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1. Introduction and discussion

One of the main lessons that has been learned from quantum gravity is that not any low energy
effective theory (EFT) that looks consistent remains so when coupled to dynamical gravity. In fact,
the vast majority of effective theories do not and, as such, they are said to be in the swampland. With
our present understanding, the swampland program [1–3] is a web of conjectures and statements
which capture fundamental aspects of quantum gravity and in turn constrain the form of low energy
effective theories. Even if for technical reason the majority of work testing swampland conjectures
is performed on supersymmetric models, among the most solid and far reaching conjectures are
statements like the absence of global symmetries in quantum gravity or the fact that gravity has to
be the weakest force. As such, these statements do not assume supersymmetry and in fact they may
be independent from it. As of now, it is not clear whether any of the known swampland conjectures
implies supersymmetry in some form and at some energy scale. Indeed, it would be extremely
important to be able to argue for the existence of supersymmetry just from swampland reasoning.
While we are not able to perform such a step, in these proceedings we collect known and new
evidence for the fact that, for what concerns swampland conjectures, effective supergravity theories
are somehow well behaved with respect to generic effective theories. A priori this had not to be
the case, for there is indeed no evidence at present that swampland constraints imply (low energy)
supersymmetry.

Let us stress it from the very beginning: by no means we are saying that supergravity theories
are automatically outside the swampland. This cannot be right. Instead, we want to point out
that supergravity is better behaved than general effective theories, with respect to swampland
conjectures. In fact, we will argue in favor of this assertion by showing that certain constraints are
automatically implemented in supergravity models without the need for almost any additional input,
except for some (well-established) conjectures. It is then tempting to think that, for some reason
unknown to us (which is perhaps supersymmetry itself), supergravity has built-in the property to
link swampland conjectures to one another. Schematically, we mean that

SUGRA + conjecture A ⇐⇒ SUGRA + conjecture B,

where 𝐴 and 𝐵 are here two different swampland conjectures. This phenomenon can have important
consequence within the swampland program, since it can furnish a direct method of structuring
and reinforcing the aforementioned web of swampland conjectures. A bolder statement is that one
could potentially use supergravity as tool to generate new conjectures, that is

SUGRA + known conjecture(s) =⇒ SUGRA + new conjecture(s).

In this review, we will discuss various examples of both statements.
Supergravity is the theory of local supersymmetry. Since its discovery [4, 5], it has been widely

employed in a variety of different areas in fundamental high energy physics in such a way that it
is hard to think of an aspect in which supergravity has not been employed at all. Arguably, two of
the main motivations why it is still alive after almost half a century are the fact that supergravity is
the low energy limit of the superstring, and indeed it even captures strong coupling in its eleven-
dimensional formulation, and the fact that supergravity can be related to (conformal) field theories
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through holography. Indeed, the vast majority of the works in string phenomenology and holography
are using supergravity in one way or another, and sometimes even unconsciously.

However, supergravity is not string theory. As such, one should not take for granted that
supergravity is well behaved for what concerns quantum gravity. Nevertheless, in some cases it is,
and in these case it is probably much better behaved that any other effective field theory one may
come up with.

In this contribution, we give evidence that supergravity is indeed a very good starting point
when studying low energy effective theories in a swampland perspective. We will mainly present
two related but not completely equivalent approaches. Our guiding principle is purely bottom-up:
we take swampland conjectures as principles of quantum gravity and then use them actively to
constrain low energy effective field theories. In particular, we do not aim at testing swampland
conjectures, rather we want to understand their consequences assuming them to be fundamental
quantum gravity features.

First, we consider the standard supergravity action from textbooks and apply directly swampland
conjectures. This approach is perhaps coarse, but we will argue that it leads to non-trivial results
nevertheless. In particular, we will show that certain swampland conjectures, taken as they stand, can
be automatically implemented within supergravity at the cost of introducing very mild assumptions,
like some form of charge quantization. Second, we will review (not in a comprehensive manner
though) a related approach in which supergravity is first supplemented by additional ingredients in
the low energy, as strings or membranes, and then swampland conjectures are investigated in such
an enriched setup. This approach is perhaps not completely bottom-up, for it draws information
and inspiration from string theory models, but the analysis is ultimately four-dimensional. We
believe that these two lines of research are primary examples of the a priory unexpected well-
behaviour of supergravity with respect to swampland conjectures. Finally, we focus on further
constraints which most clearly are inspired by the very structure of supergravity. We point out what
could be a potentially new swampland conjecture involving Yukawa couplings and we analyze the
consequences of the so called Festina Lente bound on D-term inflation, concluding that the majority
of inflationary models of this type are generically in tension with it. Throughout this review, we
will mostly work in Planck units, but we will restore the Planck mass 𝑀𝑃 explicit in some relevant
formulae. Any misconception in the presentation of the work by other authors is of course ours.

Before entering the main topic of the discussion, we need to review basic elements of four-
dimensional supergravity with four and eight supercharges. This is the topic of the next section.

2. Basic elements of supergravity in four dimensions

In this section, we review the ingredients of four-dimensional supergravity with four and eight
supercharges that we are going to employ in what follows. For more details, we refer to standard
textbooks, such as [6–8].

2.1 N = 1 supergravity

The minimal theory in four dimensions has four preserved supercharges and it is denoted as
N = 1 supergravity. Due to the low amount of supersymmetry, it is the theory whose structure
is constrained the less. On the one hand, this makes it an efficient and versatile tool for model
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building, on the other hand it may render the identification of the ultraviolet origin of a generic
model rather obscure, in particular due to the lack of control over corrections.

The main ingredients of the theory are the gravity multiplet and matter multiplets, among
which we recall chiral and vector multiplets. Other matter representations are known, such as linear
multiplets, but we will not need them extensively in what follows. The gravity multiplet contains
the graviton and the gravitino. Chiral multiplets are arguably the simplest matter multiplets and
are made up of a complex scalar and a majorana (or Weyl) fermion, {𝑧, 𝜒}. Vector multiplets,
instead, contain one fermion and one real vector, {𝜆, 𝐴𝜇}, but no scalars. When looking at off-shell
representations, chiral multiplets contain one complex scalar auxiliary fields while vector multiplets
a real one.

The Lagrangian is completely fixed by three (or better two) functions of the scalar fields.
These are: the Kähler potential 𝐾 (𝑧, 𝑧), the superpotential 𝑊 (𝑧) and the gauge kinetic function
𝑓 (𝑧). More precisely, 𝐾 and𝑊 are not independent, for they are related by Kähler transformations,
𝐾 → 𝐾 +𝜔(𝑧) + 𝜔̄(𝑧) and𝑊 → 𝑒−𝜔𝑊 , with 𝜔 = 𝜔(𝑧) an arbitrary holomorphic function, but one
can construct the Kähler invariant quantity

𝐺 = 𝐾 + log𝑊𝑊̄, (2.1)

which is indeed the only combination of 𝐾 and𝑊 appearing in the Lagrangian. The bosonic sector
of the theory reads1

𝑒−1L =
1
2
𝑅 − 𝑔𝑖 𝚥𝐷𝜇𝑧𝑖𝐷𝜇𝑧 𝚥 −

1
4

Im 𝑓ΛΣ𝐹
Λ
𝜇𝜈𝐹

𝜇𝜈 Σ − 1
8

Re 𝑓ΛΣ𝜖 𝜇𝜈𝜌𝜎𝐹Λ
𝜇𝜈𝐹

Σ
𝜌𝜎 −𝑉, (2.2)

where the scalar potential is

𝑉 = 𝑒𝐾
(
𝑔𝑖 𝚥𝐷𝑖𝑊𝐷̄ 𝚥𝑊̄ − 3𝑊𝑊̄

)
+ 1

2
(Im 𝑓 −1)ΛΣPΛPΣ . (2.3)

Here, the covariant derivative on the scalar fields is

𝐷𝜇𝑧
𝑖 = 𝜕𝜇𝑧

𝑖 − 𝐴Λ
𝜇𝑘
𝑖
Λ, (2.4)

while on the superpotential is
𝐷𝑖𝑊 = 𝜕𝑖𝑊 +𝑊𝜕𝑖𝐾. (2.5)

The indices 𝑖, 𝑗 = 1, . . . , 𝑛𝐶 are counting the number of chiral multiplets, while Λ, Σ = 1, . . . , 𝑛𝑉
the number of vector multiplets. Notice that we are already considering the gauged theory. In
particular, we introduced the real moment maps PΛ(𝑧, 𝑧) and the Killing vectors 𝑘 𝑖

Λ
= −𝑖𝑔𝑖 𝚥𝜕𝚥PΛ,

which correspond to the infinitesimal transformations

𝛿𝑧𝑖 = 𝛼Λ𝑘 𝑖Λ . (2.6)

They are such that
[𝑘Λ, 𝑘Σ] = 𝑓ΛΣ

Γ𝑘Γ, (2.7)
1With respect to [7], we are following conventions in which the gauge kinetic function is ( 𝑓 )𝑡ℎ𝑒𝑟𝑒 = −𝑖 ( 𝑓 )ℎ𝑒𝑟𝑒, or

equivalently (Re 𝑓 )𝑡ℎ𝑒𝑟𝑒 = (Im 𝑓 )ℎ𝑒𝑟𝑒, (Im 𝑓 )𝑡ℎ𝑒𝑟𝑒 = −(Re 𝑓 )ℎ𝑒𝑟𝑒.
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where 𝑓ΛΣ
Γ are the structure constants of the gauge group and have to satisfy the equivariance

consistency condition
𝑘 𝑖Λ𝑔𝑖 𝚥𝑘

𝚥

Σ
− 𝑘 𝑖Σ𝑔𝑖 𝚥𝑘

𝚥

Λ
= 𝑖 𝑓ΛΣ

ΓPΓ . (2.8)

Since Killing vectors are derivatives of the moment maps, two PΛ differing by a constant vector
𝜉Λ ∈ R𝑛𝑉 give rise to the same 𝑘Λ. This ambiguity in choosing the PΛ up to 𝜉Λ gives rise to the
existence of physical 𝜉Λ-dependent couplings corresponding to Fayet-Iliopouls D-terms in the limit
of global supersymmetry.

The only piece of information from the fermionic sector that we are going to employ extensively
is the gravitino covariant derivative, which reads

𝐷𝜇𝜓𝜈 =

(
𝜕𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏 +

𝑖

2
𝑣𝜇𝛾∗ −

𝑖

2
𝐴Λ
𝜇PΛ𝛾∗

)
𝜓𝜈 . (2.9)

Here, 𝑣𝜇 = − 𝑖2
(
𝜕𝜇𝑧

𝑖𝜕𝑖𝐾 − 𝜕𝜇𝑧 𝚥𝜕𝚥𝐾
)

is a composite connection indicating that the manifold of the
scalar fields is Kähler-Hodge.2 Contrary to what happens for extended supergravity, especially for
N > 2, in the N = 1 theory there is no restriction on the form of the scalar manifold, which can be
any Kähler-Hodge variety. For completeness, we report also the supersymmetry transformations of
the fermions, which read

𝛿𝑃𝐿𝜓𝜇 = 𝐷𝜇𝑃𝐿𝜖 +
1
2
𝛾𝜇𝑒

𝐾
2 𝑊𝑃𝑅𝜖 + O(𝜓, 𝜒, 𝜆), (2.10)

𝛿𝜒𝑖 =
1
√

2
𝛾𝜇𝐷𝜇𝑧

𝑖𝜖 − 1
√

2
𝑒
𝐾
2 𝑔𝑖 𝚥 𝐷̄ 𝚥𝑊̄𝜖 + O(𝜓, 𝜒, 𝜆), (2.11)

𝛿𝜆Λ =
1
4
𝛾𝜇𝜈𝐹Λ

𝜇𝜈𝜖 +
𝑖

2
𝛾∗(Im 𝑓 −1)ΛΣPΣ𝜖 + O(𝜓, 𝜒, 𝜆). (2.12)

The quantity
𝑚3/2 = 𝑒

𝐾
2 𝑊 (2.13)

is the covariantly-holomorphic gravitino Lagrangian mass parameter. We will refer to it just as the
gravitino mass in what follows, but one has to keep in mind that the concept of mass is strictly
well-defined only in flat space.

The classical two-derivatives Lagrangian can be supplement with various corrections. Later
on, we will discuss certain higher-derivative corrections to the Einstein–Hilbert term which in an
appropriate normalization take the form [9–11]

− 1
96𝜋

∫
Im 𝑓 tr (𝑅 ∧ ∗𝑅) − 1

96𝜋

∫
Re 𝑓 tr (𝑅 ∧ 𝑅) + . . . (2.14)

where dots contain 𝑅𝜇𝜈𝑅𝜇𝜈 and 𝑅2 terms which can be combined with 𝑅 ∧ ∗𝑅 to reconstruct the
Gauss-Bonnet coupling 1

192𝜋

∫
Im 𝑓 𝐸𝐺𝐵 ∗ 1, with

𝐸𝐺𝐵 = 𝑅𝜇𝜈𝜌𝜎𝑅
𝜇𝜈𝜌𝜎 − 4𝑅𝜇𝜈𝑅𝜇𝜈 + 𝑅2. (2.15)

2A Kähler-Hodge manifold, or Kähler manifold of restricted type, is a Kähler manifold equipped with a complex line
bundle 𝐿 such that the first Chern class is equivalent to the (de Rahm) cohomology class of the Kähler form, 𝑐1 (𝐿) = [K].
This line bundle can be equipped with a connection 𝜕𝐾 . Then, fermions are sections of the associated U(1)-bundle with
connection 𝑣 = Im(𝑑𝜕).
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The structure of the terms (2.14) resembles closely that of the kinetic and theta-term of the vector
fields in the original Lagrangian (2.2). Furthermore, we introduced an holomorphic function
𝑓 = 𝑓 (𝑧) parametrizing the coupling of the scalar fields to these corrections. Finally, we point out
that the terms (2.14) arise from a superspace contribution

1
24𝜋𝑖

∫
𝑑4𝑥𝑑2Θ2E 𝑓 (𝑧)W2 + 𝑐.𝑐., (2.16)

where the composite chiral multiplet

W2 = W𝛼𝛽𝛾W𝛼𝛽𝛾 −
1
4

(
D2 − 8R

) (
2RR + G𝑎G𝑎

)
(2.17)

is constructed out of the chiral W𝛼𝛽𝛾 , R and real G𝑎 multiplets of minimal supergravity [6, 12].

2.2 N = 2 supergravity

The theory preserving eight supercharges in four dimensions is denoted N = 2 supergravity.
With respect to the minimal theory, the larger amount of supersymmetry constrains the interactions
in a more severe way. The ungauged theory is known to arise for example as the low energy limit of
the type II superstring compactified on a Calabi-Yau threefold. An orientifold of such construction
may then truncate the amount of supersymmetry down to N = 1. Below, we review the N = 2
theory following mostly the conventions of [13, 14]. With respect to these works, we differ by a
minus sign in the definition of the Ricci scalar, and also in the signature of the spacetime metric,
which we take to be mostly plus.

The main ingredients are the gravity multiplet and matter multiplets, among which we recall
vector and hyper multiplets. The gravity multiplet contains the graviton, an SU(2)𝑅 doublet of
gravitini 𝜓𝐴𝜇 , with 𝐴 = 1, 2, and the graviphoton. Vector multiplets contains one complex scalar, an
SU(2)𝑅 doublet of fermions and one vector, {𝑧, 𝜆𝐴, 𝐴𝜇}. Hyper multiplets contain four real scalars
and two fermions, {𝑞𝑢, 𝜁1, 𝜁2}.

Scalar fields arise from two different superymmetry representations and in fact the whole scalar
manifold has a product structure

M = S ⊗ Q. (2.18)

The scalar fields 𝑧𝑖 of the vector multiplets, with 𝑖 = 1, . . . , 𝑛𝑉 , are coordinates of a special Kähler
manifold S.3 The scalar fields 𝑞𝑢 of the hyper multiplets, with 𝑖 = 1, . . . , 4𝑛𝐻 , are coordinates of a
quaternionic Kähler manifold Q.4 Due to the product structure, the two manifolds are independent
and do not mix.

