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1. Introduction

Considering the recent direct detection of gravitational waves (GW) by the LIGO and Virgo
Collaborations [2–7], as well as the upcoming Laser Interferometer Space Antenna (LISA) [8–
13] and other future and ongoing experiments [14–23], it is reasonable to explore ways to utilize
GW to investigate fundamental physics. One promising method is to search for evidence of a
first-order phase transition (PT) in the early Universe through the primordial gravitational wave
background [9–13,24]. This signal is expected to be present at frequencies within LISA’s sensitivity
range if the transition occurred around temperatures similar to those of the electroweak PT, T ∼
100 GeV. However, in many models, the signal is not strong enough to be detected. In contrast,
the class of models with classical scale invariance [25–38] typically predicts a strong gravitational
wave signal within LISA’s reach due to a logarithmic potential that enables significant supercooling
and latent heat release during the transition.

Within the wide variety of classically conformal models, those incorporating an additional
gauge group are particularly promising due to their high level of predictability. The conformal
Standard Model (SM) can be extended in a minimal manner with the addition of either an extra
U(1) [28, 33, 34, 36–70] or SU(2) [25, 31, 32, 50, 64, 71–76] symmetry, and there are other pos-
sibilities such as models featuring an extended scalar sector [29, 30, 40, 50, 77–118], larger gauge
groups, extra fermions, or more intricate architectures [119–138]. The focus of our current work is
on the first-order PT in a classically scale-invariant model that includes an additional SU(2)X gauge
symmetry and a scalar that transforms as a doublet under this group while remaining a singlet of
the SM. In addition to exhibiting a strong first-order phase transition, this model also provides a
candidate for dark matter particles that are stabilized by a residual symmetry that persists after the
SU(2)X symmetry is broken [139, 140].

Although the possibility of detecting GW from a PT and exploring events that occurred in the
early Universe is exciting, the imprecise nature of theoretical predictions is discouraging [141,142].
The dependence on the renormalisation scale is one of the main sources of uncertainty in these
predictions. Classically scale-invariant models, owing to the logarithmic nature of their potential,
span a broad range of energies and therefore are particularly susceptible to issues related to scale
dependence. In this work [1]:

1. We present updated predictions of the stochastic GW background in the classically scale-
invariant model with SU(2)X symmetry, incorporating recent advances in understanding su-
percooled PTs [143–147]. Our study is the first to include the condition for percolation in
the SU(2)X model, and we show that it significantly affects the parameter space.

2. We pay close attention to the renormalisation-scale dependence of the results. To minimise
this dependence, we use a renormalisation-group improved effective potential and perform an
expansion in powers of couplings consistent with the conditions from conformal symmetry
breaking and the radiative nature of the transition.

3. We investigate the DM phenomenology in light of the updated understanding of the PT.
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2. The model

In this work [1], we analyse the classically scale-invariant SM extended by a dark SU(2)X

gauge group. The new fields of the model are:

• the scalar doublet Φ of SU(2)X ,

• the three dark gauge bosons X of SU(2)X .

The Higgs H and new scalar Φ doublets can be written as

H =
1√
2

(
0
h

)
, Φ =

1√
2

(
0
ϕ

)
.

In terms of h and ϕ , the one-loop effective potential can be written as

V (h,ϕ) =V (0)(h,ϕ)+V (1)(h,ϕ), (2.1)

where the tree-level part is

V (0)(h,ϕ) =
1
4
(
λ1h4 +λ2h2

ϕ
2 +λ3ϕ

4) , (2.2)

with λ2 being the portal coupling that connects the visible and dark sectors. The one-loop correction
is given by

V (1)(h,ϕ) =
1

64π2 ∑
a

naM4
a(h,ϕ)

(
log

M2
a(h,ϕ)
µ2 −Ca

)
, (2.3)

where
na = (−1)2saQaNa(2sa +1),

and the sum runs over all particle species. With Ma(h,ϕ) we denote the field-dependent mass of
a particle, na denotes the number of degrees of freedom associated with each species and Ca =

5
6

for vector bosons and Ca =
3
2 for other particles. Furthermore, Qa = 1 for uncharged particles, and

Qa = 2 for charged particles, Na = 1, 3 for uncoloured and coloured particles, respectively.
Regarding symmetry breaking, the stationary point equations divided by the VEVs, v = ⟨h⟩,

w = ⟨ϕ⟩, read

1
v3

∂V
∂h

= λ1 +
1
2

λ2

(w
v

)2
+

1
v3

∂V (1)

