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1. Introduction

In quantum electrodynamics (QED) and other gauge theories, the traditional scattering S-matrix
between Fock states infamously suffers from infrared divergences [1-6]. In order to overcome this
issue, dressing of Fock states by coherent states of soft photons, commonly referred to as Faddeev—
Kulish (FK) dressing, was designed such that S-matrix elements be free of these infrared divergences
[7-12]. A detailed account of this and other related topics is provided in [13]. Importantly, a close
relation between these dressed states and the gauge-invariant quantum fields constructed through
the introduction of Wilson lines [14, 15] was also later uncovered [16, 17].

More recently it has been observed that many infrared features of the S-matrix are actually
controlled by large gauge transformations (LGT), i.e., gauge transformations with support at infinity
[18-25]. In particular it has been understood that FK states are eigenstates of the LGT charge, and
that the latter characterises scattering superselection sectors [24-26]. In fact conservation of the
LGT charge is equivalent to the leading soft photon theorem [19-22], which trivialises when
considering the scattering of dressed states rather than that of Fock states. Given that there also
exists a subleading soft photon theorem [27-30], a natural extension was the construction of dressed
states that trivialise this subleading soft theorem as well [31]. However the subleading dressings do
not relate to infrared divergences and are therefore not strictly needed. In this article we observe
that the subleading soft dressing can be given a different interpretation in terms of a generalised
Wilson line operator, introduced in the literature to efficiently compute scattering amplitudes at
subleading order in a soft expansion [32-38].

Largely motivated by the connection between soft theorems and LGT charge conservation, a
new approach to scattering amplitudes emerged under the name of celestial holography. For recent
reviews of this rapidly growing field we refer the reader to [39, 40]. In that approach a different



Celestial soft dressings from generalised Wilson lines Kevin Nguyen

basis of one-particle states is used, given by the set of conformal primary states that are boost rather
than momentum eigenstates [41-50]. These behave precisely as (quasi)-conformal primaries for
the Lorentz group SO(1,3) =~ SL(2,C). In this conformal basis the soft theorems take the form
of Ward identities associated with conserved currents of a two-dimensional conformal field theory
[51, 52]. On the other hand infrared divergences are then accounted for by a particular conformal
field, namely the Goldstone mode of spontaneously broken LGT [53]. In order to define an S-matrix
free of these infrared divergences, a notion of dressing appropriate to the conformal primary states
has been similarly proposed [25, 54, 55], which is different but closely related to the FK dressing.

In this article we revisit the connection between (generalised) Wilson line operators and the
various notions of dressings discussed above. Our aims are not only to collect useful results in one
place, but also to explain the connection between them. In particular we show how the leading
and subleading soft dressings are easily reproduced from the Wilson line operators through use
of the asymptotic expansions of the gauge potential near null infinity .# and timelike infinity i*.
This approach therefore ties together the asymptotic structure of QED with the soft dressings more
directly, and gives a nice geometrical picture for the latter in terms of Wilson lines tracking the
classical trajectories of the scattered particles.

The article is organised as follows. We startin section 2 by reviewing the leading and subleading
FK soft dressings, the conformally soft dressings and the Wilson line dressings, together with the
known relations between them. In section 3 we describe the asymptotic regions near .# and i*,
as well as the corresponding parametrisation of classical particle trajectories. In appendix A and
B we study the asymptotic structure of the electromagnetic potential near null infinity .# and
timelike infinity i*, respectively. We use it in sections 4 and 5 to derive the soft dressings from
the (generalised) Wilson line operators associated with massless and massive scattering states,
respectively.

2. Preliminaries

We start by recalling three different versions of dressings and the known relations between
them. These are Faddeev—Kulish (FK), conformally soft and Wilson line dressings. We will restrict
the discussion to QED for simplicity.