Interactions on S are fixed by specifying simplectic sections (𝑋Λ, 𝐹Λ), with Λ = 0, 1, . . . , 𝑛𝑉 ,
or possibly a prepotential 𝐹 = 𝐹 (𝑋), such that 𝐹Λ = 𝜕Λ𝐹 (this relation might not hold in all

3A special Kähler manifold [15] is a Kähler-Hodge manifold of dimension 𝑛𝑉 together with a Sp((2𝑛𝑉 +2),R) vector
bundle 𝐻 over it. The tensor bundle 𝐻 ⊗ 𝐿, where 𝐿 is the complex line bundle entering the Kähler-Hodge definition,
has symplectic sections (𝑋Λ, 𝐹Λ) in terms of which the Kähler potential can be expressed as in (2.20). Furthermore, the
symplectic section has to be constrained as 𝑋Λ𝜕𝑖𝐹Λ − 𝜕𝑖𝑋Λ𝐹Λ = 0.

4A quaternionic Kähler manifold is a 4𝑛𝐻 -dimensional manifold together with an SU(2) bundle such that its
curvature is proportional to the HyperKähler form. Despite the name, a quaternionic Kähler manifold is not Kähler, for
its HyperKähler form is not strictly closed, but only covariantly closed.

7
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symplectic frames). The physical scalars of the vector multiplets are recovered as local coordinates
on S, namely

𝑧𝑖 =
𝑋 𝑖

𝑋0 , 𝑋0 ≡ 1. (2.19)

Given the symplectic section, one can construct the Kähler potential

𝐾 = − log 𝑖
(
𝑋̄Λ𝐹Λ − 𝑋Λ𝐹̄Λ

)
. (2.20)

It may also be useful to introduce the sections

(𝐿Λ, 𝑀Λ) = 𝑒
𝐾
2 (𝑋Λ, 𝐹Λ), (2.21)

such that 𝐿̄Λ𝑀Λ − 𝐿Λ𝑀̄Λ = −𝑖. They are covariantly holomorphic and their covariant derivatives

𝑓 Λ𝑖 = 𝐷𝑖𝐿
Λ =

(
𝜕𝑖 +

1
2
𝜕𝑖𝐾

)
𝐿Λ, ℎ𝑖Λ = 𝐷𝑖𝑀Λ =

(
𝜕𝑖 +

1
2
𝜕𝑖𝐾

)
𝑀Λ, (2.22)

can be employed as vielbeins to construct the pullback of the Kähler metric

𝑔𝑖 𝚥 𝑓 Λ𝑖 𝑓
Σ
𝚥 ≡ 𝑈ΛΣ = −1

2
(ImN−1)ΛΣ − 𝐿̄Λ𝐿Σ . (2.23)

Here, we introduced the gauge kinetic function ImNΛΣ, which is the imaginary part of the complex
symmetric matrix NΛΣ such that 𝑀Λ = NΛΣ𝐿

Σ, ℎ𝑖Λ = N̄ΛΣ 𝑓
Σ
𝑖

and ImNΛΣ𝐿
Λ 𝐿̄Σ = − 1

2 .
Interactions on Q are fixed by the quaternionic metric ℎ𝑢𝑣 = U𝐴𝛼

𝑢 U𝐵𝛽
𝑣 𝜖𝐴𝐵𝐶𝛼𝛽 , where 𝜖𝐴𝐵 and

𝐶𝛼𝛽 are metrics on SU(2)𝑅 and Sp(2𝑛𝐻) respectively. We are not going to use much quaternionic
geometry in what follows, but we refer the interested reader to [13] for more details.

The gauged theory can be constructed as a deformation of the ungauged one. To preserve
the same amount of supercharges, the deformation affects the supersymmetry transformations of
fermions, up to order 𝑔, with 𝑔 the deformation parameter, and also the Lagrangian, up to order 𝑔2.
In particular, the term at order 𝑔2 is the scalar potential. Concretely, the gauging is performed by
introducing two sets of moment maps, one on the manifold S and one on Q, respectively a singlet
and a SU(2)𝑅 triplet,

P0
Λ(𝑧, 𝑧), Px

Λ(𝑞, 𝑞), 𝑥 = 1, 2, 3, (2.24)

such that their derivatives are the Killing vectors

𝑘 𝑖Λ = 𝑖𝑔𝑖 𝚥𝜕𝚥P0
Λ, 𝑘𝑢Λ =

1
6
Ω𝑥,𝑢𝑣∇𝑣P𝑥

Λ . (2.25)

Here, we have ∇𝑢P𝑥
Λ
= 𝜕𝑢P𝑥

Λ
+ 𝜖 𝑥𝑦𝑧𝜔𝑦𝑢P𝑧Λ, where 𝜔𝑥 is the connection of the SU(2) bundle with

curvatureΩ𝑥 . The Killing vectors furnish a representation of the gauge algebra [𝑘Λ, 𝑘Σ] = − 𝑓ΛΣΓ𝑘Γ
(the minus sign difference with respect to the N = 1 discussion is due to conventions) and the
prepotentials have to satisfy the equivariance consistency conditions

𝑖𝑔𝑖 𝚥 (𝑘 𝑖Λ𝑘
𝚥

Σ
− 𝑘 𝑖Σ𝑘

𝚥

Λ
) = − 𝑓ΛΣΓP0

Γ, (2.26)
2𝑘𝑢Λ𝑘

𝑣
ΣΩ

𝑥
𝑢𝑣 = − 𝑓ΛΣΓP𝑥

Γ − 𝜖 𝑥𝑦𝑧P𝑦

Λ
P𝑧
Σ
. (2.27)
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The bosonic sector of the theory reads (we set the deformation parameter 𝑔 = 1 in what follows)

𝑒−1L =
1
2
𝑅 − 𝑔𝑖 𝚥𝐷𝜇𝑧𝑖𝐷𝜇𝑧 𝚥 − ℎ𝑢𝑣𝐷𝜇𝑞𝑢𝐷𝜇𝑞𝑣

+ ImNΛΣ𝐹
Λ
𝜇𝜈𝐹

𝜇𝜈 Σ + 1
2

ReNΛΣ𝜖
𝜇𝜈𝜌𝜎𝐹Λ

𝜇𝜈𝐹
Σ
𝜌𝜎 −𝑉,

(2.28)

where the scalar potential is

𝑉 =

(
𝑔𝑖 𝚥𝑘

𝑖
Λ𝑘

𝚥

Σ
+ 4ℎ𝑢𝑣𝑘𝑢Λ𝑘

𝑣
Σ

)
𝐿̄Λ𝐿Σ +

(
𝑈ΛΣ − 3𝐿̄Λ𝐿Σ

)
P𝑥
ΛP

𝑥
Σ . (2.29)

Notice that the matrix ImNΛΣ is negative definite, as it can be deduced from the kinetic term of the
vector fields.

The only piece of information from the fermionic sector that we are going to employ extensively
is the gravitino covariant derivative,

𝐷𝜇𝜓
𝐴
𝜈 = 𝜕𝜇𝜓

𝐴
𝜈 − 1

4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏𝜓

𝐴
𝜈 − 𝑖

2

(
𝑣𝜇 + 𝐴Λ

𝜇P0
Λ

)
𝜓𝐴𝜈 +

(
𝜔𝐴𝜇𝐵 + 𝑖

2
𝐴Λ
𝜇P𝑥

Λ (𝜎
𝑥)𝐴𝐵

)
𝜓𝐵𝜈

= · · · − 𝑖

2
𝐴Λ
𝜇P0

Λ𝜓
𝐴
𝜈 + 𝑖

2
𝐴Λ
𝜇P𝑥

Λ(𝜎𝑥)𝐴𝐵𝜓𝐵𝜈 ,
(2.30)

where in the second line we highlighted the terms which are most relevant for our analysis. Here,
𝑣 = Im(𝜕𝐾) is the connection on the line bundle associated to a Kähler-Hodge manifold, while
𝜔𝐴𝐵 = 𝑖

2𝜔
𝑥 (𝜎𝑥)𝐴𝐵 is the connection on the SU(2) bundle characterizing the quaternionic Kähler

manifold.
For completeness, we report also the supersymmetry transformations of the fermions

𝛿𝜓𝐴𝜇 = 𝐷𝜇𝜖𝐴 − 𝑖𝑆𝐴𝐵𝛾𝜇𝜖𝐵 + 𝜖𝐴𝐵𝑇−
𝜇𝜈𝛾

𝜈𝜖𝐵 + O(𝜓, 𝜆, 𝜁), (2.31)
𝛿𝜆𝑖𝐴 = 𝑊 𝑖𝐴𝐵𝜖𝐵 + 𝑖𝛾𝜇𝐷𝜇𝑧𝑖𝜖 𝐴 − 𝐺𝑖−𝜇𝜈𝛾𝜇𝜈𝜖 𝐴 + O(𝜓, 𝜆, 𝜁), (2.32)

𝛿𝜁𝛼 = 𝑁𝐴𝛼𝜖𝐴 + 𝑖U
𝐵𝛽
𝑢 𝛾𝜇𝐷𝜇𝑞

𝑢𝜖 𝐴𝜖𝐴𝐵𝐶𝛼𝛽 + O(𝜓, 𝜆, 𝜁), (2.33)

where we can distinguish the so called fermionic shifts

𝑆𝐴𝐵 =
𝑖

2
(𝜎𝑥)𝐴𝐶𝜖𝐵𝐶P𝑥

Λ𝐿
Λ, (2.34)

𝑊 𝑖𝐴𝐵 = 𝜖 𝐴𝐵𝑘 𝑖Λ 𝐿̄
Λ + 𝑖(𝜎𝑥)𝐶𝐵𝜖𝐶𝐴P𝑥

Λ𝑔
𝑖 𝚥 𝑓 Λ𝚥 , (2.35)

𝑁𝐴𝛼 = 2U𝐴
𝛼𝑢𝑘

𝑢
Λ 𝐿̄

Λ. (2.36)

Here, the quantity 𝑆𝐴𝐵 is the gravitino mass matrix. Furthermore, we introduced the objects

𝑇−
𝜇𝜈 = 2𝑖ImNΛΣ𝐿

Λ𝐹Σ−
𝜇𝜈 + O(𝜓, 𝜆, 𝜁), (2.37)

𝐺𝑖−𝜇𝜈 = −𝑔𝑖 𝚥ImNΛΣ 𝑓
Λ
𝚥 𝐹

Σ−
𝜇𝜈 + O(𝜓, 𝜆, 𝜁), (2.38)

while the analogous quantities 𝑇−
𝜇𝜈 and 𝐺𝑖−𝜇𝜈 can be found by complex conjugation.

Notice that the supersymmetry transformations link the gravity multiplet, namely the gravitino,
to a certain combination 𝑇±

𝜇𝜈 of vector field strengths and special Kähler scalar fields. The orthog-
onal combination 𝐺𝑖±𝜇𝜈 is instead entering the supersymmetry transformations of the gaugini 𝜆𝑖𝐴.
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Orthogonality follows from the special geometry identity ImNΛΣ𝐿
Λ 𝑓 Σ
𝑖
= 0. Due to this structure,

even if the vector 𝐴0
𝜇 is usually referred to as graviphoton, when supergravity is coupled to matter it

might be more convenient to really think of the graviphoton as the linear combination of vector and
scalar fields giving the field strengths entering the supersymmetry transformations of the gravitino
in the gravity multiplet. Accordingly, the matter vector fields will be the orthogonal combination,
entering the supersymmetry transformations of the matter multiplets.

3. WGC and supergravity EFTs

The Weak Gravity Conjecture (WGC) [16] is one of the first swampland conjectures to be
proposed and it is currently one of the most established. There are various ways of formulating
it, but perhaps the simplest is the statement that gravity has to be the weakest force. According
to the so called electric version of the WGC, any effective theory coupled to gravity and with an
abelian gauge group should contain a state whose mass is smaller than the product of the gauge
coupling and the charge in Planck units, times a numerical coefficient which can be calculated. In
the following, we will employ the so called magnetic formulation of the WGC, which states that the
ultraviolet cutoff Λ𝑈𝑉 of an effective theory with an abelian gauge group and coupled to gravity is
bounded from above by the gauge coupling 𝑔 in Planck units, namely (in four dimensions)

Λ𝑈𝑉 ≲ 𝑔𝑀𝑃 . (3.1)

The magnetic WGC is the prototype example of swampland conjecture in the following sense.
Naively, one would assume that the ultraviolet cutoff of an effective theory coupled to gravity is the
Planck scale, namely the scale at which the gravitational interaction becomes strongly coupled.5

However, what the magnetic WGC is telling us is that this naive expectation is indeed not correct.
The cutoff of the effective theory is lower than expected, due to quantum gravity effects. One
can think of (3.1) as a constraint on a given effective theory that is not obvious from a bottom-up
perspective, but that is required for having a consistent coupling to gravity in the ultraviolet regime.
In other words, one cannot really probe the theory up to the Planck scale, but rather up to the scale
dictated by the gauge coupling in Planck units.6

The WGC has been originally formulated in flat space and, as such, it might not directly apply
to a curved background. Therefore, care is needed when trying to use the WGC in, say, anti-de
Sitter or de Sitter space. To proceed, we will assume that some formulation of the WGC on a
curved background exists, for example the one proposed by [22] (see also [23]), and it is such that
the deviation from the flat space formulation is suppressed by the Hubble or (anti-)de Sitter radius.
In the regime of validity of the supergravity approximation, this radius has to be large and thus the
expected corrections should be negligible. This will be the main working assumption for the results
reviewed in the present section.

5In presence of a high number of light species, this statement might not be correct and one should rather use the
species scale as cutoff [17–21].

6The gauge coupling is a running coupling and thus its value depends on the energy scale at which it is measured. As
for the magnetic WGC statement, in [16] it is suggested that 𝑔 appearing in (3.1) has to be measured at the scale Λ𝑈𝑉 ,
which is a defining scale of the effective theory.

10
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In the following, we are going to show that in large classes of supergravity models with at
least eight supercharges at the Lagrangian level, the cosmological constant is of the form (omitting
numerical factors)

|𝑉 | ≥ 𝑔2
3/2𝑀

2
𝑃, (3.2)

where 𝑔3/2 is the gravitino gauge coupling associated to the gauging of the R-symmetry. The bound
is actually saturated for N = 2 anti-de Sitter vacua, while for de Sitter vacua we will need an
additional assumption on the gravitino mass to arrive precisely at (3.2). The above relation will be
then the starting point to apply swampland conjectures.

3.1 WGC versus scale separation

In this section, we focus on N = 2 anti-de Sitter vacua and we review the general argument
given in [24] which forbids the existence of scale separation as a consequence of the WGC.

Scale separation is a property of certain models with extra compact spacetime dimensions. It
amounts to ask that the typical length scale of the non-compact dimensions, e.g. the anti-de Sitter
radius 𝐿𝐴𝑑𝑆 in our case, is (parametrically) larger than the Kaluza-Klein scale 𝐿𝐾𝐾 associated to
the extra dimensions. In practice, for scale separation one would like to have

𝐿𝐾𝐾

𝐿𝐴𝑑𝑆
≪ 1. (3.3)

As such, this is a phenomenologically motivated requirement, for no experimental evidence of
more than four spacetime dimensions is confirmed at present, while on the other hand critical string
theory is defined in ten spacetime dimensions. One way to bring string theory closer to the real
world is thus to assume that the extra dimensions are indeed compact and small compared to the
observed ones. In particular, they are supposed to be so small that they have not been observed yet.

The vast majority of known supersymmetric anti-de Sitter backgrounds in string theory do
not admit scale separation. The prototype example is perhaps the celebrated 𝐴𝑑𝑆5 × 𝑆5 solution
of type IIB string theory, for which it is known that the sizes of the two spaces are identified by
supersymmetry. In fact, no anti-de Sitter vacuum with at least eight supercharges and with scale
separation has been found in the string landscape, to the best of our knowledge; see e.g. [25–32] in
support to this statement. This remarkable amount of evidence led to the proposal of swampland
conjectures forbidding scale separation in anti-de Sitter [33], see also [34–37] for interesting related
works. To summarise, one could imagine a relation of the following type

𝐿𝐴𝑑𝑆 ∼ (𝐿𝐾𝐾 )𝛼, (3.4)

for some order one parameter 𝛼. The strong version of the conjecture in [33] postulates that 𝛼 = 1
and thus no scale separation is possible in anti-de Sitter.

