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1. Introduction

Since the arrival of high precision cosmological observations, a standard model of cosmology,
called the concordance model, has been constructed. In short called ΛCDM, this concordance
model recently has starting to suffer from a number of challenges, the most important of which is
arguably the Hubble tension.

In a nutshell, the Hubble tension amounts to a disagreement in the estimate of the Hubble
constant 𝐻0 as inferred by early (mainly CMB) and late (mainly SNe) observations. Indeed, CMB
observations from the Planck satellite [1] suggest

𝐻0 = 67.44 ± 0.58 km s−1Mpc−1, (1)

while a distance scale measurement using Cepheid-SN-Ia data from the SH0ES collaboration [2]
results in

𝐻0 = 73.04 ± 1.04 km s−1Mpc−1. (2)

This is a 5𝜎 tension (4.56-6.36𝜎). The most compelling proposal to overcome this problem is
early dark energy (EDE).

2. Early Dark Energy

EDE amounts to momentary importance of dark energy near matter-radiation equality. Inves-
tigated first by Refs. [3–6], this proposal does not necessarily consider that EDE is the same dark
energy substance which is responsible for the accelerated expansion at present (for a recent review
see Ref. [7]).

How does EDE manage to increase the value of 𝐻0 as inferred from CMB observations? Even
though CMB and BAO observations tightly constrain the cosmological parameters, they constrain
the combination 𝐻 (𝑧)𝑟𝑠, where 𝐻 (𝑧) is the Hubble parameter as a function of redshift 𝑧, and 𝑟𝑠 is
the comoving sound horizon at decoupling, given by

𝑟𝑠 =

∫ ∞

𝑧dec

𝑐𝑠 (𝑧)
𝐻 (𝑧) 𝑑𝑧, (3)

where 𝑐𝑠 (𝑧) is the sound speed. An additional amount of dark energy in the Universe increases
the total density, which in turn increases the Hubble parameter because of the Friedmann equation
𝐻2 = (𝜌𝐵 + 𝜌EDE)/3𝑚2

𝑚P , where 𝜌𝐵 is the density of the radiation and matter background. EDE
amounts to a brief increase of 𝐻 (𝑧) before decoupling, which lowers the value of the sound horizon
in Eq. (3). Thus, EDE manages to simultaneously lower the value of 𝑟𝑠 and increase 𝐻0 without
violating CMB observations.

The fractional energy density required for EDE to work is about 10%, 𝑓EDE = 0.10 ± 0.02 at
redshift 𝑧𝑐 = 4070+400

−840. Therefore, the EDE proposal amounts to as injection of energy at around
the time of matter-radiation equality (𝑧𝑐 ≃ 𝑧eq ≃ 3600), which then decays away faster than the
background radiation, such that it becomes negligible at the time of last scattering, before it can be
detected in the CMB [4].

The original proposal in Ref. [3] suggested that the EDE was an axion scalar field 𝜙 = 𝜃 𝑓 with
potential 𝑉 (𝜃) = 𝑚2 𝑓 2(1 − cos 𝜃)𝑛 with 𝑛 > 2. The authors of Ref. [3] found that the fractional
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energy density must be 𝑓EDE = 0.08 ± 0.04, which results in 𝐻0 = 70.0 ± 1.5 km s−1Mpc−1. After
thawing, the EDE field oscillates around its vacuum expectation value (VEV) with average barotropic
parameter 𝑤 = 𝑛−1

𝑛+1 . To redshift faster than radiation, it is needed that 𝑤 > 1
3 , which implies that

the minimum is of order higher than quartic. Note that the density of the oscillating EDE redshifts
as 𝑎−6𝑛/(𝑛+1) , which reduces to 𝑎−6 (free-fall) in the limit 𝑛 ≫ 1. The situation is similar to many
other EDE models, where typically the EDE scalar field oscillates around its VEV in a high order
potential (see however, Ref. [8]). In contrast, in our model presented below, the EDE scalar field
experiences a period of kinetic domination, where the field is in non-oscillatory free-fall and its
density decreases as ∝ 𝑎−6.

3. 𝜶-attractors

Our model unifies EDE with late dark energy in the context of 𝛼-attractors. Ref. [9] is an
earlier attempt for such unification in the same theoretical context. However, that proposal is also
of oscillatory EDE.

𝛼-attractors appear naturally in conformal field theory or supergravity theories [10–13]. The
scalar field has a non-canonical kinetic term, featuring two poles, which the field cannot cross.
The field can be canonically normalised via a field redefinition. Then, the finite poles for the
non-canonical field are transposed to infinity for the canonical one. As a result, the scalar potential
is “stretched” near the poles, featuring two plateau regions, which have been used for modelling
inflation, see e.g. Refs. [14–20] or quintessence [21], or both, in the context of quintessential
inflation [21–23].