Faddeev—Kulish dressings. As reviewed in the introduction, the FK dressing of charged particle
states by clouds of soft photons were introduced in order to define an S-matrix free of infrared
divergences. For a one-particle state |p, J) with momentum p, helicity J = +s and electric charge
eQ, the corresponding FK dressed state can be written

||paJ>>:WOW1 |pa‘l>’ (1)

with the leading FK dressing given by [12]

5 d35_]) f(w) p* +
Wo = exp [eQ e G ay(q))] : @)
and the subleading FK dressing given by [31]
% _ . &g fw) g™ ( .
Wi = exp [—zeQ | ashe e (a,,(q>+a,1(q))]. S
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In the above expressions aL (g) is the creation operator for a photon of null momentum ¢* with
frequency w = |q |, J,,, is the Lorentz generator (or total angular momentum), and f(w) a distribution
with vanishingly small support around w = 0 satisfying f(0) = 1. The latter conditions simply
mean that the dressing only retains the leading nontrivial contribution in the limit w — 0.

Conformally soft dressings. This second type of dressing naturally arises in the description of
scattering amplitudes in a basis of conformal primary states [25, 54, 55]. Conformal primary states
are typically denoted |A, J,w,w), and depend on the conformal dimension A and helicity J = +s
as well as some insertion point (w,w) on the celestial sphere at null infinity. Conformally soft
dressings are then the analogue of the FK dressings in this context and are still formally given
by the expressions (2)-(3), however with the important difference that f(w) = 1 across the whole
spectrum. This means in particular that both hard and soft photons contribute to the dressing,
and that conformally dressed states have infinite energy. Denoting by Wy and W, the leading and
subleading conformally soft dressing operators, we have the relation

=W, “)

where, given a generic quantity Q = /000 dw Q(w) involving photons of all frequencies w, we define
its soft component through insertion of a function with vanishingly small support around w = 0 and
satisfying f(0) = 1,

0| = /0 doo f(@)Q(w). 5)

The explicit expressions given in [25, 54, 55] for the conformally soft dressings of a massless
state |A, J,w, w) are

Wo = 7@ S0, (©)
and

Wi = exp [% (Zhawyw + ywaw + 2}_1 (9wyw +~ywaw)] s (7)

where A = h+ hand J = h — h. Here S(w,w) and Y"(w, W) are conformal fields of weights
h = h = 0, given in terms of photon creation and annihilation operators by [55]

N ie 0 _ + _
Stu) = oo [ o700 - alta + 0 @) - al@)]
w —\ ¢ a -
yrnm = o [ dwwie v, ®)
W N _ e ® _
i) = s [ dwwia @ i),

where there is an implicit parametrisation g(w, w, w) of the photon momentum, given below in (20).
For massive states the leading conformally soft dressing can also be found in [25, 54], however the
subleading dressing expressed in terms of conformal fields has yet to be worked out.
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Wilson line dressings. The leading conformally soft factor Wy can be alternatively understood as
a dressing by a Wilson line along the particle classical trajectory [16, 17, 56]. One justification for
the presence of a Wilson line is simply the construction of gauge-invariant field variables at the cost
of introducing some controlled degree of nonlocality [14, 15]. Indeed, consider a local quantum
field ¢(x) with electric charge eQ, which acquires a phase under local U(1) transformations,

B(x) > e PP g(x), Au(x) > Au(x) + e 9, A(x). 9)

The phase factor can be compensated for by considering a line segment I'[xg, x] with endpoints xq
and x, and dressing the local field ¢(x) with the corresponding Wilson line operator,

$(x|T) = QA g(x) . (10)
The transformation of the dressed field is now instead
$(x|1) > e QN g(x|T) . (11

Fixing the reference point xo once and for all (such as the origin of Minkowski space), the above
is a global phase shift common to all dressed field variables ¢(x|I") independently of x, and local
gauge invariance is therefore achieved.