However, certain counterexamples to 𝐿𝐴𝑑𝑆 ∼ 𝐿𝐾𝐾 are known. These are a class of four-
dimensional N = 1 anti-de Sitter vacua from massive IIA compactifications, usually denoted as
DGKT vacua [38] (see also [39, 40]), their double T-dual versions in massless IIA/M-theory [41]
and three-dimensional vacua of [42–44] from massive IIA on𝐺2 orientifolds. Even if these models
recently passed non-trivial tests [41, 45–47], their precise embedding in string theory is yet not
completely understood. In the following, we will show how a relation of the type 𝐿𝐴𝑑𝑆 ∼ 𝐿𝐾𝐾 can
be derived from the magnetic WGC in vacua with at least eight supercharges.
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The conditions to find supersymmetric anti-de Sitter vacua in N = 2 supergravity have been
studied in [48] and, in general, they can be found by setting to zero the supersymmetry variations
of the fermions and assuming maximal symmetry of the background. In our case, they are

𝑘 𝑖Λ = 𝑘𝑢Λ = P𝑥
Λ 𝑓

Λ
𝑖 = 0. (3.5)

The vacuum energy thus reduces to the (trace of the) gravitino mass

𝑉𝐴𝑑𝑆 = −3𝐿̄Λ𝐿ΣP𝑥
ΛP

𝑥
Σ . (3.6)

For the purposes of our analysis, we have to rewrite it in terms of the gauge couplings. While with
only four supercharges such a step cannot in general be performed, thanks to the extended amount
of supersymmetry it can here be performed in a model-independent manner. Taking the square of
the vacuum condition P𝑥

Λ
𝑓 Λ
𝑖

= 0 and using the relation (2.23), we have

𝐿̄Λ𝐿ΣP𝑥
ΛP

𝑥
Σ = −1

2
(ImN−1)ΛΣP𝑥

ΛP
𝑥
Σ (3.7)

and thus
𝑉𝐴𝑑𝑆 =

3
2
(ImN−1)ΛΣP𝑥

ΛP
𝑥
Σ . (3.8)

Given that in special geometry one has (ImN−1)ΛΣP0
Λ
P0
Σ
= −2𝑔𝑖 𝚥𝑘 𝑖Λ𝑘

𝚥

Σ
𝐿̄Λ𝐿Σ, which can be derived

from P0
Λ
𝐿Λ = 0, and that this vanishes on the vacuum, we can freely supplement the expression for

𝑉𝐴𝑑𝑆 with an additional term to get

𝑉𝐴𝑑𝑆 =
3
2
(ImN−1)ΛΣ

(
P0
ΛP

0
Σ + P𝑥

ΛP
𝑥
Σ

)
≡ 3(ImN−1)ΛΣ Tr QΛQΣ, (3.9)

where we defined the SU(2) charge matrix

2QΛ 𝐴
𝐵 = P0

Λ𝛿
𝐵
𝐴 + P𝑥

Λ (𝜎
𝑥)𝐴𝐵, (3.10)

such that
Tr QΛQΣ =

1
2

(
P0
ΛP

0
Σ + P𝑥

ΛP
𝑥
Σ

)
. (3.11)

The expression (3.9) is on the right track towards (3.2), since it expresses the cosmological
constant as a product of the gauge kinetic function and of the charge, without any other quantity
entering the relation. However, the WGC is formulated in terms of an abelian gauge coupling
associated to a canonically normalized field. Thus, to make contact with the WGC, we should
identify an unbroken abelian gauge group on the vacuum and canonically normalize the gauge field
associated to it.

To identify the unbroken group on the vacuum we take advantage of the results of [49].
According to that work, on a supersymmetric anti-de Sitter vacuum the unbroken gauge group
branches into two factors, one of which, 𝐻𝑔

𝑅
, is gauged by the graviphotons of the theory. This

statement is fairly independent from the number of dimensions and of preserved supercharges. In
four dimensions, one has [49]

𝐻
𝑔

𝑅
= SO(N), (3.12)
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implying that N = 2 vacua have 𝐻𝑔
𝑅
= U(1)𝑅. Thus, in the vacua under investigation there is

always an unbroken abelian gauge group of the full gauge group and we can proceed by applying
the WGC with respect to it.

By definition,𝐻𝑔
𝑅

is gauged by the graviphoton(s). In this context, what is meant by graviphoton
is not really 𝐴0

𝜇, but rather the linear combination of vector fields (and scalars) whose field strengths
enter the supersymmetry transformation of the gravitini, as commented at the of section 2.2. Thus,
the candidate vector field gauging 𝐻

𝑔

𝑅
is in fact a linear combinations of vectors and scalars.

Without loss of generality, we introduce a general linear combination of vector fields (we suppress
the spacetime index when obvious)

𝐴̃ = ΘΛ𝐴
Λ. (3.13)

The vector 𝐴̃ will be the one associated to the WGC. Here, ΘΛ are arbitrary coefficients; one can
think of them more or less as the vacuum expectation values of the scalar fields constructing 𝑇±

𝜇𝜈

in (2.37). In fact, in concrete models the coefficients ΘΛ can be identified by asking that 𝐴̃ gauges
𝐻
𝑔

𝑅
. This fixes ΘΛ up to an overall normalization which can then be chosen my matching with the

vacuum energy.
Next, we split the whole set of vector fields, charges and moment maps into objects which are

parallel and orthogonal with respect to the direction singled out by 𝐴̃. This can be done with the
projectors used in [24, 50]. We have (indices Λ, Σ, . . . are raised and lowered with ImNΛΣ)

𝐴Λ = 𝐴
∥
Λ
+ 𝐴⊥

Λ =
ΘΛ

Θ2 𝐴̃ + 𝐴⊥
Λ, (3.14)

where we denoted Θ2 = ΘΛ(ImN−1)ΛΣΘΣ. Similarly, we split the combination 𝐴ΛQΛ entering the
gravitino covariant derivative (we omit SU(2) indices)

𝐴ΛQΛ = 𝐴ΛQ ∥Λ + 𝐴ΛQ⊥Λ = Q̃ 𝐴̃ + 𝐴ΛQ⊥Λ, (3.15)

where in the last step we defined the gravitino charge

Q̃ 𝐵
𝐴 =

(ImN−1)ΛΣΘΣ

Θ2 Q ∥
Λ 𝐴

𝐵
, Q ∥

Λ 𝐴

𝐵
= ΘΛQ̃ 𝐵

𝐴 . (3.16)

We split also the vector fields kinetic terms

ImNΛΣ𝐹
Λ(𝐴) ∧ ∗𝐹Σ (𝐴) = ImNΛΣ

ΘΛ

Θ2
ΘΣ

Θ2 𝐹 ( 𝐴̃) ∧ ∗𝐹 ( 𝐴̃) + ImNΛΣ𝐹
Λ(𝐴⊥) ∧ ∗𝐹Σ (𝐴⊥)

=
1
Θ2 𝐹 ( 𝐴̃) ∧ ∗𝐹 ( 𝐴̃) + ImNΛΣ𝐹

Λ(𝐴⊥) ∧ ∗𝐹Σ (𝐴⊥),
(3.17)

from which we identify the (abelian) gravitino gauge coupling

𝑔2
3/2 = −1

4
Θ2 = −1

4
ΘΛ(ImN−1)ΛΣΘΣ . (3.18)

Recall that the matrix ImNΛΣ is negative definite.
Taking all of these redefinitions into account, we can eventually recast the scalar potential as

𝑉𝐴𝑑𝑆 = 3(ImN−1)ΛΣ Tr QΛQΣ

= 3(ImN−1)ΛΣ Tr
(
Q ∥
Λ
Q ∥
Σ
+ Q⊥

ΛQ
⊥
Σ

)
≤ 3(ImN−1)ΛΣ Tr Q ∥

Λ
Q ∥
Σ

= −12 𝑔2
3/2 Tr Q̃Q̃,

(3.19)
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or in absolute value
|𝑉𝐴𝑑𝑆 | ≥ 12𝑔2

3/2Tr Q̃Q̃. (3.20)

Eventually, we derived (3.2) as desired.
Actually, for N = 2 vacua the bound is saturated. Indeed, the contributions along 𝐴⊥ would

be associated to vector fields gauging an orthogonal direction with respect to𝑈 (1)𝑅, i.e the abelian
factor with respect to which we apply the WGC, but still inside the group 𝐻𝑔

𝑅
. Since in these vacua

𝐻
𝑔

𝑅
= 𝑈 (1), there cannot be any such orthogonal contribution. On vacua with more preserved

supercharges, the group 𝐻𝑔
𝑅

is enlarged and thus in general one finds an inequality as above.
The relation (3.20) is the main formula from which we can draw our conclusions on scale

separation. In what follows, we assume that some form of charge quantization is implemented, in
the sense that Tr Q̃Q̃ is quantized and cannot be arbitrarily small.7 Therefore, the only parameter
which can in principle vary arbitrarily is the gauge coupling 𝑔3/2. A first observation is that, in the
limit 𝑔3/2 → 0, assuming this is smooth, we recover a global (R-)symmetry. Since there cannot
be global symmetries in quantum gravity, such a limit should not be allowed and the cosmological
constant cannot be arbitrarily small. This has been recently pointed out in [51]. However, we can
argue that the relation (3.20) is problematic already as it is, without the need to take any limit.
Indeed, if we enforce the magnetic WGC (3.1), we have

|𝑉𝐴𝑑𝑆 | ≳ Λ2
𝑈𝑉𝑀

2
𝑃, (3.21)

which is telling us that the cosmological constant is quantized in terms of the ultraviolet cutoff of the
theory. In particular, the two scales cannot be decoupled since there is no additional parameter which
can be used to disentangle them. If the ultraviolet cutoff dictated by the WGC is the Kaluza-Klein
scale 𝐿𝐾𝐾 , as it is natural to assume in supergravity, then the relation above is in fact

𝐿𝐾𝐾

𝐿𝐴𝑑𝑆
≳ 1, (3.22)

which forbids scale separation in these vacua. Thus, supersymmetric anti-de Sitter vacua with (at
least) eight supercharges are not genuinely four-dimensional effective theories if the WGC holds.
Rather, they should be understood as higher dimensional theories. We refer to [24] for a discussion
on how to extend the result to more than eight preserved supercharges and for an explicit proof in
the maximal theory in four dimensions. The extension to five dimensions has been recently worked
out in [52].

3.2 WGC versus de Sitter

A slightly modified version of the argument above against scale separation in anti-de Sitter
can be formulated and used to constrain effective theories with de Sitter critical points and with
a vanishing gravitino mass on the vacuum. This argument appeared originally in [53–55] and is
reviewed in the present section together with some examples.

The motivation to constrain the viability of de Sitter vacua, and more in general critical points,
in effective supergravity theories is phenomenological, for one of the possible explanations for the

7This assumption is not needed if one restores the charge in the original formula of the WGC, namely if one uses
Λ𝑈𝑉 ≲ 𝑔𝑞𝑀𝑃 .
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positive value of the dark energy density measured today is a cosmological constant. On the other
hand, constructing de Sitter vacua in string theory seems extremely challenging, at the very least.
Even the most studied scenarios, namely KKLT and LVS [56, 57], are not free from criticisms, see
e.g. [28, 58–63] for recent works. The absence of fully understood examples has once more led to
the formulation of swampland conjectures forbidding de Sitter vacua in quantum gravity, such as
those of [64–67]. It is worth to observe however, that, imposing restrictions that have been deduced
by the properties of well-controlled regions of moduli space to hold also in the interior may be
misleading; such an issue has indeed been raised in [68, 69] for the study of late-time cosmology.
The de Sitter criterion has been studied also directly in four-dimensional N = 1 supergravity in
[70]. In the following, we show that, similarly to scale separation, the WGC can be used to rule out
certain de Sitter critical points in gauged supergravity without the need to enforce other conjectures.

Looking at the complete scalar potential (2.29) and assuming the gravitino mass to be vanishing
on the background, we have a manifestly positive expression of the form

𝑉𝑑𝑆 = −1
2

(
ImN−1

)ΛΣ (
P0
ΛP

0
Σ + P𝑥

ΛP
𝑥
Σ

)
+ 4ℎ𝑢𝑣𝑘𝑢Λ𝑘

𝑣
Σ 𝐿̄

Λ𝐿Σ

≥ −1
2

(
ImN−1

)ΛΣ (
P0
ΛP

0
Σ + P𝑥

ΛP
𝑥
Σ

)
= −

(
ImN−1

)ΛΣ
Tr QΛQΣ,

(3.23)

where we used (2.23) and also 𝑔𝑖 𝚥𝑘 𝑖Λ𝑘
𝚥

Σ
𝐿̄Λ𝐿Σ = − 1

2 (ImN−1)ΛΣP0
Λ
P0
Σ
, which can be derived from

P0
Λ
𝐿Λ = 0. This form of the scalar potential is analogous to (3.9).
We can now repeat a similar analysis as for the anti-de Sitter case. One important difference

concerns the presence of an unbroken abelian group at the critical point, which is not guaranteed
in de Sitter. In fact, the unbroken gauge group can in general be different or even absent. Besides,
a subgroup of the gauge group must be in any case broken, otherwise supersymmetry would be
completely preserved. To proceed, we need to assume that part of the gauge group is preserved
at the critical point. In case this part contains an abelian factor, we can apply the WGC directly
to it. In case, this does not happen, we can still apply the WGC with respect to any of the Cartan
generators of the unbroken gauge algebra.

Keeping this in mind, we can proceed as for anti-de Sitter, namely by splitting all quantities
with a symplectic index Λ = 0, 1, . . . , 𝑛𝑉 in directions parallel and orthogonal with respect to the
WGC one. Using the same redefinitions as before for vectors, charges, and gauge coupling, we can
then write (3.23) as

𝑉𝑑𝑆 ≥ −
(
ImN−1

)ΛΣ
Tr QΛQΣ

= −(ImN−1)ΛΣ Tr
(
Q ∥
Λ
Q ∥
Σ
+ Q⊥

ΛQ
⊥
Σ

)
≥ −(ImN−1)ΛΣ Tr Q ∥

Λ
Q ∥
Σ

= 4 𝑔2
3/2 Tr Q̃Q̃.

(3.24)

Eventually, we derived (3.2) for de Sitter critical points with a vanishing gravitino mass. The
argument extends directly to gravitini with parametrically small mass compared to the Hubble
scale.
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This formula is again the main relation from which we can draw our conclusions. First, one can
see easily that a parametrically small positive cosmological constant would lead to the restoration
of a global symmetry as 𝑔2

3/2 → 0 (assuming smoothness of the limit). This is believed not to be
possible in quantum gravity. Second, one can see that the relation

𝑉𝑑𝑆 ≥ 4 𝑔2
3/2 Tr Q̃Q̃ (3.25)

is problematic as it is, if the WGC holds. To this purpose, recall that in de Sitter the Hubble scale,
𝐻 ≃

√
𝑉𝑑𝑆 , is a natural proxy for the infrared cutoff, 𝐻 ≃ Λ𝐼𝑅, for it indicates the longest length

that can be measured. Applying the WGC to (3.25), we thus have

Λ2
𝐼𝑅 ≃ 𝑉𝑑𝑆 ≳ Λ2

𝑈𝑉 . (3.26)

This is worrisome for an effective theory, for it means that the latter is not protected against
corrections suppressed by Λ𝑈𝑉 . Indeed, a favorable situation in which any effective theory should
be defined is Λ𝐼𝑅 ≪ Λ𝑈𝑉 , but this is clearly in contradiction with (3.26). We conclude that these
de Sitter critical points of gauged supergravity with vanishing gravitino mass cannot be considered
as consistent low energy effective theories and rather belong to the swampland.