∂h

∣∣∣∣∣
h=v,ϕ=w

= 0, (2.4)

1
w3

∂V
∂ϕ

= λ3 +
1
2

λ2

( v
w

)2
+

1
w3

∂V (1)

∂ϕ

∣∣∣∣∣
h=v,ϕ=w

= 0. (2.5)

Typically, vϕ/vh ≫ 10, therefore the λ2
(
vh/vϕ

)2 term can be neglected. Then, the second equation
becomes

λ3 =− 9
256π2 g4

X

[
2log

(
gX

2
w
µ

)
− 1

3

]
. (2.6)
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The first equation reads

λ1 +
1
2

λ2

(w
v

)2
+

1
16π2 ∑

W±,Z,t
na

M4
a(h,ϕ)

v4

(
log

M2
a(h,ϕ)
µ2 −Ca +

1
2

)
= 0. (2.7)

The above indicates that the symmetry breaking in the ϕ direction follows the Coleman-Weinberg
mechanism, while the symmetry breaking in the direction of h is similar to that of the SM, as the
"tree-level mass term" is generated by the portal coupling.

The physical mass corresponds to a pole of the propagator, i.e. is evaluated away from p2 = 0,
and is given by

M2
pole = m2

tree-level +Re[Σ(p2 = M2
pole)]. (2.8)

Including loop corrections from self energies which introduce momentum dependence, we have

M2(p) =

(
3λ1v2 + λ2

2 w2 λ2vw
λ2vw 3λ3w2 + λ2

2 v2

)
+

(
Σhh(p) Σhϕ(p)
Σhϕ(p) Σϕϕ(p)

)
. (2.9)

By diagonalising the mass matrix we obtain the mass eigenvalues

M2
±(p2) =

1
2

{(
3λ1 +

λ2

2

)
v2 +

1
2

(
λ2

2
+3λ3

)
w2 +Σhh(p2)+Σϕϕ(p2)

±

√[(
3λ1 −

λ2

2

)
v2 −

(
3λ3 −

λ2

2

)
w2 +Σhh(p2)−Σϕϕ(p2)

]2

+4λ 2
2 v2w2

}
. (2.10)

Neglecting terms suppressed by a product of a small coupling, λ2 or λ3 and the Higgs VEV, we can
approximately determine which of the mass eigenvalues corresponds to the Higgs particle. We find

M2
+(h,ϕ) = 3λ3ϕ

2 +Σϕϕ(p2), (2.11)

M2
−(h,ϕ) = 3λ1h2 +

1
2

λ2ϕ
2 +Σhh(p2) . (2.12)

for 3λ1h2 − 3λ3ϕ2 + 1
2 λ2ϕ2 + Σhh(p2)− Σϕϕ(p2) < 0. For the opposite sign, M+ and M− are

interchanged. Then, to obtain the momentum-corrected masses we solve the gap equations

M2
H = M2

∓(p2 = M2
H), (2.13)

M2
S = M2

±(p2 = M2
S). (2.14)

We identify the first one with the Higgs MH = 125GeV, while the other gives the mass of the new
scalar S. Finally, the mass eigenstates are obtained from the gauge eigenstates by a rotation matrix
as (

φ−
φ+

)
=

(
cosθ sinθ

−sinθ cosθ

)(
h
ϕ

)
, −π

2
< θ <

π

2
. (2.15)

In order to scan the parameter space, we employ the following numerical procedure:

1. We choose the values of the input parameters, MX and gX . We assume the tree-level relation
for the X mass MX = 1

2 gX vϕ so we can compute the value of the ϕ VEV, vϕ . The values of
gX and vϕ are treated as evaluated at the scale µ = MX .
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2. We use the minimisation condition along the ϕ direction, evaluated at µ = MX to evaluate
λ3. This gives us a simple relation

λ3 =
3

256π2 g4
X .

3. The gX and λ3 couplings are evolved using their RGEs and evaluated at µ = MZ .

4. If gX(MZ) ⩽ 1.15 the RG-improved potential is well-behaved throughout the scales consid-
ered.

5. The value of λ2 as a function of λ1(µ =MZ) is obtained from the first minimisation condition.

6. The value of λ1 is computed from the requirement that the physical Higgs mass is equal
to 125 GeV, using the first gap equation. The evaluation is performed at µ = MZ , there-
fore the vacuum expectation value of ϕ at µ = MZ is needed. It is found using the second
minimisation condition evaluated at µ = MZ .