The Lagrangian density features two poles at 𝜑 = ±
√

6𝛼 𝑚P and has the form

L =
− 1

2 (𝜕𝜑)
2(

1 − 𝜑2

6𝛼𝑚2
P

)2 −𝑉 (𝜑) , (4)

where 𝜑 is the non-canonical scalar field and (𝜕𝜑)2 ≡ 𝑔𝜇𝜈𝜕𝜇𝜑 𝜕𝜈𝜑. Redefining 𝜑 in terms of the
canonical scalar field 𝜙, we have

d𝜙 =
d𝜑

1 − 𝜑2

6𝛼𝑚2
P

⇒ 𝜑 = 𝑚P
√

6𝛼 tanh
(

𝜙
√

6𝛼 𝑚P

)
. (5)

The poles 𝜑 = ±
√

6𝛼 𝑚P are transposed to infinity and the Lagrangian density now reads

L = −1
2
(𝜕𝜙)2 −𝑉 (𝜙). (6)

4. The Model

In contrast to most EDE literature, we investigate non-oscillating EDE. Thus, we require the
scalar potential to be steep enough, such that, after equality of matter and radiation, the EDE scalar
field becomes dominated by its kinetic energy density and engages in "free-fall" roll. Therefore, we
study the following toy-model.
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Consider a potential of the form

𝑉 (𝜑) = 𝑉𝑋 exp(−𝜆𝑒𝜅𝜑/𝑚P), (7)

where 𝛼, 𝜅, 𝜆 are dimensionless model parameters, 𝑉𝑋 is a constant energy density scale and 𝜑 is
the non-canonical scalar field with kinetic poles given by the typical 𝛼-attractors form with the
Lagrangian density in Eq. (4).

To assist our intuition, we switch to the canonically normalised (canonical) scalar field 𝜙, using
the transformation in Eq. (5). The Lagrangian density is then given by Eq. (6), where the scalar
potential is

𝑉 (𝜙) = exp(𝜆𝑒𝜅
√

6𝛼)𝑉Λ exp[−𝜆𝑒𝜅
√

6𝛼 tanh(𝜙/
√

6𝛼𝑚P ) ] , (8)

where 𝑉Λ is the vacuum density at present related to the model parameters as

𝑉Λ ≡ exp(−𝜆𝑒𝜅
√

6𝛼)𝑉𝑋 . (9)

Note that the model parameter is 𝑉𝑋 and not 𝑉Λ, the latter being generated by 𝑉𝑋 and the remaining
model parameters as shown above.

5. Analytic study

We are interested in two limits for the potential: matter-radiation equality and the present time.
At matter-radiation equality, we consider 𝜙 → 0 (𝜑 → 0). In this limit, we have

𝑉eq ≃ exp[𝜆(𝑒𝜅
√

6𝛼 − 1)]𝑉Λ exp(−𝜅𝜆 𝜙eq/𝑚P) , (10)

where the subscript ‘eq’ denotes the time of matter-radiation equality. It is assumed that the field
was originally frozen there and at the time of equality in unfreezes (thaws). We discuss and justify
this assumption in Sec. 7.

After thawing the field soon rolls towards large values. Today, we consider 𝜙 → +∞ (𝜑 →
+
√

6𝛼 𝑚P). The potential in this limit is

𝑉0 ≃ 𝑉Λ

[
1 + 2𝜅𝜆𝑒𝜅

√
6𝛼√6𝛼 exp

(
− 2𝜙0√

6𝛼 𝑚P

)]
, (11)

where the subscript ‘0’ denotes the present time. Note that, in this limit, the potential approaches
𝑉Λ, which corresponds to positive vacuum density with 𝑤 = −1, as in ΛCDM.

The above approximations describe well the scalar potential near equality and the present time.
As explained below, between these regions, the scalar field free-falls and becomes oblivious of the
scalar potential.

Let us investigate the evolution of the EDE field. Originally the field is frozen at zero (see
Sec. 7). Its energy density is such that it remains frozen there until equality, when it thaws following
the appropriate exponential attractor, since 𝑉eq in Eq. (10) is approximately exponential [24].

For convenience, we assume this is the subdominant attractor, which requires that the strength
of the exponential is [25, 26]

𝜅𝜆 >
√

3 . (12)
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The subdominant exponential attractor is called the scaling attractor. In the scaling attractor the
energy density of the rolling scalar field mimics the dominant background energy density. Thus,
the fractional energy density of the field is constant, given by the value [24–26]

𝑓EDE ≃ 3
(𝜅𝜆)2 < 1 (13)

This provides an estimate of the moment when the originally frozen scalar field, unfreezes and
begins rolling down its potential. Before unfreezing 𝑓EDE is growing, because the background
density decreases with the expansion of the Universe, until 𝑓EDE obtains the above value.