The connection with the conformally soft dressing Wy of a single-particle state |p,J) arises
when choosing the path T to be the classical trajectory of the corresponding particle. As is well-
known a Wilson line carries infinite energy, and thus corresponds to the dressings Wy for which
f(w) = 1 across the whole spectrum. Specifically, considering A, to be the radiation field', we
have the equality [17]

Wo = e iQhA (12)

This equivalence extends to the subleading dressing as well. Still considering the path I to be
the classical trajectory of the particle, the subleading FK dressing (3) can be written?

Wi = exp l—%‘/er,J‘“’} . (13)

In the leading soft case, we saw that FK dressings are in turn related to Wilson lines. The
question then naturally arises as to whether the subleading FK dressing of eq. (13) can itself be
associated with a generalisation of the conventional Wilson line. Indeed this is the case, where
the relevant generalised Wilson line was first discussed in refs. [32, 33], in the context of collider
physics. That reference discussed gluon radiation from scalar particles, and argued that one may
indeed write a generalised Wilson line describing radiation up to next-to-soft level, where the
additional contribution to the Wilson line involves a contraction of the field strength tensor with
the generator of spin transformations, consistent with eq. (13). Further work has established that
the full angular momentum generator is indeed obtained from conventional QCD approaches [34],
which must anyway be the case on general grounds (e.g. Lorentz and gauge invariance). Related
results in gravity were obtained in ref. [36], and applications to collider physics may be found in
refs. [35, 37, 38].

That part of the gauge potential which is sourced by onshell particles is known to account for Coulomb phases [17].
This will not be further discussed here.
2We fixed the normalisation of the exponent in order to agree with the expression (7) in section 4.
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3. Asymptotic regions and classical trajectories

We aim to describe the FK dressings in terms of asymptotic components of the photon field.
To achieve this we will exploit the relation between soft dressings and (generalised) Wilson lines
reviewed in the preceding section.

A distinction between massless and massive fields will be made, as the asymptotic regions
where the corresponding wavefunctions are supported are of a different nature. Massless fields and
the corresponding classical null rays extend to future (past) null infinity .#* (.#~), while massive
fields and the corresponding timelike geodesics extend to future (past) timelike infinity i* (i7). We
present the coordinate systems adapted to .#* and i* and describe some relevant aspects of the
corresponding classical trajectories.

Null infinity. Retarded coordinates x = (r,u, z, 7) are best adapted to the description of .#*. The
relation to cartesian coordinates X* can be conveniently written [57]

X* =un* +rg"(z,2), (14)

where n** and §*(z, Z) are null vectors with cartesian components given by

1
¢ (z,2) = —=0+z2Z,2+7,-i(z-2),1 - z2),
V2

: (15)
nt = —(1,0,0,-1),
2
and satisfying the useful relations

This allows to easily obtain the retarded coordinates r and u from the position vector X* through
the following Lorentz contractions,

r=-n-X, u=-4-X. (17)
In retarded coordinates the flat metric takes the form
ds* = 1y dX* dX” = =2dudr +2r* dz dz . (18)

The location of future null infinity .#* corresponds to the limit » — oo. It is a three-dimensional
null manifold covered by the coordinates (u, z, 7).

Let us now turn to the parametrisation of generic null rays passing through the origin of
Minkowski space. The parametrisation of a null ray is simply given by

XH(s) = s p*, (19)

where s is some affine parameter and p* a constant null vector. A complete parametrisation of p*
is further given in terms of three quantities (w, w, w) by

P =wd (ww), (20)



Celestial soft dressings from generalised Wilson lines Kevin Nguyen

where ¢ has been given in (15). The components of p* in retarded coordinates along the null ray
(19) are straightforwardly worked out,

pr:—n-p:a),

p'==4-p=wlzs) - w, 1)
pr=rt0:4-p=-wr(s)" (z(s) - w).

Using (17) and (19) we find that the null trajectory is given in retarded coordinates by

r(s)=-n-X(s)=sw,

22
u(s) = =4(z(s), 2(9)) - X(s) = s |z(s) = wl*. 22

We note that r(s) is an equally good affine parameter. The trajectory z(s) can be obtained by
studying the cartesian components u = 1,2 of equation (14) and comparing it with (19). For our
purposes it enough to notice that in that limit s — oo, we have

lim z(s) = w, (23)
and therefore
lim u(s) =0, lim ¢“(z(s),2(s)) = w™' pH . (24)

Thus the null ray intersects .# " at the retarded coordinates (r,u,z,Z) = (c0,0, w, w).