3.2.1 Examples

The condition of vanishing gravitino mass on a de Sitter critical point might seem exotic, but it
is really not. Indeed, it is met in several explicit models, including all known stable de Sitter vacua
in N = 2 supergravity. In this sense, the results here reviewed suggest that the most promising
chance to get de Sitter vacua in four-dimension is in models with at most four-supercharges. This is
compatible with the top-down analysis of [32, 71, 72]. Before looking at stable vacua, let us review
what is probably the simplest example in which the argument above can be run.

Pure Fayet–Iliopoulos terms. The relation between the magnetic WGC and de Sitter critical
points has been pointed out first in [73], for a very simple model in N = 1 supergravity. This is the
so called Freedman model, namely a pure Fayet–Iliopoulos term. In the language of section 2.1,
this is a model without chiral multiplets, but with just one vector multiplet and a constant moment
map PΛ = 𝜉𝛿1

Λ
, leading to a scalar potential

𝑉𝐹𝐼 =
1
2
𝑔2𝜉2. (3.27)

Since there is no superpotential, the gravitino mass is identically vanishing. Indeed, this is required
by consistency of the model itself, for a non-vanishing superpotential would break explicitly the
U(1)𝑅 symmetry which is here gauged.8 Therefore, the argument presented above applies and the
simple Freedman model without chiral multiplets is in the swampland.

Notice that one can also arrive at a related conclusion by asking that there be no global
symmetries in quantum gravity. In the scalar potential (3.27) 𝜉 plays the role of a charge and as
such it should be quantized [79]. Then, the only way to get a parametrically small cosmological

8Fayet–Iliopoulos terms associated to the gauging of a non-R-symmetry have been constructed in [74] and subsequently
developed e.g. in [75–78]. As such, they allow in principle for a non-vanishing gravitino mass and thus might evade the
argument ruling out de Sitter critical points as a consequence of the WGC.
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constant is by tuning the gauge coupling 𝑔 to be small as well, but this would lead to the restoration
of a global symmetry. Indeed, a connection between pure Fayet–Iliopoulos terms and the presence
of a global symmetry has been pointed out already in [80]. Given that swampland conjectures are
believed to be related to one another, one may expect that de Sitter critical points can be constrained
also by the WGC. In fact, one can understand the WGC as an obstruction in restoring a global
symmetry.

A simple model with pure Fayet–Iliopoulos terms in N = 2 supergravity can be analysed in a
similar way and it actually fits our discussion both for de Sitter critical points and for anti-de Sitter
vacua with(out) scale separation. In fact, the de Sitter critical point to be discussed is unstable, but
the lesson one learns is valid and it can be applied to stable de Sitter vacua as well. The model
appears as Exercise 6.1 in the textbook [81], where the reader can find more details. Here, we
simply recall the few ingredients that we need for our discussion in relation to the WGC.

We considerN = 2 supergravity coupled to a single vector multiplet with interactions governed
by a prepotential 𝐹 (𝑋) = − 𝑖4

(
(𝑋0)2 − (𝑋1)2) . The complex scalar spans a special Kähler manifold

of the type

S =
SU(1, 1)

U(1) (3.28)

and its associated Kähler potential is 𝐾 = − log (1 − 𝑧𝑧). We can calculate the matrix𝑈ΛΣ in (2.23)
and the (inverse) gauge kinetic matrix

𝑈ΛΣ =
1

1 − 𝑧𝑧

(
𝑧𝑧 𝑧

𝑧 1

)
,

(
ImN−1

)ΛΣ
= − 2

1 − 𝑧𝑧

(
1 + 𝑧𝑧 𝑧 + 𝑧
𝑧 + 𝑧 1 + 𝑧𝑧

)
, (3.29)

while the sections are 𝐿Λ = 1√
1−𝑧𝑧̄ (1, 𝑧)

𝑇 . Notice that at 𝑧 = 0, which is going to be the critical
point in the models considered below, the gauge kinetic matrix becomes diagonal, ImNΛΣ |𝑧=0 =

− 1
2 diag(1, 1). The pure Fayet-Iliopoulos term arises from a gauging with constant moment maps

P𝑥
Λ

. To satisfy the equivariance condition (2.27), they need to point towards the same SU(2)𝑅
direction. Concretely, we choose the non-vanishing moment maps

P𝑥
0 = 𝜉0 𝛿

3𝑥 , P𝑥
1 = 𝜉1 𝛿

3𝑥 . (3.30)

Since the killing vectors are vanishing, the only term contributing to the scalar potential (2.29) is
the last. Using (3.29) and (3.30), it can be calculated to be

𝑉 =
1

1 − 𝑧𝑧
[
𝜉2

0 (𝑧𝑧 − 3) − 2𝜉0𝜉1(𝑧 + 𝑧) + 𝜉2
1 (1 − 3𝑧𝑧)

]
. (3.31)

Recall that from the gravitino covariant derivative (2.30) one can understand 𝜉0 and 𝜉1 in terms of
charges and gauge couplings of the gravitino under the vectors 𝐴0

𝜇 and 𝐴1
𝜇 respectively. Depending

on their values, there are two illustrative cases to be distinguished.

• We can set 𝜉0 = 2 𝑔3/2 𝑞 and 𝜉1 = 0 (the factor 2 is introduced just to canonically normalize
the vector fields in the vacuum). The resulting scalar potential admits a critical point at
𝑧 = 0 and vacuum energy 𝑉𝐴𝑑𝑆 = −12𝑔2

3/2𝑞
2, which saturates (3.20). As a consequence,

this example illustrates our analysis on scale separation in anti-de Sitter vacua: the magnetic
WGC implies that the cut-off of the theory is of order of the anti-de Sitter radius, meaning
that there is no separation of scales.
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• We can set 𝜉0 = 0 and 𝜉1 = 2 𝑔3/2 𝑞, which leads to a scalar potential with critical point
at 𝑧 = 0 and vacuum energy 𝑉𝑑𝑆 = 4𝑔2

3/2𝑞
2, saturating (3.25). This critical point is de

Sitter, albeit unstable, and it illustrates our general analysis for de Sitter vacua with vanishing
gravitino mass. Indeed, one can check that the matrix (2.34) is 𝑆𝐴𝐵 = 0 at 𝑧 = 0. As a
consequence, when applying the magnetic WGC we have that the ultraviolet cut-off of the
effective description is of order of the Hubble scale and thus the model is not protected against
corrections.

Stable de Sitter vacua. Less trivial examples in which the argument against de Sitter critical
points can be applied exist as well. Remarkably, as shown in [50, 53], all known stable de Sitter
vacua of N = 2 supergravity have a vanishing gravitino mass and thus are in tension with the
WGC. Among those, we recall the models in [53, 82]. For illustrative purposes, let us review a
specific model introduced in [53], containing three vector multiplets and one hyper multiplet, with
the gauging of an SO(2, 1)×U(1) isometry.

The scalar manifolds are

S =

[
SU(1, 1)

U(1)

]3
, Q =

SU(2, 1)
SU(2) × U(1) . (3.32)

As for the special Kähler geometry, it might be convenient to start from a prepotential

𝐹 (𝑋) =
√︁
((𝑋0)2 + (𝑋1)2) ((𝑋2)2 + (𝑋3)2) , (3.33)

from which one can calculate the symplectic sections and parametrize them in terms of the Calabi-
Visentini coordinates 𝑧𝑖 = {𝑆, 𝑦0, 𝑦1}; notice that they differ from the normal coordinates (2.19) .
However, the isometries to be gauged would then mix electric and magnetic sections. In order to
avoid this complication, we can rotate our original symplectic frame by an angle 𝜙 and work with
the rotated sections

(
𝑋Λ

𝐹Λ

)
=

©­­­­­­­­­­­­­­­­«

1
2 (1 + 𝑦2

0 + 𝑦
2
1)

𝑖
2 (1 − 𝑦2

0 − 𝑦
2
1)

𝑦0

𝑦1(cos 𝜙 − 𝑆 sin 𝜙)
1
2𝑆(1 + 𝑦2

0 + 𝑦
2
1)

𝑖
2𝑆(1 − 𝑦2

0 − 𝑦
2
1)

−𝑆𝑦0

−𝑦1(𝑆 cos 𝜙 + sin 𝜙)

ª®®®®®®®®®®®®®®®®¬

. (3.34)

Here, 𝜙 is an example of so called de Roo–Wagemans symplectic angles. In this new frame, in
which we will work from now on, the Kähler potential takes the form

𝐾 = − log
(
−Im𝑆

(
1 − 2|𝑦0 |2 − 2|𝑦1 |2 + |𝑦2

0 + 𝑦
2
1 |

2
))

(3.35)

and the SO(2, 1) isometry is generated by the Killing vectors

𝑘 𝑥Λ = 𝑒0
(
𝑘 𝑖0, 𝑘

𝑖
1, 𝑘

𝑖
2, 0

)𝑇
, (3.36)
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with

𝑘 𝑖0 =

©­­­«
0

− 𝑖2 (1 + 𝑦2
0 − 𝑦

2
1)

−𝑖𝑦0𝑦1

ª®®®¬ , 𝑘 𝑖1 =

©­­­«
0

1
2 (1 − 𝑦2

0 − 𝑦
2
1)

−𝑦0𝑦1

ª®®®¬ , 𝑘 𝑖2 =

©­­­«
0
𝑖𝑦0

𝑖𝑦1

ª®®®¬ . (3.37)

Here, 𝑒0 plays the role of the SO(2, 1) coupling and the vector fields participating to the gauging
are 𝐴0

𝜇, 𝐴1
𝜇 and 𝐴2

𝜇.
As for the quaternionic geometry, we take that of the universal hypermultiplet, see e.g. [83],

parametrized by the scalar fields 𝑞𝑢 = {𝜌, 𝜎, 𝜃, 𝜏}, with metric

𝑑𝑠2 = ℎ𝑢𝑣𝑑𝑞
𝑢𝑑𝑞𝑣 =

𝑑𝜌2

2𝜌2 + 1
2𝜌2 (𝑑𝜎 − 2𝜏𝑑𝜃 + 2𝜃𝑑𝜏)2 + 2

𝜌
(𝑑𝜃2 + 𝑑𝜏2) . (3.38)

On the manifold 𝑄, we gauge a compact U(1) symmetry generated by the Killing vector

𝑘𝑢Λ = 𝑒1(0, 0, 0, 𝑘𝑢𝐻)𝑇 , (3.39)

with

𝑘𝑢𝐻 =

©­­­­­«
4𝜌𝜏

2𝜃 + 2𝜎𝜏 + 2𝜌𝜃 + 2𝜃 (𝜃2 + 𝜏2)
4𝜃𝜏 − 𝜎

1 − 𝜌 − 3𝜃2 + 𝜏2

ª®®®®®¬
. (3.40)

The gauging is performed with 𝐴3
𝜇 and 𝑒1 is the corresponding coupling.

The above ingredients define the model completely and we refer the reader to [53] for more
details. By direct inspection, one can identify a critical point of the scalar potential at

𝑆 = cot 𝜙 − 𝑖

4

���� 𝑒0
𝑒1 sin 𝜙

���� , 𝜌 = 1, 𝑦0 = 𝑦1 = 𝜎 = 𝜃 = 𝜏 = 0. (3.41)

At this point, the cosmological constant is positive (semi-)definite, V = 4|𝑒0𝑒1 sin 𝜙|, thus giving
an Hubble scale

𝐻 =

√︂
4
3
|𝑒0𝑒1 sin 𝜙 | , (3.42)

while the mass matrix of the gravitini is identically vanishing. One can also check that the U(1)
Killing vector 𝑘𝑢

𝐻
vanishes as well at the critical point and thus the vacuum preserves an abelian

factor of the original gauge group, with respect to which we can apply the WGC. Since at the same
point the gauge kinetic matrix is diagonal(

ImN−1
)ΛΣ

= −1
2

sin 𝜙 diag
(
4
𝑒1
𝑒0
, 4
𝑒1
𝑒0
, 4
𝑒1
𝑒0
,
𝑒0
𝑒1

)
(3.43)

and the abelian gravitino charge is 𝑞 = 2𝑒1, we find the gravitino gauge coupling

𝑔3/2 =
√︁

2|𝑒0𝑒1 sin 𝜙|, (3.44)

to be identified with the magnetic WGC cutoff. Thus, the Hubble scale is of order of the cutoff
dictated by the magnetic WGC, 𝑔3/2, and this model is a particular case of our general analysis. Note
that the mass spectrum of the scalar fluctuations around the critical point includes two zero-modes,
corresponding to the goldstone modes eaten by the two broken non-compact SO(2, 1) isometries,
whereas the rest of the spectrum is positive definite making the critical point perturbatively stable.
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Other scenarios and open questions. Besides the works we discussed above, we would like to
briefly recall also [84], in which the existence of stable de Sitter vacua in N = 2 supergravity
with both (one) vector and (one) hyper multiplets is investigated as well. There, a fairly model-
independent analysis is performed and general conditions to find stable de Sitter vacua are specified.
Crucially, among those conditions, one finds a non-vanishing gravitino mass. As a consequence,
the argument given above relying on the WGC is evaded and these vacua, if they exist, might in
principle not be in the swampland. However, existence is not proven in [84], and while a generic
scenario is provided, concrete models are not. For this reason, we believe that this may be in
principle a promising direction for future research. In particular, it would be important to (dis)prove
the existence of explicit models in the scenario proposed by [84].

3.3 WGC and Festina Lente

The gravitino charge, gauge coupling and mass have played a central role in our discussion of
de Sitter critical points in gauged supergravity. In particular, whenever the gravitino had vanishing
mass but non-vanishing charge, the de Sitter critical point turned out to be in tension with the WGC.
It turns out that there exists a swampland bound enforcing such a condition not only for the gravitino
but for all charged fields in the low energy effective description. In particular, it should hold that
on a (quasi-)de Sitter background with Hubble scale 𝐻 and with an abelian gauge field [85]

𝑚2 ≳ 𝑔𝑞𝐻𝑀𝑃 , (3.45)

for every charged particle in the theory with mass 𝑚, charge 𝑞 and gauge coupling 𝑔. This is the so
called “Festina Lente” bound introduced in [85] and explored further e.g. in [86–90].

By studying de Sitter critical points in gauged supergravity, we noticed systematically that
when the condition (3.45) is violated for the gravitino, then the de Sitter background is in tension
with the magnetic WGC. Therefore it seems that supergravity iselfs serves as a link between the
WGC and the Festina Lemte bound and we have explicitly seen this link at work via the gravitino.
Notably, another condition that can be deduced from (3.45) is [86]

𝑔𝑞𝑀𝑃 ≳ 𝐻 , (3.46)

for every charged particle in the theory. This is exactly the condition that the analyzed de Sitter
critical points we studied do not satisfy, for they rather satisfy the opposite inequality (3.25).

To summarize, our discussion suggests the possible existence of some sort of analogy

Supergravity + magnetic WGC ⇐⇒ Supergravity + Festina Lente

and one could wonder what new swampland conditions or bounds can be deduced for (anti-)de Sitter
backgrounds by further applying the Festina Lente bound or the magnetic WGC on supergravity.
We will come to this point later on when discussing more speculative conjectures that originate
from the main course of our analysis.

3.4 WGC and scalar fields

Besides applying the WGC in its original formulation, another fruitful direction is to consider
conjectures equivalent to (or perhaps re-formulations of) the WGC in the presence of light mediator
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scalar fields 𝜙𝑖 . Since they can contribute as an additional attractive force felt by the particle with
the largest charge-to-mass ratio in the theory, the requirement that the total repulsive force should
be stronger than the attractive one, which leads to the WGC, is modified to [91]

2𝑔2𝑞2 ≥ 𝑚2 + 𝐺𝑖 𝑗𝑌𝑖𝑌 𝑗 . (3.47)

The crucial step is to assume the mass of the WGC particle to be field dependent so that there is
a Yukawa coupling 𝑌𝑖 = 𝜕𝑖𝑚(𝜙) entering explicitly the above bound. Here, 𝐺𝑖 𝑗 is the field space
metric for the light scalars and we are assuming only one electric charge for simplicity. We refer the
reader to [91] for more details and generalizations. This condition was further studied in [92] where,
among other things, it was noticed that if a WGC particle couples almost equally to gauge and light
scalar fields, namely 2𝑔2𝑞2 ∼ 𝐺𝑖 𝑗𝑌𝑖𝑌𝐽 , then its mass must be light, 𝑚2 ∼ 0, as a consequence of
(3.47). Notice that this holds even if the magnetic WGC cutoff 2𝑔2𝑞2 ∼ Λ𝑈𝑉 is in principle high.
As such, this is an example of UV/IR mixing, for the UV consistency imposes the existence of a
very light particle in the IR.