7. The mass of S is computed by solving iteratively the second gap equation.

8. The mixing between the scalars is evaluated by demanding that the off-diagonal terms of the
mass matrix evaluated at p2 = 0 and in the mass-eigenbasis are zero.

Figure 1: Values of the new scalar mass MS (left panel) and the VEV w (evaluated at µ = MX ) (right panel).
In the left panel the thick black line indicates where MS = MH = 125GeV and across this line mass ordering
between S and H changes (to the left of the line MS < MH , and to the right MH < MS). To the right of the
dotted line ξH becomes numerically equal to 1. The dashed lines indicate a discrepancy between the running
and the pole mass (in percent). Grey-shaded regions are excluded.
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We present the result of the scan for MS and w (the VEV of ϕ) in figure 1. The new scalar
S is heavier than the Higgs boson in most of the parameter space. The dashed lines in the plot
represent the disparity between the mass obtained by solving eq. (2.14) iteratively and the mass
estimated from the effective potential approximation. Although the differences are not negligible,
they do not exceed 10% even in the upper right region of the parameter space. Finally, the region
of low X masses is excluded because it is not possible the reproduce a stable minimum with the
correct Higgs VEV and mass in this regime, while the upper right corner is cut off by the condition
gX(MZ)≤ 1.15 for the perturbativity of the dark gauge coupling.

3. Dark matter

Our DM candidates are the three vector bosons Xa
µ (where a = 1, 2, 3) of the hidden sector

gauge group SU(2) with mass MX = 1
2 gX w. As discussed in [139], the gauge bosons are stable

due to an intrinsic Z2 ×Z′
2 symmetry associated with complex conjugation of the group elements

and discrete gauge transformations. This discrete symmetry actually generalizes to a custodial
SO(3) [140] and the dark gauge bosons are degenerate in mass.

For the standard freeze-out mechanism, the Boltzmann equation has the form

dn
dt

+3H n =−
⟨σv⟩ann

3
(
n2 −n2

eq
)
− 2⟨σv⟩semi

3
n(n−neq) . (3.1)

The annihilation cross section is dominated by the XX → SS process

⟨σv⟩ann =
11g4

X

2304πM2
X
, (3.2)

while the semiannihilation cross section is dominated by the XX → XS process

⟨σv⟩semi =
3g4

X

128πM2
X
. (3.3)

Interestingly, the semiannihilation processes dominate since ⟨σv⟩semi ∼ 5⟨σv⟩ann.
Solving the Boltzmann equation, we obtain the dark matter relic abundance

ΩX h2 =
1.04×109 GeV−1

√
g∗ MP J(x f )

, J(x f ) =
∫

∞

x f

dx
⟨σv⟩ann +2⟨σv⟩semi

x2 , (3.4)

where x f ≈ 25−26 and x = MX/T . The correct relic abundance ΩDMh2 = 0.120±0.001 is repro-
duced if

gX ≈ 0.9×
√

MX

1 TeV
. (3.5)

Finally, DM particles can scatter off of nucleons, with the spin-independent cross section given by

σSI =
m4

N f 2

16πv2

(
1

M2
S
− 1

M2
H

)2

g2
X sin2 2α ≃ 64π3 f 2m4

N

81M6
X

≈ 0.6×10−45 cm2
(

TeV
MX

)6

. (3.6)

Then, to evade the experimental bounds we would have σSI < 1.5× 10−45 cm2 (MX/TeV) for
MX > 0.88TeV.
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4. Finite temperature

The temperature-dependent effective potential is

V (h,ϕ,T ) =V (0)(h,ϕ)+V (1)(h,ϕ)+V T (h,ϕ,T )+Vdaisy(h,ϕ,T ). (4.1)

The finite-temperature correction is

V T (h,ϕ,T ) =
T 4

2π2 ∑
a

naJa

(
Ma(h,ϕ)2

T 2

)
, (4.2)

where the sum runs over particle species. Ja denotes the thermal function, which is given by

JF,B(y2) =
∫

∞

0
dxx2 log

(
1± e−

√
x2+y2

)
, (4.3)

where “+” for fermions (JF ) and “−” for bosons (JB). The correction from the daisy-resummed
diagrams is

Vdaisy(h,ϕ,T ) =− T
12π

∑
i

ni

[
(M2

i,th(h,ϕ,T ))
3/2 − (M2

i (h,ϕ))
3/2
]
, (4.4)

where ni is the number of degrees of freedom, Mi,th denotes thermally corrected mass, and Mi the
usual field dependent mass.

