 2 ⊕ 𝑠 − 1
, (B.15)
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and

⊗ 𝑠 − 1
𝑡

=
𝑠

𝑡
⊕ 𝑠 − 2

𝑡
⊕ 𝑠 − 1

𝑡 + 1

⊕ 𝑠 − 1
𝑡 − 1

⊕
𝑠 − 1
𝑡 ,

(B.16)

for 1 ≤ 𝑡 ≤ 𝑠 − 2, and

⊗ 𝑠 − 1
𝑠 − 1

=
𝑠

𝑠 − 1
⊕ 𝑠 − 1

𝑠 − 2
⊕

𝑠 − 1
𝑠 − 1 . (B.17)

For two-forms (torsions and curvatures), we have

⊗ 𝑠 − 1 =
𝑠 ⊕ 𝑠 − 2 ⊕ 𝑠 − 1 ⊕

𝑠 − 1
, (B.18)

and

⊗ 𝑠 − 1
𝑡

=

𝑠 − 1
𝑡 ⊕

𝑠 − 1
𝑡 + 1 ⊕

𝑠

𝑡

⊕ 𝑠

𝑡 + 1
⊕

𝑠 − 1
𝑡 − 1 ⊕ 2 𝑠 − 1

𝑡

⊕
𝑠 − 2
𝑡 ⊕ 𝑠 − 2

𝑡 + 1
⊕ 𝑠

𝑡 − 1
⊕ 𝑠 − 2

𝑡 − 1
,

(B.19)

for 1 ≤ 𝑡 ≤ 𝑠 − 2, and

⊗ 𝑠 − 1
𝑠 − 1

=

𝑠 − 1
𝑠 − 1 ⊕

𝑠

𝑠 − 1 ⊕ 𝑠

𝑠
⊕

𝑠 − 1
𝑠 − 2

⊕ 𝑠 − 1
𝑠 − 1

⊕ 𝑠

𝑠 − 2
⊕ 𝑠 − 2

𝑠 − 2
.

(B.20)

C. Enveloping algebra of conformal isometries

In this section, we show how the Eastwood algebra [16] can be realised as the Universal
Enveloping Algebra of conformal isometries of M𝑑−1, realised on the singleton module. We start
by recalling the differential realisation of (a real form of) the conformal algebra in 𝑑 −1 dimensions
acting on a primary field 𝜑 with conformal dimension Δ = 𝑑−3

2

𝐽`a = 𝑥`𝜕a − 𝑥a𝜕` , (C.1a)
𝑃` = 𝜕` , (C.1b)
𝐾` = 2𝑥` (𝑥a𝜕a + Δ) − 𝑥a𝑥a𝜕` , (C.1c)
𝐷 = 𝑥`𝜕` + Δ . (C.1d)
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The generators verify the so(2, 𝑑 − 1) commutation relations

[𝐽`a , 𝐽𝜌𝜎] = [a𝜌 𝐽`𝜎 − [`𝜌 𝐽a𝜎 − [a𝜎 𝐽`𝜌 + [`𝜎 𝐽a𝜌 , (C.2a)
[𝐽`a , 𝑃𝜌] = [a𝜌 𝑃` − [`𝜌 𝑃a , (C.2b)
[𝐽`a , 𝐾𝜌] = [a𝜌 𝐾` − [`𝜌 𝐾a , (C.2c)
[𝐷, 𝑃`] = −𝑃` , (C.2d)
[𝐷, 𝐾`] = +𝐾` , (C.2e)
[𝐾`, 𝑃a] = −2 𝐽`a − 2 [`a 𝐷 . (C.2f)

Then, one may verify that the expressions

𝐽[`a ⊙ 𝐽𝜌𝜎 ] , 𝐽[`a ⊙ 𝑃𝜌] , 𝐽[`a ⊙ 𝐾𝜌] , 𝑃[` ⊙ 𝐾a ] + 𝐷 ⊙ 𝐽`a , (C.3)

identically vanish in the differential realisation, and that[
𝐽𝜌 (` ⊙ 𝐽a)𝜌 − 𝑃(` ⊙ 𝐾a) −

1
𝑑 − 1

[`a

(
4 𝐽2 − 𝑃𝜌 ⊙ 𝐾𝜌

)]
𝜑 , (C.4a)[

𝐽𝜌` ⊙ 𝑃𝜌 − 𝑃` ⊙ 𝐷
]
𝜑 , (C.4b)[

𝐽𝜌` ⊙ 𝐾𝜌 + 𝐾` ⊙ 𝐷
]
𝜑 , (C.4c)[

𝑃` ⊙ 𝑃`

]
𝜑 , (C.4d)[

𝐾` ⊙ 𝐾`

]
𝜑 , (C.4e)[

1
2
𝐷 ⊙ 𝐷 − 1

4
𝑃` ⊙ 𝐾` + 𝑑 − 3

2

]
𝜑 , (C.4f)

where 𝐽2 = 1
4 𝐽`a ⊙ 𝐽a`, as well as[

𝐶2 +
(𝑑 + 1) (𝑑 − 3)

4

]
𝜑 =

[
𝐽2 + 1

2
𝐷 ⊙ 𝐷 − 1

2
𝑃` ⊙ 𝐾` + (𝑑 + 1) (𝑑 − 3)

4

]
𝜑 , (C.5)

vanish as a consequence of the equation of motion 𝜕2𝜑 = 0.
Using the branching rule (B.14) twice, one can show that the elements in (C.3) combine to

form a rank-4 completely antisymmetric representation of 𝑆𝑂 (2, 𝑑 −1), while the elements in (C.4)
combine to form a rank-2 symmetric traceless representation of 𝑆𝑂 (2, 𝑑 −1). Finally, the quadratic
Casimir𝐶2 takes the value specified in (C.5). One can also check that there are no other independent
relations involving elements quadratic in the generators of the conformal algebra.

This proves that the algebra of higher isometries of the singleton is isomorphic to hs𝑑 defined in
(5.2), since the base algebra is the same (conformal isometries), its spectrum of generators matches
with hs𝑑 as was proven in [16] and it automatically factorises exactly the ideal I𝐴𝐵𝐶𝐷 ⊕ I𝐴𝐵, with
the right value of the quadratic Casimir 𝐶2.
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