Timelike infinity. Classical trajectories of massive particles asymptote to future timelike infinity
i*, which is better described using hyperbolic coordinates (7, p, z, 7), related to cartesian coordinates
by [57]

17
Xt =2 (e ). 25)
such that the flat metric takes the form
d 2
ds® = —dt* + 12 (p—p2 + pdz dZ) . (26)

This is a foliation of the causal future of X# = 0 by three-dimensional hyperbolic slices of constant
negative curvature (aka euclidean AdSs) with coordinates x¢ = (p, z,Z) and induced metric

dp?

dsy; = hap dx® dx” = v + p?dz dz. (27)
The asymptotic hyperbolic slice H™* located at T — oo is a resolution of timelike infinity i*. Note
that we can easily extract the coordinates (7, p) from the position vector X* through the following

Lorentz contractions,

Ap = n-X
?=20-X)(G(z2X), P (28)
q(z,2)- X
By comparison of (25) with (14), we also easily infer the relation to retarded coordinates,
1 1
u:—z, r=—1p. 29)
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The limit p — oo with 7 fixed thus corresponds to the limit r — oo,u — 0 towards the middle
of Z* where hyperbolic slices attach. The other limit of interest is 7 — oo at fixed p towards the
future corner of .#*, which corresponds to r,u — oco. Finally the limit r — oo with « fixed but
arbitrary corresponds to the limit p,7 — oo taken at the same rate.

A generic classical trajectory for a massive particle is still of the form (19), with p* a constant
timelike vector satisfying p> = —m?. We parametrise such momentum vectors by three numbers

x> w,w),
p’t =

= (4 2 @ o)) = m (30)
V2y
such that

n X af =\ A 1 2 2
n-p=-—2, 7)) - p=— |1+ x*lz—w*). (€2
p N 4(z,2)- p ‘/5)(( x| I)

The components of the momentum (30) in hyperbolic coordinates and along the trajectory (19) are

given by
P = 5eiy 0 P67 = P67 el - ).
5 = 5o (4 2P + o) = ) (32
P= S S (@() - ).

In the limit s — oo, the classical trajectory satisfies 7(s) = s together with
lim z(s) = w, lim p(s) = x. (33)
§—00 §—00

Thus the timelike trajectory intersects the asymptotic hyperbolic slice H* at the coordinates
(7,0:2,2) = (00, Y, W, W).

4. Soft dressings of massless states

Starting from the Wilson line representations (12)-(13) of the dressings, we aim at deriving
their expressions in terms of asymptotic components of the photon field A,. Our method will
only reliably capture the soft part of the dressing since we will only retain the leading asymptotic
contribution of the photon field. This is however all we need in order to capture the FK soft dressings
as indicated by equation (4).

The field A, can be split into a radiative part and a piece sourced by charged on-shell particles.
We will disregard the latter which is known to account for scattering Coulomb phases [17]. The
asymptotic expansion of the radiation gauge field in retarded coordinates takes the form

A =007 Inr), A =0GT'Inr), A =AP(wz2)+007). (34)
Further information regarding this asymptotic expansion can be found in appendix A. The asymptotic
photon field admits the Fourier decomposition [18],

ie

(0) =
Ay (u,2,2) =
< 2V2n2

/0dw(m(q)e-“w“—ai‘<q>e"w“>, g=wiz3). (5
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where ai(q) is the usual creation operator for a positive helicity photon of momentum ¢. In the soft
limit w — 0 the two photon polarisations are however not independent, since they can be written
in terms of the Goldstone mode @ of large U(1) transformations,