The zero-temperature part of the effective potential along the ϕ direction reads

V (ϕ) =
1
4

λ3(t)Zϕ(t)2
ϕ

4 +
9MX(ϕ, t)4

64π2

(
log

MX(ϕ, t)2

µ2 − 5
6

)
, (4.5)

where t = log µ

µ0
, µ0 = MZ , MX(ϕ, t) = 1

2 gX(t)
√

Zϕ(t)ϕ , µ = 1
2 gX(MX)ϕ ≡ MX(ϕ).

Note that we include more terms in the renormalisation-group improved potential than in the
approaches often found in the literature. In detail:

1. The approach of [31,64] approximates the running quartic coupling via its β function, relates
the renormalisation scale with the field and uses as a reference scale the scale at which λϕ

changes sign,

V1 ≈
1
4

λ3(t)ϕ4 ≈ 1
4

9g4
X

128π2 log
(

ϕ

ϕ0

)
, (4.6)

where t = log µ

ϕ0
, λϕ(0) = 0 and gX is evaluated at µ = ϕ0 (the running of gX is not included).

2. The approach of [147] also approximates the one-loop potential by the tree-level potential
with running coupling but uses µ = ϕ and some fixed reference scale µ0 = mt ,

V2 ≈
1
4

λ3(t)ϕ4, (4.7)

where t = log
(

ϕ

µ0

)
.

To better understand which contributions are crucial we perform a series of approximations
or modifications on our approach, the results of which are presented in the right panel of figure 2.
Namely:
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Figure 2: Effective potential at zero temperature along the ϕ direction for a benchmark point with gX = 0.9,
MX = 104 GeV (defined at µ = MX ). Left panel: Comparison of different approaches used in the literature,
V1 of eq. (4.6) (yellow solid), V2 of eq. (4.7) (dashed red) and the full potential V of eq. (4.5) used in this
work (solid blue). Right panel: Comparison of different approximations imposed on the full potential V
of eq. (4.5) used in this work (solid blue) discussed in the main text: Vb (long-dashed darkest green), Vc

(medium-dashed dark green), Vd (short-dashed light green).

1. Va corresponds to the potential V with the part proportional to the logarithm neglected. Va

exactly overlaps with the full potential (solid blue line).

2. Vb corresponds to the potential V with the choice of µ = ϕ (darkest green, long-dashed line).
This choice alone does not modify the potential significantly with respect to our choice (solid
blue line).

3. Vc corresponds to the potential V with the constant −5
6 neglected (dark green, medium-

dashed curve). Since the omission of the logarithm (with our choice of the scale) does not
visibly modify the result, Vc is equivalent to using the tree-level part of V . Here the difference
with respect to the full potential is significant. It is understandable, since the choice of the
scale was such as to get rid of the logarithmic term but not the 5

6 constant.

4. Vd corresponds to the tree-level part of V but with the choice µ =ϕ (light green, short-dashed
line), which makes this choice very close to V1 and V2 discussed above. Clearly, Vd differs
significantly from the full potential.

5. Phase transition and gravitational wave signal

A first-order phase transition proceeds through nucleation, growth and percolation of bubbles
filled with the broken-symmetry phase in the sea of the symmetric phase. This corresponds to the
fields tunnelling through a potential barrier. In our case, we have checked that tunnelling proceeds
along the ϕ direction, while the transition in the h direction is smooth.

5.1 Important temperatures

The temperatures relevant to our discussion are:

7



P
o
S
(
C
O
R
F
U
2
0
2
2
)
1
0
6

Scale-Invariant Model for GW and DM Alexandros Karam

Critical Temperature Tc. At high temperatures the symmetry is restored and the effective po-
tential has a single minimum at the origin of the field space. As the Universe cools down, a second
minimum is formed. At the critical temperature, the two minima are degenerate, and for lower tem-
peratures, the minimum with broken symmetry becomes the true vacuum. This is the temperature
at which the tunnelling becomes possible.