However, after unfreezing, the field soon experiences the full exp(exp) steeper than exponential
potential so, it does not follow the subdominant attractor any more but it is dominated by its kinetic
energy density only (it free-falls). Then, its density scales as 𝜌𝜙 ≃ 1

2
¤𝜙2 ∝ 𝑎−6, until it refreezes at

a larger value 𝜙0. This value is estimated as follows.
In free-fall, the equation of motion is reduced to ¥𝜙 + 3𝐻 ¤𝜙 ≃ 0, where 𝐻 = 2/3𝑡 after equality.

The solution is

𝜙(𝑡) = 𝜙eq +
𝐶

𝑡eq

(
1 −

𝑡eq

𝑡

)
, (14)

where 𝐶 is an integration constant. From the above, it is straightforward to find that ¤𝜙 = 𝐶𝑡−2.
Thus, at equality we have

𝑓EDE =
𝜌𝜙

𝜌

����
eq

=

1
2𝐶

2𝑡−4
eq

4
3 (

𝑚P
𝑡eq
)2

=
3
8

𝐶2

(𝑚P𝑡eq)2

⇒ 𝐶 =

√︃
8
3 𝑓EDE 𝑚P 𝑡eq =

√
8

𝜅𝜆
𝑚P 𝑡eq , (15)

where we used Eq. (13), 𝜌𝜙 ≃ 1
2
¤𝜙2 and that 𝜌 = 1/6𝜋𝐺𝑡2 = 4

3 (𝑚𝑃/𝑡)2. Therefore, the field freezes
at the value

𝜙0 = 𝜙eq + 𝐶/𝑡eq = 𝜙eq +
√

8
𝜅𝜆

𝑚P , (16)

where we considered that 𝑡eq ≪ 𝑡freeze < 𝑡0 .
Using that 𝑡eq ∼ 104 y and 𝑡0 ∼ 1010 y, we can estimate

𝑉eq

𝑉0
≃

𝑓EDE𝜌eq

0.7 𝜌0
≃ 30

7(𝜅𝜆)2

(
𝑡0
𝑡eq

)2
≃ 3

7(𝜅𝜆)2 × 1013 . (17)

Now, from Eqs. (10) and (11) we find

𝑉eq

𝑉0
≃

𝑒𝜆(𝑒
𝜅
√

6𝛼−1) exp(−𝜅𝜆 𝜙eq/𝑚P)
1 + 2𝜅𝜆 𝑒𝜅

√
6𝛼
√

6𝛼 exp(−2𝜙0/
√

6𝛼 𝑚P)
. (18)

Considering that 𝜙eq ≃ 0 and Eq. (16), the above can be written as

𝑉eq

𝑉0
≃ 𝑒𝜆(𝑒

𝜅
√

6𝛼−1)

1 + 2𝜅𝜆 𝑒𝜅
√

6𝛼
√

6𝛼 𝑒−2
√

8/𝜅𝜆
√

6𝛼
. (19)
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Taking 𝑓EDE ≃ 0.1 as required by EDE, Eq. (13) suggests

𝜅𝜆 ≃
√

30 . (20)

Combining this with Eq. (17) we obtain

𝑒

√
30
𝜅

(𝑒𝜅
√

6𝛼−1) ∼ 1012/7 , (21)

where we have ignored the 2nd term in the denominator of the right-hand-side of Eq. (19).
From the above we see that, 𝜅 is large when 𝛼 is small. Taking, as an example, 𝛼 = 0.01 we

obtain 𝜅 ≃ 18 and 𝜆 ≃ 0.30 (from Eq. (20)). With these values, the second term in the denominator
of the right-hand-side of Eq. (19) is of order unity and not expected to significantly influence our
results.

For the selected values, Eq. (16) suggests that the total excursion of the field is

Δ𝜙 = 𝜙0 − 𝜙eq =

√
8

𝜅𝜆
𝑚𝑃 ≃ 0.5𝑚𝑃 , (22)

i.e. it is sub-Planckian. A sub-Planckian excursion of the field implies that 5th force considerations
are suppressed.