Another related conjecture holds that, even in the absence of electromagnetic interactions, one
should have at least one state with the property [91]

𝐺𝑖 𝑗𝑌𝑖𝑌 𝑗 > 𝑚
2 , (3.48)

which was dubbed scalar weak gravity conjecture in [2]. Notice that this time one has a strict
inequality. An interesting aspect of this conjecture, which resonates with our discussion here, is
that the condition (3.48) is satisfied by the BPS states in four-dimensional N = 2 supergravity
theories. This follows directly from the special geometry relation |𝐷𝑖𝑍 |2 − |𝑍 |2 = 1

2𝑄
𝑇𝑀 (𝐹)𝑄,

see e.g. formula (57) and (58) in [14], where 𝑍 is the central charge of the N = 2 algebra.
Therefore, (3.48) is satisfied in compactifications of Type II string theory on Calabi–Yau threefolds
by construction.

A possible extension of (3.48) was proposed in [93] in the framework of a general field theory
of scalars coupled to gravity. The idea was to impose that scalar self-interactions should always be
stronger than gravity, now for any value of the scalar field in the theory. Such a strong bound results
in the condition [93]

2(𝑉 ′′′)2 −𝑉 ′′𝑉 ′′′′ ≥ (𝑉 ′′)2

𝑀2
𝑃

, (3.49)

where prime refers to the derivative with respect to the probe scalar field, e.g. 𝑉 ′ = 𝜕𝑉
𝜕𝜙

for a real
probe scalar 𝜙. Staying outside the explicit domain of supergravity theories, in [94] the impact of
the scalar weak gravity conjectures was studied for various cosmological scenarios.

Inspiration from supergravity in deriving and refining swampland bounds was further exploited
in [91]. It is known that the central charge of the N = 2 supersymmetry algebra satisfy a specific
identity that depends on the derivatives with respect to the special Kähler scalar fields. Extrapolating
this relation into a swampland conjecture, one can obtain an inequality of the form [91]

𝑛 𝑚2 + 𝐺𝑖 𝑗𝑌𝑖𝑌 𝑗 ≤
1
2
𝐷𝑖𝜕 𝑗 (𝑚2) , (3.50)

where now 𝑛 is the number of scalar fields coupled to the WGC state. This conjecture was further
studied in [95], especially in relation to the identities that the central charges of N ≥ 2 supergravity
satisfy.
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4. Introducing strings and membranes

In the previous section, swampland conjectures have been applied directly to supergravity
effective theories with particles as matter content. A possible generalization is to supplement
the theory with additional ingredients and then study swampland conjectures in such an enriched
setup. These ingredients can be extended objects, as for example string or membranes, and they are
inserted directly in the four-dimensional theory. Such a step can be motivated by the completeness
hypothesis [96]. This approach has been recently pursued in [97–101] (see [102] for a similar work
in five dimensions), based on the manifest supersymmetric formalism developed in [103, 104], but
the history of supergravity coupled to extended objects dates back to [105, 106].

In this section, we briefly review these recent developments, with particular focus on [99],
since they provide a somehow complementary approach to the one we presented above. Any
misconception in the presentation of the work by other authors is of course ours.

4.1 String and membranes in the perturbative regime of the effective theory

Besides particles, in four dimensions one can have strings and membranes which are co-
dimension two and one objects respectively. When introduced in the effective description as
probes, one can derive consistency conditions for the whole theory by demanding consistency of
the probe. This approach has been followed in five dimensions in [102] and more recently in four
dimensional N = 1 supergravity in [99]. Before entering the discussion of [99], we would like to
review how strings and membranes can be introduced into the setup of minimal supergravity in four
dimensions.

First, we would like to outline the regime we will be working in. One can define a perturbative
regime of the effective theory by looking at the gauge sector and demanding it to be weakly coupled.
In the same regime, non-perturbative contributions to the superpotential are suppressed. This is
described below.

In the four-dimensional effective theories of interest there are axions 𝑎𝑖 , with fixed periodicity

𝑎𝑖 ≃ 𝑎𝑖 + 1, (4.1)

and which, together with saxions 𝑠𝑖 , form the lowest components of N = 1 chiral multiplets

𝑡𝑖 = 𝑎𝑖 + 𝑖𝑠𝑖 . (4.2)

Besides, one can also have spectator chiral multiplets 𝜙 such that the full set of scalars 𝑧 = {𝑡𝑖 , 𝜙}
parametrizes a Kähler-Hodge field space. From a bottom-up perspective, axions are associated to
continuous shift isometries, 𝑎𝑖 → 𝑎𝑖 + 𝑐𝑖 , which are usually broken to discrete transformations by
means of BPS instanton effects,

𝑊𝑖𝑛𝑠𝑡 ≃ 𝑒2𝜋𝑚𝑖 𝑡𝑖 , (4.3)

with 𝑚𝑖 the BPS instanton charges. The perturbative regime we will be working in is defined by
the condition ���𝑒2𝜋𝑚𝑖 𝑡𝑖

��� = ���𝑒−2𝜋𝑚𝑖𝑠𝑖
��� ≪ 1, (4.4)
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guaranteeing that the continuous shift symmetry of the axions is approximately preserved, while
the Kähler potential depends only on the saxions

𝐾 = 𝐾 (𝑠). (4.5)

This regime corresponds to weak coupling in the gauge sector. Without loss of generality, we
consider a gauge group 𝐺 = Π𝐴U(1)𝐴 × Π𝐼𝐺 𝐼 , where 𝐺 𝐼 are simple groups. The couplings of
vector to scalar fields are given by the kinetic terms9

− 1
4𝜋

∫ [
(Im 𝑓 )𝐴𝐵𝐹𝐴 ∧ ∗𝐹𝐵 + (Re 𝑓 )𝐴𝐵𝐹𝐴 ∧ 𝐹𝐵

]
− 1

8𝜋

∫ [
Im 𝑓 𝐼 tr(𝐹 ∧ ∗𝐹)𝐼 + Re 𝑓 𝐼 tr(𝐹 ∧ 𝐹)𝐼

]
.

(4.6)

We assume that we are allowed to expand

𝑓 𝐴𝐵 (𝑡, 𝜙) = 𝐶𝐴𝐵𝑖 𝑡𝑖 + Δ 𝑓 𝐴𝐵 (𝜙) + . . . , (4.7)
𝑓 𝐼 (𝑡, 𝜙) = 𝐶 𝐼𝑖 𝑡𝑖 + Δ 𝑓 𝐼 (𝜙) + . . . , (4.8)

where 𝐶𝐴𝐵
𝑖

, 𝐶 𝐼
𝑖

are constants and dots stand for terms which will be exponentially suppressed.
Then, we see that the perturbative regime corresponds to Im 𝑓 𝐴𝐵, Im 𝑓 𝐼 ≫ 1, which is indeed weak
gauge coupling, and the dominant terms in (4.6) are

− 1
4𝜋
𝐶𝐴𝐵𝑖

∫ [
𝑠𝑖𝐹𝐴 ∧ ∗𝐹𝐵 + 𝑎𝑖𝐹𝐴 ∧ 𝐹𝐵

]
− 1

8𝜋
𝐶 𝐼𝑖

∫ [
𝑠𝑖tr(𝐹 ∧ ∗𝐹)𝐼 + 𝑎𝑖tr(𝐹 ∧ 𝐹)𝐼

]
+ . . . . (4.9)

The very form of these couplings will be a working assumption for the discussion of quantum
gravity constraints in the next sections. Besides, it is expected that Δ 𝑓 𝐴𝐵 (𝜙) and Δ 𝑓 𝐼 (𝜙) are order
one contributions for generic values of 𝜙, so that one has to require 𝐶𝐴𝐵

𝑖
𝑠𝑖 ≥ 0 and 𝐶 𝐼

𝑖
𝑠𝑖 ≥ 0 to

avoid ghosts in this regime. Compatibility of gauge instanton corrections with axion periodicity
requires in addition that these coefficients are quantized as 𝐶𝐴𝐵

𝑖
, 𝐶 𝐼
𝑖
∈ Z.

As we have seen in section 2.1, we can also consider higher curvature corrections to the
supergravity action, such as those in formula (2.14). Similarly to the gauge kinetic function, we can
expand 𝑓 = 𝑓 (𝑡, 𝜙) as

𝑓 (𝑡, 𝜙) = 𝐶̃𝑖𝑡𝑖 + Δ 𝑓 (𝜙) + . . . , (4.10)

where again dots stand for non-perturbative terms which are exponentially suppressed in the per-
turbative regime. Thus, from (2.14) we read the coupling

− 1
96𝜋

𝐶̃𝑖

∫ [
𝑠𝑖tr (𝑅 ∧ ∗𝑅) + 𝑎𝑖tr (𝑅 ∧ 𝑅)

]
, (4.11)

where the quantization condition 2𝐶̃𝑖 ∈ Z is needed not to break the axion periodicity by possible
gravitational instantons.

9With respect to section 2.1, we rescale the gauge kinetic function by a factor of 1/2𝜋 for abelian groups and 1/4𝜋
for 𝐺 𝐼 , to match with the conventions of [99]. Besides, we split the vector field indices as Λ = (𝐴, 𝐼) in accordance with
the splitting of the gauge group 𝐺.
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Having specified the main features of the perturbative regime we are considering, we want
now to introduce (probe) strings and membranes in the setup. We mainly focus on the former, and
indeed we consider a specific class of BPS axionic strings, called EFT strings for short [97, 98].
They have the property that their backreaction on the moduli is such that close to the string core the
effective theory becomes weakly coupled, namely axionic shift symmetries become exact. In this
respect, EFT strings can be considered as fundamental, in the sense that they cannot be completed
into smooth solitonic objects within the effective description.

More concretely, EFT strings are detected by axions, which undergo integral shifts around
them,

𝑎𝑖 → 𝑎𝑖 + 𝑒𝑖 , 𝑒𝑖 ∈ Z. (4.12)

They have a field-dependent tension
𝑇 = 𝑀2

𝑃 𝑒
𝑖𝑙𝑖 , (4.13)

where 𝑙𝑖 = − 1
2
𝜕𝐾
𝜕𝑡𝑖

= − 1
2
𝜕𝐾
𝜕𝑠𝑖

are linear multiplets dual to the saxions and 𝑒𝑖 are the charges entering
the coupling with the 2-form potential 𝐵2,𝑖 , namely 𝑒𝑖

∫
W 𝐵2,𝑖 , where W is the string worldsheet.

The tension is such that Λ2
𝐸𝐹𝑇

< 𝑇 < 𝑀2
𝑃

, which is another way to see that these strings cannot
be resolved within the effective theory and as such are fundamental. Close to their core, the
backreaction induces a profile for the saxions of the type [107, 108]

𝑠𝑖 (𝑟) = 𝑠𝑖0 +
𝑒𝑖

2𝜋
log

𝑟0
𝑟
, (4.14)

where 𝑠𝑖0 ≡ 𝑠𝑖 (0) and 𝑟 is the coordinate parametrizing the distance from the core sitting at 𝑟 = 0.
Thus, we see that the backreaction becomes strong approaching the core, such as 𝑠𝑖 ≫ 1 and thus
the effective theory is in the perturbative regime.

Membranes can be introduced by generalizing the discussion on strings. In particular, in
four-dimensional N = 1 supergravity a natural way to introduce membranes is to first trade scalar
auxiliary fields for (hodge duals of) gauge four-form field strengths. Remarkably, this step can
be performed in a manifestly supersymmetric manner [73, 103–106, 109, 110] (see [111] for an
analysis in global N = 2 supersymmetry) and we will come back to it in section 4.4.10 Then,
membranes are the objects coupling to these newly introduced gauge three-form fields𝐶𝑎3 , such that
their local action contains a term 𝑞𝑎

∫
W3
𝐶𝑎3 , with W3 the membrane worldvolume. They can act

as domain walls separating, say, two different N = 1 flux vacua. When crossing the wall, certain
fluxes jump by 𝑞𝑎 units and in turn the value of the cosmological constant is changed.

An interesting question is how these strings and membranes behave with respect to the WGC.
This has been investigated in [97, 98] to which we refer the reader for more details. Here, we would

10In the matter-coupled old minimal formulation of supergravity there can be mainly three kinds of scalar auxiliary
fields: a complex scalar from the gravity multiplet, one complex scalar from each chiral multiplet and one real scalar
from each vector multiplet. The supersymmetric procedure to replace them with gauge four-form field strengths has
been outlined in [106] for the first kind of auxiliary field, then extended in [103–105, 109, 110] to auxiliary field of
chiral multiplets, and more recently in [73] to the auxiliary field of vector multiplets. The setup in [73] allows in fact
for a dynamical generation of the Einstein-Hilbert kinetic term from a scale-invariant action. As a result, the Planck
mass and the cosmological constant are scanning variables and membranes can interpolate between vacua with different
values of these quantities. As such, the model in [73] can be seen as an explicit embedding into N = 1 supergravity of
a mechanism to lower dynamically the value of the cosmological constant and of the Planck mass. More recently, this
mechanism has been further considered in the subsequent works [112–114].
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just like to point out that a similar question is behind the works reviewed in section 3. In fact, one
of the results of [97] is that imposing the WGC for fundamental membranes leads to a runaway
contribution to the scalar potential forbidding de Sitter critical points.

4.2 Anomaly inflow on EFT strings

The idea of [99] is to derive constraints on four-dimensional N = 1 supergravity by asking
cancellation of anomalies on the probe EFT string with an anomaly inflow from the bulk theory. In
practice, one has to calculate the possible anomalies on the string worldsheet theory and in the bulk
supergravity theory separately, and then ask that their combination cancels. Following this strategy,
one can constrain the bulk supergravity theory itself by asking consistency of the probe string.

As for the bulk theory, the axionic couplings produce an anomaly inflow to the EFT string. In
the setup under investigation, we can recast the axionic couplings from (4.9) and (4.11) as

2𝜋
∫

𝑎𝑖 𝐼4,𝑖 = −2𝜋
∫

ℎ𝑖1 ∧ 𝐼
(0)
3,𝑖 , (4.15)

where we introduced the globally defined one-forms ℎ𝑖1 = 𝑑𝑎𝑖 and we set

𝐼4,𝑖 = − 1
8𝜋2𝐶

𝐴𝐵
𝑖 𝐹𝐴 ∧ 𝐹𝐵 − 1

16𝜋2𝐶
𝐼
𝑖 tr(𝐹 ∧ 𝐹)𝐼 −

1
192𝜋2 tr(𝑅 ∧ 𝑅)𝐼 . (4.16)

This object is an example of invariant polynomial, see e.g. the standard textbook [115]. According
to Chern-Weil theorem, invariant polynomials are closed (and do not dependent on the choice of a
particular connection). Hence, by Poincaré lemma they are locally exact and one can write

𝐼4,𝑖 = 𝑑𝐼
(0)
3,𝑖 . (4.17)

The object 𝐼 (0)3,𝑖 is called transgression in general, and Chern-Simons form in our particular case.
Asking that it describes a theory on its own, invariant under general gauge and local Lorentz
transformations, amounts to ask that

𝛿𝐼
(0)
3,𝑖 = 𝑑𝐼

(1)
2,𝑖 , (4.18)

for some two-form 𝐼
(1)
2,𝑖 . The latter is the anomaly inflow induced by the axionic couplings on the

worldsheet of the string. Indeed, recalling that the axion field strengths ℎ𝑖1 in the presence of a
string satisfy the Bianchi identity

𝑑ℎ𝑖 = 𝑒𝑖𝛿2(W), (4.19)

we can calculate the variation of the bulk axionic couplings

𝛿𝑆𝑏𝑢𝑙𝑘 = 𝛿

(
2𝜋

∫
𝑎𝑖 𝐼4,𝑖

)
= −2𝜋

∫
ℎ𝑖1 ∧ 𝛿𝐼

(0)
3,𝑖

= −2𝜋𝑒𝑖
∫

𝛿2(W) ∧ 𝐼 (1)2,𝑖 = −2𝜋𝑒𝑖
∫
W
𝐼
(1)
2,𝑖 .