4. (w§(z,2) = 0.0(w,2,2),  a (w§(z7) =0:9"(w,2,7), (w—0),

. (36)
a—(qu(Z> Z)) = afq)(a)v 2, Z) ’ a'—(qu(L Z)) = azq)T(a)v Z, Z) .
We formally write the Goldstone mode as a soft field,
D®(u,z,7) = te /OO dw f(w) (CD(a), z7)e @ — 0 (w,z, Z)eiwu) , 37
2V2n2 Jo
such that
AD(u,2,2)|, = 0:D(u,2,2). (38)

Furthermore one can construct holomorphic and antiholomorphic soft currents S, = 9,® and
Sz = 0; 0, since away from operator insertions we have [53]

8:0.D = 0. (39)

In other words the Goldstone mode can be decomposed into holomorphic and antiholomorphic
components,

D(u,2,2) = ¢(u,2) + $(u, 2). (40)

The relations (36) then allow to write the soft components of the conformal fields (8) in terms
of the Goldstone mode and its velocity at the retarded time u = 0,

1 1

u=0" 0 Y% o = _‘9“¢|u:0’ 0% o = _a“(ﬂu:O' @1

S‘soft = q)| soft = o soft = 9o

This will come in handy when comparing our results to the conformally soft dressings (6)-(7).

Leading soft dressing. We have now introduced all the ingredients needed to evaluate the Wilson
line dressing of a charged momentum state,

exp

-iQ / A} Ip,J) . 42)

Therefore the relevant quantity to compute is the line integral along the null ray (19),

/A = /000 ds p" A, (x(s)) . (43)

We will now make use of the asymptotic expansion (34) of the radiation field A, near .#*. Since
we are only interested in the leading soft contribution to the integral (43), it will be sufficient to
consider the leading term of this asymptotic expansion.

Plugging (34) together with (38), the leading soft contribution is therefore given by

[ee] (o] _ o0 d
/ ds p”Aﬂ(x(s))| = / ds (p°0,® + p°9;0) = / ds —®, (44)
0 soft 0 0 ds
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where we have used
d , _
ad)(u(s), 2(s),z(s)) = p*9,® + p*0; D + p" 0, D ~ p*d,D + p*d;D. (45)

In the last equality we have discarded 9, ® since it is subleading in the soft expansion (9, ~ w). We

[a

Just like in the general discussion (11), ®y = ®(0,zp,Zo) is a phase common to all dressings

thus have

= ®(0,w, ) — Dy . (46)

soft

irrespective of the insertion point (w,w) on the celestial sphere and we can safely disregard it.
Hence we find that the leading soft dressing of is simply given by

Wo = Wol,, = 7120w "), (47)

soft —

in agreement with the soft part of the conformally soft dressing (6) through the identification (41).
Note that the above expression had been considered previously to account for virtual IR divergences
of the S-matrix in the approach of celestial holography [53]. Here we obtained it directly from the
Wilson line dressing.

Subleading soft dressing. We similarly compute the subleading soft dressing starting from the
generalised Wilson line,

The asymptotic expansion (34) together with (38) imply that the only nonvanishing soft components
of the field strength are

Fualyq = 04040, (49)

such that

F| o Ty = =282 (Fuz Jrz + Fuz Jrz) = =257 (Fuz 024" + Fuz 0.6") §" Jy . (50)

At this point it is convenient to express the momentum state parametrised by (20) in terms of
conformal primary states [44],

1+ico
. J) = / dAw™ AT, W), P =w g (ww), (51)
1-ico
and exploit the action of the Lorentz generators [55]
300" Dy 100w, 9 = =20 (20w = 2) + (w = 220, ) |A w0, 9) (52)

where the conformal weights are defined as

(h,h) = %(A+J,A—J). (53)

10
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On a conformal primary state |A, J,w,w), the action of (50) therefore gives

—iF“"| Iy = 4r7'F,, (Zh(w —)+w- z)z(fiw) + c.c.

soft
= 4w~ (2hp?8,0,® + p*8,8,D(w — 2)d,, + C.C.) 54
= 4w 2hp?8.0,® + p?.[0,P(W — 2)]0 + p°8, D B, +c.C.) .