Thermal Inflation Temperature TV . If there is large supercooling, i.e. the phase transition is
delayed to low temperatures, much below the critical temperature, it is possible that a period of
thermal inflation due to the false vacuum energy appears before the phase transition completes.
The Hubble parameter can be written as

H2 =
1

3M̄2
Pl
(ρR +ρV ) =

1
3M̄2

Pl

(
T 4

ξ 2
g
+∆V

)
, ξg =

√
30/(π2g∗) , (5.1)

where ∆V is the difference between the values of the effective potential at false and true vacuum.
The onset of the period of thermal inflation can be approximately attributed to the temperature at
which vacuum and radiation contribute to the energy density equally,

TV ≡
(
ξ

2
g ∆V

) 1
4 . (5.2)

For supercooled transitions, it is a good approximation to assume that ∆V is independent of the
temperature below TV . By using the temperature TV , the Hubble constant can be rewritten as

H2 ≃ 1
3M̄2

Plξ
2
g

(
T 4 +T 4

V
)
. (5.3)

In the case of large supercooling, the contribution to the Hubble parameter from radiation energy
can be neglected, leaving

H2 ≃ H2
V =

1
3M̄2

Pl
∆V. (5.4)

In figure 3 there are the same excluded areas as before and two new shaded regions. The lower left
corner (darkest grey) is not analysed because there the PT is sourced by the QCD phase transition,
which is beyond the scope of the present work. The light-grey region around MX ≈ 106 GeV is
where the percolation criterion of eq. (5.13) is violated and is discussed in more detail below.

Nucleation Temperature Tn. Below the critical temperature, nucleation of bubbles of true vac-
uum becomes possible. To compute the decay rate of the false vacuum we start by solving the
bounce equation,

d2ϕ

dr2 +
2
r

dϕ

dr
=

dV (ϕ,T )
dϕ

,
dϕ

dr
= 0 for r = 0 and ϕ → 0 for r → ∞. (5.5)

Once the bubble profile is known we can compute the Euclidean action along the tunnelling path

S3(T ) = 4π

∫
r2dr

1
2

(
dϕ

dr

)2

+V (ϕ,T ). (5.6)
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Figure 3: The values of the critical temperature Tc (left panel) and the temperature at which thermal inflation
starts TV (right panel).

Then the decay rate of the false vacuum due to the thermal fluctuations is given by

Γ(T )≈ T 4
(

S3(T )
2πT

)3/2

e−S3(T )/T . (5.7)

The nucleation temperature is defined as the temperature at which at least one bubble is nucleated
per Hubble volume, which can be interpreted as the onset of the PT.

N(Tn) = 1 =
∫ tn

tc
dt

Γ(t)
H(t)3 =

∫ Tc

Tn

dT
T

Γ(T )
H(T )4 . (5.8)

The common criterion for evaluating Tn as S3/Tn ≈ 140 is not reliable in the case of strongly
supercooled transitions.

Percolation Temperature Tp. When the bubbles of the true vacuum percolate, most of the bubble
collisions take place. Therefore, the percolation temperature is the relevant temperature for the
GW signal generation. The probability of finding a point still in the false vacuum at a certain
temperature is given by P(T ) = e−I(T ), where I(T ) is the amount of true vacuum volume per unit
comoving volume and reads as

I(T ) =
4π

3

∫ Tc

T
dT ′ Γ(T ′)

T ′4H(T ′)

(∫ T ′

T

dT̃
H(T̃ )

)3

. (5.9)

We can distinguish between the vacuum and radiation domination period which leads to the Hubble
parameter in the following form:

H(T )≃

HR(T ) = T 2
√

3M̄plξg
, for T > TV ,

HV =
T 2

V√
3M̄plξg

, for T < TV .
(5.10)
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We can thus write a simplified version of I(T ) valid in the region where T < TV :

IRV(T ) =
4π

3H4
V

(∫ Tc

TV

dT ′Γ(T ′)

T ′6 T 2
V

(
2TV −T − T 2

V

T ′

)3

+
∫ TV

T

dT ′Γ(T ′)

T ′

(
1− T

T ′

)3
)

(5.11)

The percolation criterion is given by [148]

IRV(Tp) = 0.34 , or P(Tp) = 0.7 . (5.12)

The fraction 0.34 is the ratio of the volume in equal-size and randomly-distributed spheres (in-
cluding overlapping regions) to the total volume of space for which percolation occurs in three-
dimensional Euclidean space, and implies that at Tp at least 34% of the (comoving) volume is
converted to the true minimum.