6. Numerical investigation

We have thoroughly analysed this model in Ref. [27]. Here, we will present our main results.
We have aimed to obtain a value of 𝐻0 in the window

72 ≤ 𝐻0

km sec−1 Mpc−1 ≤ 74 . (23)

With this requirement, the parameter space arrived at for our model parameters is

0 < 𝛼 < 0.00071
0 < 𝜅 < 700
0 < 𝜆 < 0.027 , (24)

with 𝑉Λ = 10−120.068 𝑚4
P. We see that the above numbers are reasonable. In particular, the value

of 𝜅 ∼ 102 implies that the mass scale suppressing the exponent in our model in Eq. (7) is near the
scale of grand unification 𝑚P/𝜅 ∼ 1016 GeV, which is a rather natural scale.

In the above ranges, we find that 0.015 < 𝑓EDE < 0.107 at equality, while it becomes lower than
10−3 by decoupling; the time the CMB radiation is emitted. The barotropic parameter of dark energy
at present is 𝑤𝜙 = −1.000 with negligible running (less than 10−11), which is indistinguishable from
ΛCDM.

One important finding is that the condition in Eq. (12), 𝜅𝜆 >
√

3 assumed in the previous
section, is not valid. However, this was chosen only for convenience, as explained before Eq. (12).
If the condition is violated then the thawing EDE does not follow the scaling exponential attractor

6
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but the dominant exponential attractor instead. In both cases however, once the EDE field rolls away
from zero, it starts experiencing the full exp(exp) potential and goes into free-fall, as discussed.
Thus, the qualitative behaviour is the same, as also demonstrated by our numerical results shown
below.

As a concrete example, we choose the following values for the model parameters

𝛼 = 0.0005
𝜅 = 145
𝜆 = 0.008125 . (25)

The above suggest that 𝜅𝜆 = 1.178 <
√

3. The value of the Hubble constant obtained in this case is

𝐻0 = 73.27 km sec−1 Mpc−1, (26)

which evidently is well in agreement with the SH0ES observations. Comparison of the Hubble
parameter in this scenario with the one in ΛCDM is shown in Fig. 1.

HϕCDM

HCDMonly

HΛCDM

8.0 8.2 8.4 8.6 8.8 9.0 9.2
50

100

150

200

250
2.35 2.03 1.74 1.48 1.24 1.03 0.84 0.66 0.50 0.36 0.23 0.11 0.01

N

z

VΛ

mP
4
= 10-120.068

α =0.0005

κ=145

λ=0.008125

Figure 1: The Hubble parameter (in units of km s−1Mpc−1) of the Universe in our model (green), a classical
ΛCDM simulation (black), and one with only matter and radiation (blue), as a function of the redshift
(top) and the e-folds (bottom) elapsed since the beginning of the simulation. It is evident that our model
corresponds to a larger value of 𝐻 (𝑧) than ΛCDM, as desired.

The behaviour of the fractional energy density 𝑓EDE , which is identified with the EDE density
parameter Ω𝜙 (𝑧) is shown in Fig. 2. It is evident that, for this example, 𝑓EDE = Ω𝜙 (𝑧eq) ≃ 0.08.

In view of Eq. (9), we find log(𝑉𝑋/𝑉Λ) = 9.926. Thus, our model parameter𝑉𝑋 = 10−110.142 𝑚4
P

is fine-tuned at the same level (slightly less) than 𝑉Λ in ΛCDM. However, it has to be stressed that,
in contrast to ΛCDM, our proposal addresses simultaneously two cosmological problems; not only
late dark energy but also the Hubble tension.
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Density parameter of field Ωϕ
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= 10-120.068

α =0.0005

κ=145

λ=0.008125

Figure 2: The density parameter of the scalar field Ω𝜙 as a function of the redshift (top) and e-folds (bottom)
elapsed since the beginning of the simulation. As shown, at equality, there is a bump with 𝑓EDE = Ω𝜙 (𝑧eq)
with 𝑓EDE ≃ 0.08.

The barotropic parameters, of EDE and the background, are shown in Fig. 3. It can be seen
clearly that, after thawing, the barotropic parameter of EDE is 𝑤𝜙 = 1 and the field is in free-fall as
discussed. Its density decreases as 𝑎−6 as clearly shown in Fig. 4, which corresponds to the 𝑛 → ∞
limit of the oscillating EDE in Ref. [3] and it is never attained by any oscillating EDE model. Thus,
our model disturbs the emission of the CMB at decoupling in the least amount possible.

Finally, for our example we obtain that the total excursion of the EDE field from thawing to
refreezing is sub-Planckian: Δ𝜙/𝑚P = 0.4274, in agreement with Eq. (22). This implies both that
our model does not suffer from fifth force problems and our potential is stable against radiative
corrections.