Using the decomposition (40) together with the relations (41), we can now rewrite this as a total
derivative term,

—iF"“’|Soft Juy = 8w p?0, [2h0, Y% + 0, Y% (W — 2)0y + Y7 ] | + c.c.

soft .

L d (55)
= 8w - (2h0.Y* + 8. Y*(w — 2)Bw + Y* By |, + C-C.,
such that i
Wil lpd) = Walpod = [ dbw WA o), (56)
with
Weon' = exp [% (21 0,1 + Y6y +2h05Y" + YV 03) | | - (57)

in agreement with (7) as given in [55].
We have thus recovered the soft contributions to the leading and subleading conformal dressings
associated with charged massless states, starting from the generalised Wilson line operators.

5. Soft dressings of massive states

Similarly to the case of massless fields worked out in the previous section, the determination
of the soft dressings associated with charged massive states requires a control over the asymptotics
of the radiation field A, near timelike infinity i*. We will make use of the following expansion in
the large 7 limit,

Ar =02, Ay =0,Dy+0GT, (58)
where @4, is would-be pure gauge mode satisfying
OxDy =0. (59)

Note that another scalar mode is in principle allowed by the asymptotic equations of motion
in A, at order O(7%). However this mode is not produced by the standard free photon field
operator and we therefore disregard it. Further details regarding this asymptotic expansion can
be found in appendix B. Solutions to (59) are fully determined in terms of the boundary value
D*(z,2) = lim,0 Po((p, 2,2) [22, 53],

(I)qq(p,z,Z):/dszz(p,z,Z;w,W)d>+(w,W), (60)

where K> is a bulk-boundary propagator given in (95).

11
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Leading dressing. The determination of the leading soft dressing proceeds by evaluating the
following Wilson line integral along the timelike trajectory (19) and (30). Using the falloffs (58),
its soft contribution reduces to

/dx”A#

Again the second term is phase common to all dressings, and we can discard it. The leading soft

d _ _
i /dSP“(?aCDW = /ds afbw = g (x,w,w) — Pg(po,z0.20) . (61)

conformal dressing of a massive particle is thus given by

Wo = Wol,, = e " Orlxw¥) (62)

soft

where @4, is determined by (60). In this way we recover the result of the literature [53, 54].

Subleading soft dressing. To determine the subleading soft dressing, we would need to evaluate
the soft contribution to the line integral of F,, J¥¥. From the falloffs (58), we see that the field
strength vanishes near i*,

Fra=0(G),  Fap=0G™"). (63)

Given that the leading soft dressing comes from the order O(7°) in the gauge potential, we can
expect the subleading dressing to be associated with the subleading order O(r~!). Asymptotically
the time coordinate 7 coincides with the Minkowskian time ¢ conjugated to the energy w. Therefore
given a quantity g() in the time-domain and its Fourier transform g(w), we also have

lim g(r) = lim / dw e “Tg(w). (64)
T—00 T J
The soft expansion of g(w) in the limit w — O,

gw)= ) gaw", (65)
n=0

then maps to an expansion at large time 7 — oo through the Laplace transform

n!

—lwT n __ °
/0 dwe w" = W . (66)
Thus higher orders in the soft expansion naturally map to higher orders the late-time asymptotic
expansion towards i*.

The explicit evaluation of the subleading soft dressing thus requires a detailed study of the
Maxwell field near i* at subleading order O(7~') in the large-7 expansion. This can be done along
the lines of appendix B. In particular one needs to ensure consistency of the solution space near
i* with that considered at .#* in appendix A. This however goes beyond the scope of the present
article. Note that a similar systematic study of the solution space of general relativity near spatial
infinity i® and its relation with the solution space near .#* is discussed in [58]. As with the leading
soft dressing, one can expect the subleading soft dressing of a massive state to resemble that of a
massless state, modulo convolution by appropriate AdS3 bulk-boundary propagators. We leave this
to future endeavors.