(4.20)

Since this is non-vanishing, there is an anomaly which must be cancelled by an analogous contri-
bution from the worldsheet string action, namely we should find

𝛿𝑆𝑠𝑡𝑟𝑖𝑛𝑔 = 2𝜋𝑒𝑖
∫
W
𝐼
(1)
2,𝑖 . (4.21)
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In other words, by consistency the object 𝐼𝑊𝑆4 = 𝑒𝑖 𝐼4,𝑖 is required to be the anomaly polynomial of
the worldsheet theory.

Before proceeding further, we need two perform two different steps. First, we want to rewrite
𝐼𝑊𝑆4 in a more convenient form. To this purpose, we split the contribution of the bulk first Pontryagin
class 𝑝1(𝑀) = − 1

8𝜋2 tr (𝑅 ∧ 𝑅) into tangent and normal contributions with respect to the worldsheet.
This can be done as11

𝑝1(𝑀) = 𝑝1(W) + 𝑐1(𝑁W)2 = − 1
8𝜋2 tr (𝑅W ∧ 𝑅W) + 1

4𝜋2 (𝐹𝑁 ∧ 𝐹𝑁 ) , (4.22)

where 𝐹𝑁 = 𝑑𝐴𝑁 is the field strength of the U(1)𝑁 connection induced on the normal bundle 𝑁W
by the bulk Riemannian connection.

Second, there is an additional contribution to be taken into account. This arises by requiring
that the normal bundle 𝑁W must be trivial, similarly to the discussion in [116] for the normal
bundle to the NS5 brane in type IIA string theory. Intuitively, we are considering a (probe) string
in an effective theory and thus we have to glue properly the worldsheet theory (the zero-modes
perturbation theory) to the bulk. In this respect, the delta function on right hand side of the Bianchi
identity (4.19) can be seen as a tool to keep track of the string. A more precise mathematical
description is available in cohomology, where the right hand side of (4.19), and also its restriction
to W, can be seen as a two-form representative of a certain class. By combining proposition 6.24
and 6.41 of [117], one finds that the pullback of this cohomology class to the string worldsheet is
the Euler class of the normal bundle, namely

𝛿2(W)
��
W = 𝜒(𝑁W). (4.23)

A natural choice for a connection on this bundle is 𝐴𝑁 and thus we can write

𝜒(𝑁W) = 1
2𝜋
𝐹𝑁 . (4.24)

Then, combining with (4.19), we get a finite contribution from the delta source

𝑑ℎ𝑖
��
W =

𝑒𝑖

2𝜋
𝐹𝑁 . (4.25)

This is the precise sense in which the normal bundle to the string worldsheet is trivial in cohomology
and we will take it as a defining property for EFT strings, implying in turn that 𝐹𝑁 = 𝑑𝐴𝑁 globally.
The Bianchi identity (4.25) suggests the presence of an additional term in the effective action
localized on the string and of the type

𝑆𝑁 = − 1
24
𝐶̂𝑖

∫
W
ℎ𝑖1 ∧ 𝐴𝑁 . (4.26)

Due to (4.25), this term is anomalous under U(1) gauge transformations 𝛿𝐴𝑁 = 𝑑𝜆𝑁 , indeed

𝛿𝑆𝑁 = − 1
24
𝐶̂𝑖

∫
W
𝑑ℎ𝑖1 ∧ 𝜆𝑁 = − 1

48𝜋
𝐶̂𝑖𝑒

𝑖

∫
W
𝐹𝑁𝜆𝑁 . (4.27)

11One needs to use 𝑇𝑀 |W = 𝑇W⊕𝑁W , where 𝑁W is the normal bundle of W, together with Whitney sum formula
implying 𝑝1 (𝑇𝑀 |W ) = 𝑝1 (𝑇W) + 𝑝1 (𝑁W ). Then, one uses also that in general 𝑝1 = −2𝑐2 + 𝑐2

1, but 𝑐2 (𝑁W ) = 0 in
our case.
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In turn, this implies the existence of a new contribution to the anomaly polynomial, namely

𝐼4,𝑁 =
𝐶̂𝑖𝑒

𝑖

96𝜋2 𝐹𝑁 ∧ 𝐹𝑁 . (4.28)

The total worldsheet anomaly polynomial is thus the sum of 𝑒𝑖 𝐼4,𝑖 , written taking into account
(4.22), and the additional piece (4.28), giving

𝐼𝑊𝑆4 = 𝑒𝑖 𝐼4,𝑖 + 𝐼4,𝑁

= −
𝐶𝐴𝐵
𝑖
𝑒𝑖

8𝜋2 𝐹𝐴 ∧ 𝐹𝐵 −
𝐶 𝐼
𝑖
𝑒𝑖

16𝜋2 tr (𝐹 ∧ 𝐹)𝐼

− 𝐶̃𝑖𝑒
𝑖

192𝜋2 tr (𝑅W ∧ 𝑅W) + 𝐶̃𝑖𝑒
𝑖 + 𝐶̂𝑖𝑒𝑖
96𝜋2 𝐹𝑁 ∧ 𝐹𝑁 .

(4.29)

4.3 Constraints on N = 1 supergravity

The idea is to match the anomaly polynomial (4.29) with the one arising from the string
worldsheet, which can be calculated directly. It contains one contribution from gravitational and
U(1)𝑁 anomalies and another from ’t Hooft gauge anomalies. We discuss both of them separately
below.

The first contribution has been originally calculated in [118] and reads

𝐼𝑊𝑆4 |𝑔𝑟𝑎𝑣+𝑈 (1)𝑁 = −𝑛𝐹 − 𝑛𝐶 + 𝑛𝑁 − 1
192𝜋2 tr (𝑅W ∧ 𝑅W) + 𝑛𝐶 − 𝑛𝐹 + 1

32𝜋2 𝐹𝑁 ∧ 𝐹𝑁 . (4.30)

Here, 𝑛𝐹 , 𝑛𝐶 and 𝑛𝑁 are respectively the number of chiral U(1)𝐴-charged fermi multiplets, the
number of chiral U(1)𝐴-charged scalar multiplets and the number of chiral U(1)𝑁 -charged fermi
multiplets of the N = (0, 2) non-linear sigma-model worldsheet theory. Besides, there is also an
additional universal U(1)𝐴-charged chiral multiplet to be taken into account. At a generic point of
the moduli space one expects that 𝑛𝐶 −𝑛𝑁 ≥ −1, for an enhancement to N = (2, 2) supersymmetry
requires 𝑛𝐹 = 0 and 𝑛𝐶 − 𝑛𝑁 = −1, while otherwise it is reasonable to assume 𝑛𝐶 − 𝑛𝑁 ≥ 0. We
refer to [99] for more details. By matching the coefficients of (4.30) with those of the analogous
terms in (4.29), one finds

𝐶̃𝑖𝑒
𝑖 = 𝑛𝐹 − 𝑛𝐶 + 𝑛𝑁 − 1, (4.31)

𝐶̃𝑖𝑒
𝑖 + 𝐶̂𝑖𝑒𝑖 = 3(𝑛𝐶 − 𝑛𝑁 + 1). (4.32)

Assuming completeness of the EFT string spectrum gives then

𝐶̃𝑖𝑒
𝑖 = 𝑛𝐹 − 𝑛𝐶 + 𝑛𝑁 − 1, (4.33)

𝐶̃𝑖𝑒
𝑖 + 𝐶̂𝑖𝑒𝑖 ∈ 3Z>0. (4.34)

These are neat examples of quantum gravity constraints on the parameters of N = 1 supergravity
which are not obvious from a low energy perspective.

Next, we look at ’t Hooft gauge anomalies. They can receive contributions from the 𝑛𝑁 fermi
multiplets and the 𝑛𝐶 chiral multiplets. Their anomaly polynomial will be of the form

− 1
8𝜋2 𝜅

AB𝐹A ∧ 𝐹B , (4.35)
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where we collected all field strengths in 𝐹A = (𝐹𝐴, 𝐹𝐼 𝛼), with 𝛼 = 1, . . . , 𝑟 𝑘 (𝑔𝐼 ), and we defined
𝜅AB = 𝜅AB

𝐹
+ 𝜅AB

𝐶
, with the first term associated to fermi multiplets and the second to chiral

multiplets. Tacitly, we have already decomposed tr(𝐹 ∧ 𝐹)𝐼 on a basis of the Cartan ℎ𝐼 ⊂ 𝑔𝐼 , with
𝑔𝐼 being the algebra of 𝐺 𝐼 . The goal is to derive an upper bound for the rank of the gauge group 𝐺,
which is defined as

r(𝑒) = rank{𝐶𝐴𝐵𝑖 𝑒𝑖} +
∑︁

𝐼:𝐶 𝐼
𝑖
𝑒𝑖>0

𝑟𝑘 (𝑔𝐼 ). (4.36)

and receives a contribution from fermi multiplets,

r𝐹 (𝑒) = rank{𝜅𝐴𝐵𝐹 (𝑒)} +
∑︁
𝐼:𝜅 𝐼
𝐹
>0

𝑟𝑘 (𝑔𝐼 ) ≡ rank{𝜅AB
𝐹 (𝑒)}, (4.37)

and from chiral multiplets
r𝐶 (𝑒) = rank{𝜅AB

𝐶
(𝑒)}. (4.38)

Using that for any two matrices 𝑀1, 𝑀2 one has rank(𝑀1 + 𝑀2) ≤ rank(𝑀1) + rank(𝑀2), one can
write

r(𝑒) ≤ r𝐹 (𝑒) + r𝐶 (𝑒) (4.39)

and then the strategy is to derive upper bounds for r𝐹 (𝑒) and r𝐶 (𝑒) separately. The analysis is
involved and must be performed with care. We do not aim at presenting a complete derivation,
rather we just sketch the main steps and refer the reader to [99] for more details.

We start from r𝐹 (𝑒), namely the contribution from fermi multiplets. Without loss of generality,
we can write

𝜅AB
𝐹 =

∑︁
q∈fermi

qAqB , (4.40)

which is a sum of 𝑛𝐹 matrices qAqB with rank either 0 or 1. Thus, we get that

r𝐹 (𝑒) = rank{𝜅AB
𝐹 (𝑒)} ≤ 𝑛𝐹 . (4.41)

Combining this with (4.31) and (4.32), one arrives at the bound

r𝐹 (𝑒) ≤ 𝑛𝐹 =
4
3
𝐶̃𝑖𝑒

𝑖 + 1
3
𝐶̂𝑖𝑒

𝑖 . (4.42)

To give a bound on r𝐶 (𝑒) is more subtle. If the chiral multiplets are charged under the gauge
group, their fermions contribute negatively to the anomaly polynomial and so they cannot increase
the rank of the gauge algebra. The only possibility for a chiral multiplet to contribute to the upper
bound on the rank is then the situation in which such multiplet has an axionic shift symmetry gauged
by the four-dimensional gauge symmetry. In the present setup, this can happen for at most 𝑛𝐶 − 𝑛𝑁
chiral multiplets. Working out the details, one finds that they contribute to the anomaly polynomial
as in (4.35) and one can derive that

r𝐶 (𝑒) = rank{𝜅AB
𝐶

(𝑒)} ≤ 2 (𝑛𝐶 − 𝑛𝑁 ) , (4.43)

where the factor 2 arises from the fact the matrix 𝜅AB
𝐶

(𝑒) has two pieces giving the same contribu-
tion. Using (4.32), this becomes

r𝐶 (𝑒) ≤
2
3
𝐶̃𝑖𝑒

𝑖 + 2
3
𝐶̂𝑖𝑒

𝑖 − 2. (4.44)
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Eventually, one finds that the total rank r(𝑒) is bounded as

r(𝑒) ≤ r𝐹 (𝑒) + r𝐶 (𝑒) ≤ 𝑛𝐹 + (𝑛𝐶 − 𝑛𝑁 ), (4.45)

or equivalently
r(𝑒) ≤ 2𝐶̃𝑖𝑒𝑖 + 𝐶̂𝑖𝑒𝑖 − 2. (4.46)

This indicates a correlation between the rank of the gauge algebra and higher curvature corrections
which is not obvious a priori from a low energy perspective. To summarize, the quantum gravity
constraints (4.33), (4.34) and (4.46) are among the main results of [99].

4.3.1 Example: 𝐷3-brane tadpole from bottom-up

It is illustrative to study the quantum gravity constraints reviewed above in a concrete models.
Here, we consider an example taken from section 6.6 of [99], but we present it in a slightly different
way, to show that in fact those constraints are powerful enough to derive certain string theory tadpole
cancellation conditions from an (almost) exclusively bottom-up perspective. Several additional and
interesting examples are discussed at length in [99], to which we most definitely refer the reader.

The setup is type IIB string theory on an orientifold of a Calabi-Yau threefold with 𝑂3-planes,
𝐷3 and 𝐷7-branes. The 𝐷3/𝑂3 sources are spacetime filling while the 𝐷7-branes wrap the full
Calabi-Yau and can be seen as EFT strings in the non-compact space. As it is known, in the absence
of 𝑂7-planes, but also of 𝐷7-branes wrapping four-cycles and of fluxes, the integrated 𝐷3-brane
tadpole reduces to

𝑛𝐷3 =
𝑛𝑂3

4
, (4.47)

where 𝑛𝐷3 and 𝑛𝑂3 are the number of 𝐷3-branes and 𝑂3-planes respectively. The goal is to derive
this tadpole from the constraints discussed above (and with one additional assumption).

To start, we have to identify the various couplings of the effective N = 1 supergravity theory
and match them with the microscopic quantities. There is one relevant scalar field, namely the
axio-dilaton

𝑡 = 𝑎 + 𝑖𝑠 = 𝐶𝑅𝑅0 + 𝑖𝑒−𝜙 . (4.48)

Furthermore, we assume the 𝐷3-branes to be non-coincident, so that they are described by the
abelian couplings

− 1
4𝜋

𝑛𝐷3∑︁
𝐴=1

𝑠𝐹𝐴 ∧ ∗𝐹𝐴. (4.49)

With respect to (4.9), we thus have 𝐶𝐴𝐵 = 𝛿𝐴𝐵 and 𝐶 𝐼 = 0. Higher curvature couplings are known
from string theory and they can be read off from the Chern-Simons action of the sources. For the
𝐷3-branes, one has the 𝐴-roof genus,

−2𝜋𝑛𝐷3

∫
𝐶𝑅𝑅0

√︃
𝐴̂(𝑅) = 2𝜋𝑛𝐷3

48

∫
𝑎 𝑝1(𝑀) + . . . , (4.50)

while for the 𝑂3-planes one has the Hirzebruch 𝐿-polynomial

2𝜋𝑛𝑂3
4

∫
𝐶𝑅𝑅0

√︁
𝐿 (𝑅/4) = 2𝜋

4
𝑛𝑂3
96

∫
𝑎 𝑝1(𝑀) + . . . . (4.51)
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Here, 𝑝1(𝑀) = − 1
8𝜋2 tr𝑅 ∧ 𝑅 is the first Pontryagin class of the tangent bundle of the spacetime 𝑀 .