Comparing to the values of Tn (fig. 4) one can see that these two temperatures are of the same
order, yet they differ, hence one should not use Tn as a proxy for the temperature at which the PT
proceeds in case of the models with large supercooling.

One also needs to make sure that the volume of the false vacuum Vf ∼ a3(T )P(T ) is decreasing
around the percolation temperature. This condition is especially constraining in models featuring
strong supercooling, as thermal inflation can prevent bubbles from percolating. It can be expressed
as

1
Vf

dVf

dt
= 3H(t)− dI(t)

dt
= H(T )

(
3+T

dI(T )
dT

)
< 0. (5.13)

Figure 4: The values of the nucleation temperature Tn (left panel) and the percolation temperature Tp (right
panel).
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Reheating Temperature Tr. At the end of the phase transition, the Universe is in a vacuum-
dominated state. Then the total energy released in the phase transition is ∆V (Tp) ≈ ∆V (T = 0) ≡
∆V . If reheating is instantaneous, this whole energy is turned into the energy of radiation,

∆V = ρR(Tr) = ρR(TV ) → Tr = TV . (5.14)

On the other hand, if at Tp the rate of energy transfer from the ϕ field to the plasma, Γϕ , is
smaller than the Hubble parameter, Γϕ < H(Tp), then the energy will be stored in the scalar field
oscillating about the true vacuum and redshift as matter until Γϕ becomes comparable to the Hubble
parameter. In this case

Tr = TV

√
Γϕ

H∗
. (5.15)

The rate of energy transfer from ϕ to the plasma reads

Γϕ =ξ
2
S (1−ξ

2
S )ΓSM(S)+(1−ξ

2
S )Γ(S → HH), ξS =

{
−sinθ for MH ⩽ MS

cosθ for MH > MS
(5.16)

where ΓSM denotes a decay width computed as in the SM, i.e. with the same couplings and decay
channels, but for a particle of mass MS. The mixing enhances the decay width twofold, first, it
amplifies the coupling SHH as compared to ϕhh and, moreover, it allows a contribution from the
SM sector, which is especially important when the S → HH decay is kinematically forbidden.

Figure 5: Contour plot of the decimal logarithm of the ratio of the energy transfer rate Γϕ to the Hubble
parameter H. The equality H = Γϕ is indicated as a thick black solid line in the lower right corner. The
percolation bound is shown as a black dashed line (in other plots it is shown as a light-grey region).
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5.2 Supercool Dark Matter?

The authors of [31, 64, 76] claim that for a wide range of parameters, there can be supercool
DM. Their main assumptions are:

• The true vacuum has zero energy, the energy in the false vacuum is ∆V ≃ 9m4
χ/(128π2),

which implies that supercooling starts at

TV ≃ MX

8.5
and H∗ =

√
3
π

M2
X

4Mpl
.

• Nucleation occurs when S3(Tn)/Tn ≃ 4ln
(
Mpl/mχ

)
≃ 142.

• The reheating temperature is related to the thermal inflation temperature as
Tr = TV min(1,Γ/H)1/2 , where Γ ≃ Γh sin2(v/w) , with Γh ≈ 4 MeV .

• The DM abundance resulting from inflationary supercooling is

YDM ≡ nDM|T=Tr

s|T=Tr

=
45gDM

2π4g∗

Tr

TV

(
Tn

TV

)3

.

• For Tr < Tdec ≃ MX/25, both supercooling and sub-thermal production contribute to the DM
relic abundance,

ΩDMh2 = ΩDMh2|supercool +ΩDMh2|sub−thermal .

• For Tr > Tdec, the plasma thermalizes again, and the usual freeze-out mechanism yields the
relic abundance,

ΩDMh2 = ΩDMh2|freeze−out .

Nevertheless, our analysis suggests that due to the percolation criterion which excludes MX

above ∼ 106 GeV and the fact that Γϕ > H(Tp) in the rest of the DM range, we find Tr > Tdec for
all parameter points. Hence, the supercool DM population gets diluted away, the sub-thermal pop-
ulation reaches thermal equilibrium again, and the relic abundance is produced as in the standard
freezeout scenario (see fig. 6). Our conclusions were also validated in a recent paper [153].