12
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A. Asymptotic expansion near .#*

Here we discuss the asymptotics of the gauge field A, in retarded coordinates (18), in close
parallel to the analysis performed [52]. Although in the main body of the text we restrict our
attention to radiative solutions (j,, = 0), we keep the discussion general here.

Maxwell equations 6, (1/—gF*”) = ezﬁ J” take the form

_rzauFru + 0. Fzy + 0z F, = ezrzju >
9, (rZFur) + 8, Fsr + 0:Fy = 42y, 67)

—1’2c9uF,z - rzarFuZ + 0, F;, = ezr2jz,
while the Lorenz gauge condition d,,(1/~gA*) = 0 reads
— 20,4, - 8, (rzAu) + O A-+0A, =0, (68)

We assume the following asymptotic expansion for the gauge field,>

A = Z r_"AS") + Z rm lnrﬁ(rm),

n=2 m=2
Au = Z r_"A(un) + Z r_m ln r A(um) . (69)
n=2 m=1
A, = Z r A + Z r Inr AU,
n=0 m=1
and for the matter current,
ju=rPid w00, jo=rj@ w00, =007, (70)

Under these assumptions the gauge condition (68) imposes

8,4 = D,

. (71)
0, A? = A + 0: AL + 9,40,

3A nonzero AE}) can always be set to zero by a residual gauge transformation A, — A, + dye with

e(r,u,z,7) = r_ls(l)(u, 72,7) + O(r_z), Bus(l) = A(ul).
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while Maxwell equations additionally imply
20,4, = &ji”,
0, A% — 9, AV =0, (72)
2(8,0:AY + 0,A") - 29,4 = 22

Although the coordinate system (18) is slightly different than the one used in [52], the equations
take exactly the same form.

B. Asymptotic expansion near i*

In this appendix we work out the asymptotics of the gauge field A, close to future timelike
infinity i*. This is done by adopting the hyperbolic coordinates (7, x%) = (7, p, z,Z) and working in
the limit 7 — oo. See [22, 59, 60] for relevant earlier work.

In the hyperbolic slicing (26), Maxwell equations take the form

habDanT = eszj‘r 5

. (73)
1 0:(tFzp) + h°“D.F,y = eszjb,

where D, is the Levi-Civita connection associated with the three-dimensional metric /,; and where
Fra,Fap are viewed as (1,0)- and (2,0)-tensors on H, respectively. On the other hand the Lorenz
gauge condition reads

—0:(TPA) +Th*’ DAL = 0. (74)

We start by assuming the standard falloffs for the gauge field

Ar =1 A +0(T™%), Aa=A,+0(7"), (75)

such that the asymptotics of the field strength are
Fur = 7' DA + 0(172), Fap = Fap +O(x71), Fup = DaAp — DpAq, (76)

For the matter current on the other hand, we assume

Jr= 1 je v 0@, ja =1 a+ 0T, (77)

At leading order Maxwell equations simply yield
D’Ac=¢’jr,  DFap =€y, (78)

while the Lorenz condition yields
D,A? =2A, . (79)

For radiative solutions we set j, = 0, and we will see that consistency with the falloffs at .#* in
that case requires A, = 0. We are then effectively left with a lower dimensional Maxwell theory on
‘H in Lorenz gauge.

The asymptotic equations (78)-(79) are equations on the euclidean hyperboloid H. As is
familiar from the AdS/CFT correspondence, we can fully characterize their solutions in terms of
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a ‘Fefferman—Graham’ (FG) expansion at large p. For ease of notation we will use the following
diagonal form of the euclidean metric,

dp?

ds, = e +p* 6 dx’ dx/ (80)
instead of the off-diagonal one (27). Once the FG expansion of the solutions to (78)-(79) are
worked out, we can look at their consistency with the falloffs assumed at .#*. Indeed the regime
T > p > 1 corresponds to the regime r > u > 1, i.e., to the future corner of null infinity. By

explicit coordinate transformation (29), we have

1 . L i -
=)< -8 0

1 -1 o
A = — (p_lAT + r—lAp) - % (p_lAT + Ap) L o).