Putting everything together, we have the axionic coupling

2𝜋(8𝑛𝐷3 + 𝑛𝑂3)
4 · 96

∫
𝑎 𝑝1(𝑀) = −8𝑛𝐷3 + 𝑛𝑂3

16 · 96𝜋

∫
𝑎 tr(𝑅 ∧ 𝑅) ≡ − 1

96𝜋
𝐶̃

∫
𝑎 tr(𝑅 ∧ 𝑅), (4.52)

from which we identify the macroscopic parameter 𝐶̃ in terms of microscopic data as

𝐶̃ =
1
16

(8𝑛𝐷3 + 𝑛𝑂3). (4.53)

Here and in the following we absorb the charge 𝑒 into 𝐶̃, or equivalently we set it to one.
Now, let us look at the bound (4.46) on the gauge group. Since 𝐶̂𝑖𝑒𝑖 = 0 in this example, we

have
r(𝑒) ≤ 2𝐶̃ − 2 =

8𝑛𝐷3 + 𝑛𝑂3
16

− 2. (4.54)

That the right hand side is an integer follows from the quantization condition 𝐶̃𝑖𝑒𝑖 ∈ Z discussed
in section 4.1. This leads to interesting constraints, such as that 𝑛𝑂3 must be a multiple of sixteen,
as pointed out in [99]. However, we proceed below following a slightly different path with respect
to [99]. Let us assume that chiral multiplets do not contribute to the rank r(𝑒), namely r𝐶 (𝑒) = 0.
Thus, we have

r(𝑒) ≤ r𝐹 (𝑒) ≤ 𝑛𝐹 =
4
3
𝐶̃𝑖𝑒

𝑖 =
1
12

(8𝑛𝐷3 + 𝑛𝑂3) . (4.55)

Given that the gauge group is associated to 𝐷3-branes only, the rank cannot be bigger than 𝑛𝐷3 and
then

r(𝑒) ≤ 1
12

(8𝑛𝐷3 + 𝑛𝑂3) ≡ 𝑛𝐷3. (4.56)

From this, one finds (4.47) with precisely the same coefficients. We have shown that, modulo
the assumption r𝐶 (𝑒) = 0, the quantum gravity constraints (4.33), (4.34) and (4.46) succeeded in
reproducing string theory information from a bottom-up perspective. It would be interesting to see
if a similar logic can be pursued also in other setups.

4.4 Goldstino evaporation

In this section, we review another application of supergravity in the presence of membranes
which has been discussed in [119]. We show that this formalism allows for an explicit description
of a non-smooth transition between a non-supersymmetric vacuum with non-linearly realized su-
persymmetry and a supersymmetric one. The transition happens due to the presence of membranes
and it can have important consequences on the fate of de Sitter vacua in N = 1 supergravity.

The archetypal model for supersymmetry breaking is the Volkov–Akulov model [120] (for
the supergravity coupling see e.g. [121–125]), which has a single goldstino fermion 𝐺 whose
self-interactions are governed by the lagrangian

L𝑉𝐴 = − 𝑓 2 − 1
2
𝐺𝑃𝐿𝜕/𝐺 + 1

4 𝑓 2𝐺
2
𝜕2𝐺2 − 1

16 𝑓 6𝐺
2𝐺

2
𝜕2𝐺2𝜕2𝐺

2
, (4.57)

where
√︁
𝑓 is the supersymmetry breaking scale and we use the notation 𝐺2 = 𝐺𝑃𝐿𝐺. Once gauge

three-forms 𝐶3 are introduced in supersymmetry and supergravity, as briefly reviewed at the end of
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section 4.1, one also has the option to support the breaking of supersymmetry with four-form flux,
that is one can have

𝑓 = ★𝑑𝐶3 , (4.58)

for a real three-form 𝐶3. The way to achieve this self-consistently with non-linear supersymmetry
has been analyzed in [119, 126], to which we refer the reader for more details. What we want to
review instead is how the systems with inherently non-linear realizations of supersymmetry can
decay to systems where supersymmetry is restored and the goldstino evaporates, as depicted in
[119]. More broadly, this resonates with the expectation that non-supersymmetric vacua should
decay.12

To describe the goldstino evaporation, we have first to exchange one of the two real components
of the complex auxiliary field 𝐹 of the nilpotent goldstino multiplet with the gauge three-form. Thus,
we set

𝐹 = F + 𝑖𝜕𝜇𝐶𝜇 = F + 𝑖 ★ 𝑑𝐶3 , (4.59)

where F is a real scalar and the vector 𝐶𝜇 is defined via 𝐶3 = 1
3!𝑑𝑥

𝑐 ∧ 𝑑𝑥𝑏 ∧ 𝑑𝑥𝑎𝐶𝑎𝑏𝑐 = 1
3!𝑑𝑥

𝑐 ∧
𝑑𝑥𝑏 ∧ 𝑑𝑥𝑎𝜖𝑎𝑏𝑐𝑑𝐶𝑑 . In the simple setup studied in [119] we have the vacuum-expectation-values

⟨F ⟩ = 0, ⟨★𝑑𝐶3⟩ = n , (4.60)

which are telling us that supersymmetry is broken only due to the four-form flux. Once the three-
form has been introduced, one can couple it to a (super-)membrane, leading to an overall bosonic
sector of the form

𝑆bos =

∫
𝑑4𝑥

[
F 2 +

(
𝜕𝜇𝐶

𝜇
)2 − 2𝜕𝜇 (𝐶𝜇𝜕𝜈𝐶𝜈)

]
− 𝑐

4𝜋

∫
W3

𝑑3𝜁
√︃
−det (𝜂𝑎𝑏𝜕𝑖𝑥𝑎 (𝜁)𝜕 𝑗𝑥𝑏 (𝜁)) −

𝜇

4𝜋

∫
W3

𝐶3 ,
(4.61)

where W3 is the membrane worldvolume, which is parametrized by coordinates 𝜁 𝑖 , with 𝑖 = 0, 1, 2,
while 𝑐 is the tension and 𝜇 the charge under the three-form. Assuming completeness of the
spectrum, one could argue that the existence of charged membranes is natural [96]. We see
immediately that by varying F we get F = 0. Varying instead the action with respect to the
three-form we find that

𝜕𝜇𝜕𝜈𝐶
𝜈 = − 𝜇

48𝜋

∫
M3

𝑑3𝜁 𝜖 𝑘 𝑗𝑖𝜕𝑘𝑥
𝜆(𝜁)𝜕 𝑗𝑥𝜎 (𝜁)𝜕𝑖𝑥𝜈 (𝜁)𝜖𝜈𝜎𝜆𝜇𝛿 (4) (𝑥 − 𝑥(𝜁)) , (4.62)

where we used 𝑑𝜁 𝑘 ∧ 𝑑𝜁 𝑗 ∧ 𝑑𝜁 𝑖 ≡ 𝜖 𝑘 𝑗𝑖𝑑3𝜁 .
Let us assume to have a spherical membrane, such that there is a region outside and a region

inside the membrane. Integrating the three-form equation we find that the value of n = ⟨★𝑑𝐶3⟩ is
different on the sides of the membrane, thus inducing a jump on the flux

Δn ≡ nout − nin = − 𝜇

8𝜋
. (4.63)

12Another way that non-supersymmetric vacua could decay, is related to goldstino condensation [127–129], or the
equivalent effect from the gravitino perspective [130, 131].
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If nout = 𝑓 , where 𝑓 is a non-zero real constant and 𝜇 = −8𝜋 𝑓 , then nin = 0, which means that
the value of n = ⟨𝜕𝜇𝐶𝜇⟩ goes from non-vanishing to vanishing, and supersymmetry gets restored.
When supersymmetry is restored the full goldstino multiplet has to vanish. Indeed, the simplest
way to see this is by noticing that the transformation of the goldstino reads

𝛿𝐺 = 𝑓 𝑃𝐿𝜖 + 𝑃𝐿𝜕/
(
𝐺2

2 𝑓

)
𝜖 + . . . . (4.64)

Therefore, when 𝑓 vanishes it enforces the condition

𝑓 → 0 ⇒ 𝐺 ≡ 0 , (4.65)

and the goldstino evaporates while supersymmetry gets restored. Note that while the two back-
grounds/vacua are disconnected, there can be a bubble of true vacuum growing within the meta-
stable state as depicted in the figure below.

★𝑑𝐶3=0 → 𝐺≡0

⟨★𝑑𝐶3⟩≠0 → NL−SUSY

This has been analyzed in a fully supersymmetric setup in [119], using superspace methods. In the
same work, it has also been shown that four-dimensional de Sitter vacua of N = 1 supergravity
supported only by the nilpotent goldstino could decay if the supersymmetry breaking is supported
by a flux and if the three-form is coupled to a membrane, see figure 1.

Figure 1: The uplift due to the nilpotent goldstino from anti-de Sitter to de Sitter in the KKLT model. This
system can decay back to a supersymmetric anti-de Sitter phase if the supersymmetry breaking is supported
by a four-form flux. Depending on the membrane tension the decay can be rapid or slow.
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5. Further constraints from supergravity EFTs

In this section, we present known but also new swampland conjectures which most clearly
draw inspiration and motivation from supergravity. In particular, we review the gravitino conjecture
originally put forward in [132, 133], we speculate on the possible existence of a new conjecture
related to the Yukawa couplings and we discuss the consequence of applying the Festina Lente
bound, reviewed in section 3.3, to D-term inflation.13 The material contained in sections 5.2 and
5.3 is new and it has not been published elsewhere.

5.1 Gravitino conjecture

The gravitino is perhaps the central building block of any supergravity theory and a considerable
amount of information can be deduce just by looking at its interactions. Indeed, we exploited this fact
already in section 3, where the gravitino played a central role in applying the WGC to supergravity
models.

A swampland conjecture exclusively centred around the gravitino has been proposed in [132,
133]. It holds that the limit of vanishing gravitino mass,

𝑚3/2 → 0, (5.1)

is accompanied by an infinite tower of states becoming light and invalidating the effective descrip-
tion. In simple enough cases, one expects the typical mass 𝑚 of these states to scale with a power
of the gravitino mass as

𝑚 ∼
(
𝑚3/2

𝑀𝑃

)𝑛
𝑀𝑃, (5.2)

where 𝑛 is a model dependent positive parameter of order one.
Notice that for supersymmetric anti-de Sitter vacua this statement is equivalent to the anti-de

Sitter distance conjecture of [33]. However, the gravitino conjecture is proposed to be valid on any
background, not only on supersymmetric anti-de Sitter phases, and perhaps its most relevant appli-
cation for phenomenology is to non-supersymmetric vacua with an almost vanishing cosmological
constant, as the one measured today. Indeed, in these setups the general structure of supergravity
tells us that the gravitino mass is related to the supersymmetry breaking scale as

𝑀2
𝑆𝑈𝑆𝑌 ≃ 𝑚3/2𝑀𝑃, (5.3)

and thus one may hope to learn something about the scale at which supersymmetry is broken in our
universe by investigating the domain of validity of the effective theory describing it. In [135], this
aspect has been analyzed further in the context of the Dark Dimension scenario [136].

The gravitino conjecture can be tested directly in various supergravity effective models. A
natural ultraviolet cutoff in supergravity is the Kaluza-Klein scale and thus one can expect the
states predicted by the gravitino conjecture to be Kaluza-Klein states.14 For an isotropic compact

13Within this logic one could also study what happens if we impose the A-TCC condition [134] on four-dimensional
supergravity theories and search for new constraints.

14More in general, a well-defined notion of ultraviolet cutoff for the gravitation interactions is the so called species
scale [17–21]. Its interplay with the gravitino conjecture has been studied already in the original paper [132].
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manifold with volume V, one has 𝑚𝐾𝐾 ∼ V−2/3𝑀𝑃. On the other hand, for Calabi-Yau and
orbifold compactifications the volume V enters the Kähler potential as

𝐾 = −𝛼 logV + 𝐾 ′, (5.4)

for some model-dependent parameter 𝛼. Here, V is a function of the Kähler moduli, while the
remaining part 𝐾 ′ depends on the complex structure moduli and the axio-dilaton. Assuming that at
the critical point of the scalar potential the superpotential scales as𝑊 ∼ V

𝛽

2 , one derives

𝑚3/2 ∼ V
𝛽−𝛼

2 . (5.5)

By comparing with (5.2), one identifies the parameter of the conjecture with

𝑛 =
4

3(𝛼 − 𝛽) , (5.6)

and it can then be calculated in concrete examples [132, 133]. For instance, in heterotic com-
pactifications one finds 𝑛 = 4/3, while for GKP orientifolds 𝑛 = 2/3, and for Scherk-Schwarz
compactifications 𝑛 = 4. Models with non-perturbative superpotential and in which the gravitino
conjecture is dynamically realized have been pointed out in [55]. Additional support to the con-
jecture stems from N = 2 supergravity, as discussed in [132]. Indeed, in the STU model arising
e.g. from heterotic compactifications on 𝐾3 × 𝑇2, one finds a one to one relation between the grav-
itino mass and the gauge coupling, 𝑚3/2 ≃ 𝑔3/2, which allows to connect the gravitino conjecture
to the WGC and to the absence of global symmetries in quantum gravity. Further evidence for
the gravitino conjecture in string theory has been provided in [137]. These constructions have the
peculiar feature that the gravitino mass can be decoupled from the cosmological constant, while
avoiding open strings tachyonic instabilities. It is then shown that the limit of vanishing gravitino
mass is inconsistent, for it clashes with the boundary conditions of the gravitinos imposed by the
simultaneous presence of orientifold and anti-orientifold planes.

5.2 Constraints on Yukawa couplings?

In this section, we focus on Yukawa couplings 𝑌 and we would like to analyze if and how
supergravity can hint at swampland restrictions on them. As we will see, we can deduce a condition
of the form

Λ𝑈𝑉 ≲ 𝑌
𝛼𝑀𝑃 , (5.7)

for some parameter 𝛼. At the present stage, we do not know if such a condition is an accident
that happens to hold only in few instances or if it has a deeper origin within string theory and
therefore can constitute an actual swampland conjecture. In case the latter option turns out to be
correct, our discussion can be seen as yet another confirmation of the fact that supergravity is in
many circumstances closer to quantum gravity than an ordinary effective theory. In addition, here
we cannot tell for certain what is the order of magnitude of the parameter 𝛼.

We will give two examples where supergravity supplemented by a given swampland conjecture
leads to the condition (5.7). Note that, due to (5.7), one can further speculate that the limit

𝑌 → 0 (5.8)
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corresponds to travelling to infinite distance in the moduli space. Indeed, the two conditions (5.7)
and (5.8) can be related to each other since as we go to infinite distance we expect the cut-off to
be lowered and towers of states to become massless. Then, the parameter 𝛼 would be identified
by the nature of states becoming light. Notice that the above constraints are not really the bounds
studied in [138], but do have a similar gist to it, therefore one can speculate that there might be an
underlying connection.

First, let us consider the simple no-scale model

𝐾 = −3 log(𝑇 + 𝑇) , 𝑊 = 𝑊0 . (5.9)

The idea is to relate the Yukawa coupling of the scalar 𝑇 to the gravitino mass. Then, enforcing the
gravitino conjecture we can get a constraint on the Yukawa coupling itself. In other words, we will
see that the gravitino conjecture automatically becomes a conjecture on the Yukawa coupling. The
gravitino mass is given by

𝑚3/2 =
𝑊0

(𝑇 + 𝑇)3/2 . (5.10)

Due to the no-scale structure, the scalar potential is identically vanishing. The kinetic term of 𝑇 is

𝑒−1L𝑘𝑖𝑛 = − 3
(𝑇 + 𝑇)2 𝜕𝜇𝑇𝜕

𝜇𝑇 = −1
2
𝜕𝜇𝜙𝜕

𝜇𝜙 + . . . (5.11)

where we have introduced the canonically normalized real scalar 𝜙 defined as

Re𝑇 = 𝑒

√︃
2
3 𝜙 . (5.12)

In terms of 𝜙, the gravitino mass reads

𝑚3/2 = 2−3/2𝑊0𝑒
−
√︃

3
2 𝜙 . (5.13)

This produces a Yukawa coupling of the form

𝑌𝑀𝑃 = −
√︂

3
2
𝑚3/2. (5.14)

By enforcing the gravitino conjecture (5.2), we expect a tower of states to become light in the
limit 𝑌 → 0, invalidanting the effective description. Notice that the relation between the Yukawa
coupling and the gravitino mass is a consequence of the supersymmetric structure of the lagrangian
and might not hold outside the realm of supergravity.