5.3 Gravitational waves

The GW signal in the model under consideration can be sourced by bubble collisions. The
spectrum is:

Ωcol( f ) =
(

R∗H∗
5

)2(
κcolα

1+α

)2

Scol( f ) . (5.17)

where R∗ is the length scale of the transition, κcol is the energy transfer efficiency factor at the end
of the transition and α = ∆V/ρR(Tp) is the transition strength. The spectral shape Scol and peak
frequency are defined as

Scol = 25.09

[
2.41

(
f

fcol

)−0.56

+2.34
(

f
fcol

)0.57
]−4.2

, fcol ≃ 0.13
(

5
R∗H∗

)
. (5.18)
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Figure 6: Left: Dark matter relic abundance ΩX h2 with colour changing according to the value of the gauge
coupling gX . The black lines correspond to the measured value ΩDMh2 = 0.120± 5σ . Right: The spin-
independent dark matter-nucleon cross section. The coloured region corresponds to points that reproduce the
measured relic abundance within 5σ . The lines represent the exclusion limit from the XENON1T 2018 [149]
(solid), PandaX-4T 2021 [150] (dashed), LZ 2022 [151] (large dashed) and the scheduled XENONnT [152]
(dot dashed) experiments.

The spectra of the sound-wave-sourced GW are expressed as:

Ωsw( f ) =
(

R∗H∗
5

)(
1− 1√

1+2τswH∗

)(
κswα

1+α

)2

Ssw( f ), (5.19)

with

Ssw( f ) =
(

f
fsw

)3
[

4
7
+

3
7

(
f

fsw

)2
]7/2

, (5.20)

where the duration of the sound wave period normalised to Hubble and the peak frequency can be
expressed as

τswH∗ =
R∗H∗

U f
, U f ≃

√
3
4

α

1+α
κsw , fsw ≃ 0.54

(
5

R∗H∗

)
. (5.21)

To assess the observability of a signal we compute the signal-to-noise (SNR) ratio for the
detectors that have the best potential of observing the predicted signal, i.e. LISA and AEDGE. We
calculate the SNR using the usual formula [154, 155]:

SNR =

√
T
∫ fmax

fmin

d f
[

h2ΩGW( f )
h2ΩSens( f )

]2

, (5.22)
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where T is the duration of collecting data and h2ΩSens( f ) is the sensitivity curve of a given detec-
tor. For calculations we have used data collecting durations as TLISA = 75 % · 4 years [154] and
TAEDGE = 3 years [17]. We will assume that a signal could be observed if SNR > 10, which is the
usual criterion.

The results are presented in figure 7. Superimposed is a curve indicating where in the param-
eter space the correct DM relic density is reproduced and the DM direct detection constraints are
satisfied (solid black). Strikingly, the SNR for LISA for the predicted signal is above the observ-
ability threshold within the whole parameter space, and almost whole in the case of AEDGE. This
means that a first-order phase transition sourced by tunnelling of a scalar field in the present model
should be thoroughly testable by LISA and AEDGE. Moreover, in case of not observing a signal
consistent with the expectations for the first-order phase transitions this scenario could be falsified.

Figure 7: Results for the signal-to-noise ratio for LISA (left panel) and AEDGE (right panel) for the pre-
dicted GW signal. The black line corresponds to the points that reproduce the measured DM relic abundance
and also evade the DM direct detection experimental constraints.

The correct DM relic abundance and non-exclusion by direct detection experiments (solid
black line in figure 7) are located in the region of a relatively weaker signal. It is still well ob-
servable with LISA and AEDGE. The GW signal in the region where the correct abundance is
reproduced is sourced entirely by sound waves. Examples of spectra for points along the black line
in figure 7 are shown in figure 8.

5.4 Renormalisation-scale dependence

Finally, we perform scans of the parameter space at fixed µ . This will tell us how our under-
standing of the parameter space and observability of the GW signal depends on the renormalisation
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Figure 8: Predictions for spectra of gravitational waves together with integrated sensitivity curves for LISA,
AEDGE, ET and LIGO for the points in the parameter space where DM relic abundance is saturated.