8D

This will come in handy when working out the matching between quantities in the two coordinate
systems.

FG expansion of A;. The massless equation D*>A, = 0 explicitly becomes

3p(p’0pAr)) + p~' %A, = 0, (82)
with asymptotic solution
A = A(TO) +p 2 InpA; + p2 A(TQ) +.... (83)

The independent free data for this second order differential equation is A(TO) and A(Tz). However
regularity of the solution at p = 0 discards half of the solution space, and therefore relates them in
a nonlocal way via bulk-boundary propagators.

FG expansion for A,. The equations (78)-(79) can be written
0p(0*Ap) +p 16" 8, A; = 2p Ar, (84)
and

Op(p ap(p3Ap)) + aZAp = 26p(92AT),

_ z _ - (85)
p(p BpAi) + p 07 A; = =20,(A, = p~' Ar).
If A; # 0, the leading behavior of A, is given by
Ap = p_1 A(TO) + ..., (86)
such that, together with (83) and (81), we find
A =V21p AD 4 =007 (87)
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Thus our assumption at .#* that A, = O(r~2Inr) from appendix A requires A(TO) = 0 and thus
A; = 0 from regularity at p = 0. In that case the FG expansion of A, reduces to
= p_3 lnpAp + ,0_3 AS) + ...,

” S (88)
Ai=lnpAl-+Al. + ...

Here (A,, AS)) and (4;, AEO)) are pairs of free data, that are again partially related by bulk-boundary
propagators due to the requirement of regularity at p = 0. Again our assumptions that A, = O(r?)
at . requires to set A; = 0. One could naively think that regularity at p = 0 implies Af.o) =0as
well, but this is not quite the case. Indeed would-be pure gauge solutions are still allowed,

Ay = 0,0y . (89)

These trivially satisfy the reduced Maxwell equations (78), while the Lorenz gauge condition
implies
OxPp =0, (90

whose solutions admit the large-p expansion

~ .
Dy = D)+ p 2 Inp Dy +p 2D + ..., cpﬂziazcl)(ﬂm. 91)

Hence the corresponding gauge field reads

A, = 203 Inp Dy + p3 (D — 2(13(7{2)) + ...,

_ (92)
A; = 6@2 + ...

This forms the subset of the solutions (88) for which A; = 0.
Equation (85) admits other solutions of Ap that are not pure gauge. With A; = 0 and making
the change of variable ¢ = p*>A,,, the latter takes the form

(D2+1)¢:0, 93)

which is the equation of a massive scalar right at the Breitenlohner—Freedman bound m? = —1
[61, 62]. Regularity at p = 0 uniquely specifies it in terms of the boundary mode A,,,

Ay(p,2,2) = p? / d*w Ki(p, 2,23 w, W) A, (w, W), (94)

where the bulk-boundary propagator for general A is explicitly given by [63]

A
Ka(p,2, 25w, W) = Ca (%) . 95)
1+ p?lz —w|

Summary. By consistency with the falloff conditions at .#*, we conclude that the radiative
solution space near i* admits the simple asymptotic expansion

Ar = 0(172), Ag=Aqs+0(7h, (96)
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with
Ay =pInp(A, - 3*0) + 0(p7), )
A = 8,0 +0(pInp).

The functions CI)(ﬂO) (z,Z) and Ap (z,7) specify the two kinds of regular radiative solutions consistent
with the aforementioned falloff conditions. In particular the solution specified by (D;?(z, 7) is
would-be pure gauge. Finally, the relations (81) together with the coordinate change (29) allow to
map this radiative data to radiative data in retarded coordinates, namely

.0 - © .2 I s 2.4(0
lim A u,2,2) = 9,08, Tim AV, z,2) = (A= 0 o). (98)
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