7. Trapping at the origin

A compelling explanation why the EDE scalar field finds itself frozen at the origin in the first
place is the following. If the origin is an enhanced symmetry point (ESP), then at very early times,
an interaction of 𝜑 with some other scalar field 𝜎 can trap the rolling 𝜑 at zero [28]. The scalar
potential includes the interaction

Δ𝑉 =
1
2
𝑔2𝜑2𝜎2 , (27)

where the coupling 𝑔 < 1 parametrises the strength of the interaction.
We assume that initially 𝜑 is rolling down its steep potential, which away from the origin,

does not have to be of the form in Eq. (7). In fact, it is conceivable that 𝜑 might play the role
of the inflaton field too [27]. The original kinetic energy density of 𝜑 is depleted due to particle
production of 𝜎-particles, because their mass ∼ 𝑔𝜑 changes non-adiabatically near the origin [28].
Note that, near the origin, the 𝜑-field is approximately canonically normalised.

8
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wϕ

wm+r

wUniverse

0 2 4 6 8

-1.0

-0.5

0.0
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1.0

3671 1350 496 182 66 24 8 2

N

z

VΛ

mP
4
= 10-120.068

α =0.0005

κ=145

λ=0.008125

Figure 3: Barotropic parameter of the scalar field (dotted green), of the background perfect fluid (full blue)
and of the sum of both components (full black). It is evident that, after unfreezing, the EDE scalar field is in
free-fall, with 𝑤𝜙 = 1, until it refreezes again.

As the field moves past the ESP, the produced𝜎 particles give rise to an effective linear potential
∼ 𝑔𝑛𝜎 |𝜑| [28], where 𝑛𝜎 is the number density of the produced 𝜎-particles. This linear potential
halts the roll of 𝜑 and reverses its variation. More 𝜎-particles are created when 𝜑 crosses the origin
again, resulting in a steeper linear potential, which reverses the variation of 𝜑 again, closer to the
origin this time. The process continues until the 𝜑-field is trapped at the origin [26, 28].

The trapping of a rolling scalar field at an ESP can take place only if the𝜎-particles do not decay
at maximum displacement. The end result of this process is that all the kinetic energy density of the
rolling 𝜑 has been given to the 𝜎-particles. Since 𝜑 is trapped at zero, the 𝜎-particles are relativistic,
which means that their density scales as radiation, being a subdominant part of the thermal bath. As
far as 𝜑 is concerned, it is trapped at the origin and its density is 𝜌𝜑 = 𝑉 (𝜑 = 0) = 𝑒−𝜆𝑉𝑋 = constant.

After some time, the 𝜎-particles may decay into the standard model particles, which comprise
the thermal bath of the hot Big Bang. Because the confining potential is proportional to 𝑛𝜎 , it
disappears. However, the EDE 𝜑-field remains frozen at the origin because the scalar potential
𝑉 (𝜑) in Eq. (7) is flat enough there. The EDE 𝜑-field unfreezes again in matter-radiation equality.

The above scenario is one possible explanation of the initial condition considered. Numerical
simulations simply assume that the field begins frozen at the origin. Other possibilities to explain
our initial condition exist, for example considering a thermal correction of the form 𝛿𝑉 ∝ 𝑇2𝜑2,
which would drive the 𝜑-field towards the origin at high temperatures.

8. Conclusions

The concordance modelΛCDM suffers from the Hubble tension at 5𝜎. A prominent resolution
of this tension is early dark energy (EDE). EDE amounts to a dark energy substance, which

9
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Figure 4: The logarithmic densities of matter (dot-dashed red), radiation (dotted orange), the sum of both
(solid blue) and the EDE scalar field (dashed green), as a function of the redshift (top) and the e-folds (bottom)
elapsed since the beginning of the simulation. The horizontal full line represents the (S𝐻0ES) energy density
of the Universe at present. As shown, after it briefly becomes important near equality, the density of EDE
scalar field is reducing drastically and it is orders of magnitude smaller than that of the matter background
by the time of decoupling (𝑧dec = 1090), as required.

momentarily becomes about 10% of the total energy density near matter-radiation equality, but
decays faster than radiation afterwards.

EDE in the context of 𝛼-attractors can unify EDE with late dark energy without more fine-
tuning than ΛCDM. We studied such a model of EDE, characterised by the exp(exp) potential in
Eq. (7). Our EDE is originally frozen at the origin. Near equality it thaws, then it free-falls down
its runaway potential until it refreezes before today, when it becomes late dark energy.

We have investigated numerically our model and demonstrated that it works for natural values
of the parameters. We also showed that the field excursion between the initial and final frozen
values is sub-Planckian, which means that our model does not suffer from a fifth force problem and
it is not unstable against radiative corrections.
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