Figure 9: Results of the scan with fixed renormalisation scale, µ = MX (left), µ = MZ (right) for the
percolation temperature Tp.

scale. Figure 9 shows the results for the percolation temperature Tp computed at different scales
(µ =MX (left), µ =MZ (right)) together with the previous constraints on the parameter space. Both
figures indicate a striking dependence on the renormalisation scale. This has further implications
since for Tp ≲ 0.1GeV the PT is believed to be sourced by the QCD effects, which changes the
nature and properties of the PT. In this work we focus on the PT sourced by the tunnelling, there-
fore the considered parameter space changes dramatically as the renormalisation scale is changed.
Also, the answer to a basic question – whether or not the PT completes via percolation of bub-
bles of the true vacuum – is altered by the change of the renormalisation scale as can be seen by
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examining the percolation criterion (light-grey shaded region). The results show that the change
of the scale at which computations are performed not only changes the results quantitatively, by
shifting the values of the characteristic parameters of the phase transition, but it also significantly
modifies them qualitatively – by modifying the character of the phase transition, the very fact of its
completion and the dominant source of the GW signal.

6. Summary and conclusions

In the present work, we studied a model endowed with classical scale invariance, a dark
SU(2)X gauge group and a scalar doublet of this group. This model provides a dynamical mecha-
nism of generating all the mass scales via radiative symmetry breaking, while featuring only two
free parameters. Moreover, it provides dark matter candidates – the three gauge bosons of the
SU(2)X group which are degenerate in mass – stabilised by an intrinsic Z2 ×Z′

2 symmetry. Like
other models with scaling symmetry, the studied model exhibits strong supercooling which results
in the generation of an observable gravitational-wave signal.

Motivated by these attractive features we performed an analysis of the phase transition, grav-
itational wave generation and dark matter relic abundance, updating and extending the existing
results [25, 31, 32, 50, 64, 71–76]. The analysis features the key ingredients:

• careful analysis of the potential in the light of radiative symmetry breaking;

• using renormalisation-group improved potential which includes all the leading order terms;

• using RG-running to move between various relevant scales: the electroweak scale for scalar
mass generation, the scale of the mass of the new scalar for its decay during reheating;

• careful analysis of the supercooled phase transition, following recent developments, in par-
ticular imposing the percolation criterion which proved crucial for phenomenological pre-
dictions;

• analysis of dark matter relic abundance in the light of the updated picture of the phase tran-
sition;

• analysis of gravitational-wave spectra using most recent results from simulations;

• using fixed-scale potential, in addition to the renormalisation-group-improved one, to study
the scale dependence of the results.

The first and foremost result of our analysis is that within the model the gravitational wave sig-
nal sourced by a first-order phase transition associated with the SU(2)X and electroweak symmetry
breaking is strong and observable for the whole allowed parameter space. This is an important
conclusion since it allows this scenario to be falsified in case of negative LISA results.

Second, we exclude the supercool dark matter scenario within the region where the phase
transition proceeds via nucleation and percolation of bubbles of the true vacuum. It is a result of
a combination of two reasons: we include the percolation condition, eq. (5.13), which allows to
verify that a strongly supercooled phase transition indeed completes via percolation of bubbles and
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strongly constrains the parameter space relevant for our analysis. Moreover, we improve on the
computation of the decay rate of the scalar field ϕ , which controls the reheating rate, which pushes
the onset of inefficient reheating towards higher MX , beyond the region of interest.

Third, we find the parameter space in which the correct relic dark matter abundance is pre-
dicted. It is produced via the standard freeze-out mechanism in the region with relatively low MX

and large gX . It is the region where the phase transition is relatively weak (compared with other
regions of the parameter space), yet the gravitational-wave signal should be well observable with
LISA. This parameter space is further reduced due to the recent direct detection constraints.

Moreover, in the present work we focused on the issue of scale dependence of the predictions.
Our approach to reducing this dependence was to implement the renormalisation-group improve-
ment procedure, respecting the power counting of couplings to include all the relevant terms. For
comparison, we present results of computations performed at fixed scale, where the dependence
on the renormalisation scale is significant. It is important to note that with the change of the scale
the predictions do not only change quantitatively, they can change qualitatively. For example, for
computations performed at a fixed scale (both µ = MX and MZ) gravitational waves sourced by
bubble collisions are not present. At the same time, with RG improvement we see a substantial
region where bubble collisions are efficient in producing an observable signal.

To sum up, the classically scale-invariant model with an extra SU(2) symmetry remains a valid
theoretical framework for describing dark matter and gravitational-wave signal produced during a
first-order phase transition in the early Universe. It will be tested experimentally by LISA and other
gravitational-wave detectors. The predictions, however, are sensitive to the theoretical procedures
implemented. Therefore, it is crucial to improve our understanding of theoretical pitfalls affecting
the predictions. The present work is a step in this direction.
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