The second instance where the Yukawa coupling takes a suggestive form is when considering
gauged N = 1 supergravity. Once again, let us discuss the simplest case where this effect can
happen. We consider a flat Kähler potential

𝐾 = 𝑧𝑧, (5.15)

with a typical U(1) gauging with Killing vector 𝑘 = 𝑖𝑧 and constant gauge kinetic function 𝑓 = 1/𝑔2.
Then, an inspection of the component Lagrangian reveals that supersymmetry requires a term of
the form

𝑔𝑧 𝜒𝑃𝐿𝜆 , (5.16)
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where 𝜒 is the fermionic superpartner of 𝑧 and 𝜆 the gaugino. This is clearly a Yukawa coupling
between the scalar and the fermions. Enforcing the magnetic WGC, we eventually have that

𝑌𝑀𝑃 = 𝑔𝑀𝑃 ∼ Λ𝑊𝐺𝐶 , (5.17)

which is along the same lines of (5.7).
We conclude that supergravity readily gives indications that Yukawa couplings are often

restricted by swampland-like constraints that have the form (5.7) and therefore also imply (5.8).
This may be an actual independent swampland constraint on its own or simply an accidental
restriction due to supersymmetry, however our experience until now hints to the former possibility.
Nevertheless, we do not have enough evidence to further support the existence of such a conjecture
for the time being, nor do we know its exact form or the expected values of the parameter 𝛼.

5.3 Festina Lente versus D-term inflation

We have seen in the discussion on N = 1 and N = 2 de Sitter vacua in section 3 that the
magnetic WGC or the Festina Lente bound can equally well raise questions about the validity of the
two-derivative approximation within the effective theory. One further step would be to investigate
the extension of such restrictions to dynamical systems, as for example supergravity models of
inflation [139, 140]. The bibliography on supergravity cosmology is vast and it is not our purpose
to review it here, but it is fair to say that in principle there are two concrete methods allowing
the construction of single-field inflationary models within four-dimensional N = 1 supergravity.
These are related to the basic source of the energy density driving inflation: it can be either a
D-term or an F-term. The former is for situations where inflation is essentially controlled by the
potential due to a gauging, whereas the latter is for when the inflationary potential is controlled
by the superpotential. The most general constructions for single-field inflationary models with
vector multiplets, i.e. D-term models, can be found in [141]. They are based on the supergravity
inflationary model that first appeared in [142], whereas the single-field inflationary models with
superpotentials, i.e. F-term models, can be found in [143]. The latter are based on the ideas that
first appeared in [144].15 Efforts to construct inflationary models in N = 2 supergravity with
similar logic were made in [146]. Here, we will show that, modulo some caveats that we highlight,
the Festina Lente bound can pose strong constraints on the D-term models, whereas we can only
speculate for similar restrictions for the F-term models.16

Let us recap the basic requirements for single-field inflation in supergravity and its challenges,
which become even worse when one has to find an embedding into string theory. This is possibly
reflected in the difficulty of reconciling such models with the constraints coming from the swampland
program. First of all, taking into account that we introduce various multiplets to be able to build
the desired scalar potential, during inflation it is crucial to have a so-called strong stabilization of
all scalars except the inflaton. This means that all extra scalars should get masses safely above the

15However, the first successful models that utilize the idea of chaotic inflation in supergravity where constructed quite
early in the literature [145].

16There are of course already interesting alternatives, see e.g. [147–149] for supergravity embedding, that should
be studied in more detail in case the simple way to realize inflation/dark energy within supergravity fails. Constraints
imposed on inflation by the swampland distance conjecture have been studied e.g. in [150], but they turn out to be milder
than those that we derive below by imposing Festina Lente.
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Hubble scale, 𝐻 =
√︁
𝑉/3 in Planck units. Subsequently one focuses on the potential for the single

scalar, say 𝜙, that plays the role of the inflaton and studies the slow-roll conditions. This field has
typically a lagrangian

𝑒−1L =
1
2
𝑅 − 1

2
𝑤(𝜙) 𝜕𝜇𝜙𝜕𝜇𝜙 −𝑉 (𝜙) (5.18)

and for our analysis here it is enough to look at the so-called 𝜖 slow-roll condition

𝜖 (𝜙)
���
inflation

≡ 1
2𝑤(𝜙)

(
𝑉 ′

𝑉

)2 ���
inflation

≪ 1 , (5.19)

while inflation conventionally ends when 𝜖 (𝜙end) ≃ 1. This condition essentially means the potential
is not steep in the region where inflation takes place. There is also one further slow-roll condition
that restricts 𝑉 ′′, but we do not need to invoke it here; it can be found for example in [151] for
general𝑉 (𝜙) and 𝑤(𝜙). Even if we do have such a potential, there are various other issues that have
to be addressed, the zeroth order test being to match with observations [152]. Further theoretical
issues that need to be addressed are the initial conditions problem [153–156], or the problem of
higher order corrections [142, 157]. However, we will not look into these problems here.

5.3.1 General restrictions from Festina Lente

A proposal that allows to build versatile single-field models of D-term inflation was presented
in [141, 142] and it is technically based on models with massive vector multiplets [158–160]. In
the setup we have two multiplets, a chiral multiplet 𝑧 and an abelian gauge multiplet, while the
superpotential vanishes. The isometry we want to gauge is a shift

𝑧 → 𝑧 + 𝑖𝛼 , (5.20)

which means that the gauge field is essentially massive and therefore it will absorb one of the two
real scalars residing in 𝑧, leaving behind only one real scalar that becomes the inflaton. That the
gauge field is massive can be seen from the covariant derivative of the scalar (2.4) which, for the
shift symmetry described here, reads 𝐷𝜇𝑧 = 𝜕𝜇𝑧 − 𝑖𝐴𝜇, leading to a mass term for 𝐴𝜇. Indeed,
from the definition of the Killing vectors (2.6) we see that 𝑘 = 𝑖 which means that the real moment
map is such

𝜕𝑧̄P = −𝑔𝑧𝑧̄ (5.21)

giving in turn
P = −𝐾𝑧 + 𝜉 . (5.22)

From this, one deduces that the Kähler potential has the form 𝐾 = 𝐾 (𝑧 + 𝑧) and the real constant
𝜉 is the Fayet–Iliopoulos term. Since the gauge vector will eventually absorb the imaginary part
of 𝑧, we can readily go to the unitary gauge and set 𝑧 to a real scalar 𝑍 , such that we have
𝐷𝜇𝑧 = (1/2)𝜕𝜇𝑍 − 𝑖𝐴𝜇. Furthermore, we choose the gauge kinetic function to be just a constant,
𝑓 = 1/𝑔2. From the property that the Kähler potential depends only on the real part 𝑧 + 𝑧 = 𝑍 , we
have 𝑔𝑧𝑧̄ = 𝐽′′(𝑍) > 0 and 𝐾𝑧 = 𝐾𝑧̄ = 𝐽′(𝑍), where we introduced 𝐽 (𝑍) = 𝐾 |𝑧+𝑧=𝑍 . Taking all of
this into account, we rewrite the moment map as

P(𝑍) = 𝜉 − 𝐽′(𝑍) , (5.23)
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and the bosonic sector of the Lagrangian, in the abelian unitary gauge, reads

𝑒−1L =
1
2
𝑅 − 1

4
𝐽′′(𝑍)𝜕𝜇𝑍𝜕𝜇𝑍 − 𝐽′′(𝑍)𝐴𝜇𝐴𝜇 −

1
4𝑔2 𝐹𝜇𝜈𝐹

𝜇𝜈 − 1
2
𝑔2P2(𝑍) . (5.24)

Most importantly, we also see that the gravitino has charge 𝑞3/2 under 𝐴𝜇 and mass given by

𝑞3/2 = P(𝑍), 𝑚3/2 ≡ 0 , (5.25)

implying that during inflation, which can only take place for P(𝑍) ≠ 0, the gravitino is in fact
charged and massless.17

At this point, one could naively apply the Festina Lente bound right away, but that would not
be correct. This is because the vector 𝐴𝜇 is massive and so the bound does not apply directly.
However, according to [86] the bound can apply when the mass of the vector is safely below the
Hubble scale, that is when

𝑚𝐴

𝐻
< 1. (5.26)

Hence, when the vector is that light, one can apply the Festina Lente bound and conclude that because
the gravitino is charged but massless this class of inflationary models belongs to the swampland, or
at least such a region of the scalar potential cannot be trusted. Let us therefore check under which
conditions the vector becomes parametrically light. In this model, the mass of the vector is given
by

𝑚2
𝐴 = 2𝑔2𝐽′′(𝑍) . (5.27)

It is then instructive to rewrite the slow-roll 𝜖-parameter as

𝜖 (𝑍) ≡ 1
2𝑤(𝑍)

(
𝑉 ′(𝑍)
𝑉 (𝑍)

)2
=

2𝑔2𝐽′′

1
2𝑔

2P2
=
𝑚2
𝐴

3𝐻2 . (5.28)

From this relation, one can see directly that the slow-roll regime 𝜖 ≪ 1 corresponds precisely to a
parametrically light vector, namely

𝜖 ≪ 1 ⇐⇒
𝑚2
𝐴

3𝐻2 ≪ 1, (5.29)

and thus, within such a regime the Festina Lente bound applies and relegates the inflating region into
the swampland. Instead of invoking a massless charged gravitino, one can arrive at an analogous
result by comparing the vacuum energy of the system to the bound imposed by Festina Lente.

One can also ask if a similar conclusion can be reached by using the magnetic WGC. In the
limit where we are deep in the regime of slow-roll then the system effectively behaves like a model
with a pure Fayet-Iliopoulos term and a massless gravitino, and so one could already expect that
the results found in [73] apply and set the model in the swampland.

Let us stress that this result has a series of caveats that should be studied in detail. First of all,
one should test carefully that the Festina Lente bound is to be trusted on dynamical backgrounds

17Here, we are taking the charge of the gravitino to be a function of the scalar fields, P(𝑍). In general, the physical
coupling is the product of the charge with the gauge coupling, 𝑔𝑞, which is in principle field-dependent. Similarly, here
we have 𝑔𝑞3/2 = 𝑔P(𝑍), namely a field-dependent coupling between the gravitino and the vector (which is in any case
massive in this model).
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as for example an inflating universe. Second, since the original bound is for massless vectors,
one should verify that the Festina Lente bound can be concretely trusted for (parametrically) light
vectors whose mass is below the Hubble scale. Clearly, for an observer living within a causally
connected region within the de Sitter Hubble horizon, a vector with mass smaller than the Hubble
scale is effectively massless and it acts as a long-range force. Thirdly, in a realistic setup one should
unavoidably consider including a superpotential 𝑊 and it is therefore possible that, maybe with a
judicious choice of 𝑊 , inflation can be safe. Either way, the clean simple model discussed above
seems to be in conflict with the Festina Lente bound.

5.3.2 Examples: Chaotic and Starobinsky inflation

Before, we required 𝜖 ≪ 1 since we were interested in a situation where inflation is safe and
can happen for as many e-folds as one wants. Now, we turn to regimes in which slow-roll has
marginal validity and takes place for a very restricted amount of e-folds. Indeed, one could ask
if it is possible to satisfy slow-roll while staying outside of the swampland, that is while keeping
the vector’s mass above 𝐻, even for a restricted number of e-folds. This requirement implies the
inflationary trajectory is bounded by two conditions. First, we know that inflation ends near 𝜖 ≃ 1,
which means that we have

𝜖 |end = 1 → 𝑚2
𝐴(𝑍end) = 3𝐻2(𝑍end) . (5.30)

As we discussed, the Festina Lente bound (assuming always it applies to massive vectors) places
the inflationary phase in the swampland when 𝑚𝐴 < 𝐻, so we can be generous about the validity of
the effective description and say that 𝑍FL corresponds to an upper bound value of 𝑚𝐴 given, say, by

𝑚𝐴(𝑍FL) ≃
1
6
× 𝐻 (𝑍FL) . (5.31)

Then, we conclude that inflation at best can take place within the region

𝑍end < 𝑍inflation < 𝑍FL (5.32)

and the question is if there is enough amount of distance that can be travelled by the inflaton within
such bound and how many e-folds of inflation we can have. We will investigate this question below
by studying two inflationary models: the typical quadratic chaotic inflation and the Starobinsky
model. Notably these two models are limiting cases of the so-called 𝛼-attractor models [141, 161],
therefore one might expect 𝛼-attractors to have similar bounds as well.

Quadratic chaotic inflation. We consider first the quadratic chaotic inflation model, which is
however currently in tension with observations from the Planck satellite. It requires

𝐽 (𝑍) = 𝑍2, 𝜉 = 0 . (5.33)

The scalar and the vector fields have a canonical kinetic terms, while the scalar potential and the
vector mass take the form

𝑉 = 2𝑔2𝑍2, 𝑚2
𝐴 = 4𝑔2 , (5.34)
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Figure 2: Plot of a plateau-type inflationary potential. The red star corresponds to the minimal position
where inflation can start in order to eventually give a reasonable number of e-folds, whereas the green regions
correspond to regimes that are more and more into the swampland due to the Festina Lente bound. One can
interpret this effect as the way that supergravity relates the Festina Lente bound to the Distance Conjecture.

giving in turn

𝑚𝐴 =

√
6
𝑍
𝐻, 𝜖 =

2
𝑍2 . (5.35)

The gravitino is massless and charged with 𝑞3/2 = −2𝑍 . We find the boundaries of the inflating
region to be

𝑍end =
√

2, 𝑍FL ≃ 6
√

6 . (5.36)

The number of e-folds then reads

𝑁e-folds =

∫ 𝑍FL

𝑍end

1√︁
2𝜖 (𝑍)

𝑑𝑍 =
1
2

∫ 6
√

6

√
2

𝑍𝑑𝑍 ≃ 54 . (5.37)

At best, we see that inflation will only produce a very limited amount of e-folds. If we assume that
𝑍FL is instead determined by a stronger constraint, say 𝑚𝐴(𝑍FL) = 1

3 ×𝐻 (𝑍FL), then we get a much
smaller amount of e-folds, say 𝑁e-folds = 13.

Starobinsky model of inflation. Next, we check a model of plateau inflation which is currently
favored by Planck data. For the Starobinsky model we have

𝐽 = −3 (log(−𝑍) + 𝑍) , 𝜉 = 0 . (5.38)

This leads to a bosonic sector of the form

𝑒−1L =
1
2
𝑅 − 3

4𝑍2 𝜕𝜇𝑍𝜕
𝜇𝑍 − 3

𝑍2 𝐴𝜇𝐴
𝜇 − 1

4𝑔2 𝐹𝜇𝜈𝐹
𝜇𝜈 − 9

2
𝑔2

(
1 + 1

𝑍

)2
. (5.39)

Note that the way inflation works here is similar in logic as the method discussed in [162]. To go

to a canonically normalized scalar we set 𝑍 = −𝑒
√︃

2
3 𝜙. The scalar potential and the vector mass

become

𝑉 =
9
2
𝑔2

(
1 − 𝑒−

√︃
2
3 𝜙

)2
, 𝑚2

𝐴 = 6𝑔2𝑒
−2

√︃
2
3 𝜙 . (5.40)
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From our previous discussion we find that now

𝜙end ≃ 0.94, 𝜙FL ≃ 3.15 . (5.41)

The number of e-folds then reads

𝑁e-folds =

∫ 𝜙FL

𝜙end

1√︁
2𝜖 (𝜙)

𝑑𝜙 ≃ 6.85 . (5.42)

We see that the bound is stronger on models of plateau inflation and so one would have to assume
a weaker onset of the Festina Lente bound than 𝑚𝐴(𝑍FL) ≃ 1

6 × 𝐻 (𝑍FL) to get a larger number of
e-folds. Indeed, if we assume 𝑚𝐴(𝑍FL) ≃ 1

40 × 𝐻 (𝑍FL), then we find 𝑍FL ≃ 5.382, which gives
𝑁e-folds ≃ 56.4, marginally compatible with the Planck data.

Actually, it seems that if we extrapolate the results to small-field inflation, the bound from
Festina Lente will be severe. This happens because a very flat region is required for inflation to
take place which automatically means that the vector will be extremely light thus Festina Lente will
apply and set all the inflating regime in the swampland.
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