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1. Introduction

The classical Maxwell equations in the vacuum display an apparent symmetry between elec-
tricity and magnetism. The equations are invariant if the electric field 𝑬 and the magnetic field 𝑩

interchanges by (𝑩, 𝑬) ↦→ (𝑬,−𝑩). The symmetry is lost in the real world due to the presence of
electric charges and the absence of magnetic charges. Attempt to restore it can be made by consid-
ering magnetic monopole solutions that are singular at some spatial points. More fundamentally, a
complete description of electromagnetic configurations requires not only the fields 𝑬 and 𝑩, but also
phases coming from integrating the vector potential along large loops. Such phases are holonomies
of a connection on a U(1)-bundle. The Maxwell equations then split into two halves: one is the
Bianchi identity, of geometric origin; the other is dynamical, from variation of an action. So even
in the vacuum, the symmetry of electricity and magnetism is lost in our formulation of the theory.

In quantum theory, we can do perturbations near the trivial background and obtain a Hilbert
space which decomposes into subspaces according to the electric charges of the states. We can
also perturb around a non-trivial, solitonic background, like a magnetic monopole, and obtain new
sectors which are labelled by the magnetic charges. In this way, the symmetry between electricity
and magnetism, lost at the classical level, can be recovered in the quantum theory, and this is
exactly what was conjectured by Montonen and Olive [30] for non-Abelian gauge theories. The
electric-magnetic duality, or 𝑆-duality, exchanges strong and weak coupling, and the gauge group𝐺
and its Langlands dual 𝐿𝐺 [15]. Over the past decades, understanding 𝑆-duality in supersymmetric
gauge theories has led to not only conceptual breakthrough of the non-perturbative aspects of
quantum gauge theory [32, 33], but also highly non-trivial predictions in mathematics, whose
proofs supported the validity of the duality. For example, in the 𝑁 = 2 and 𝑁 = 4 gauge theories,
𝑆-duality provides new insights on the geometry of 4-manifolds [40, 44]. In [26], Kapustin and
Witten considered another version of twisted 𝑁 = 4 gauge theory and show that upon dimensional
reduction, duality in four dimensions reduces to 𝑇-duality or mirror symmetry in two dimensions,
and this explains the geometric Langlands programme. For some of the subsequent and recent
developments, see [46] and references therein.

In this paper, we revisit a variant [49] of the Kapustin-Witten theory, when the 4-manifold is not
a product of two orientable surfaces but contains embedded non-orientable surfaces. The resulting
low energy theory is a sigma model on a worldsheet with boundary. The target space is Hichin’s
moduli space MH(𝐶,𝐺) [20] from an orientable surface𝐶 like in [26], equipped with a generalised
Kähler structure from its hyper-Kähler structure. But the boundary lives on branes constructed by
the moduli space MH(𝐶′, 𝐺) [23] from a non-orientable surface 𝐶′ whose orientation double cover
is 𝐶. More precisely, the map 𝑝 : MH(𝐶′, 𝐺) → MH(𝐶,𝐺) by pulling back connections and fields
from 𝐶′ to 𝐶 is a regular cover (on the smooth part) over the support of the branes and can be used
to construct Chan-Paton line bundles of the branes.

The rest of the paper is organised as follows. In §2, we explain the mathematical techniques
for computing the topological sectors of 4-dimensional gauge theories and 2-dimensional sigma
models. We recall supersymmetric gauge theories, especially the twisted 𝑁 = 4 theory in [26],
as well as the bi-Hermitian [13] or generalised Kähler [16] geometry of the target space of the
2-dimensional sigma model with an 𝑁 = (2, 2) supersymmetry. In §3, we consider the dimensional
reduction of the twisted 𝑁 = 4 theory when the 4-manifold is a product of two orientable surfaces
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[26] or contains embedded non-orientable surfaces [49]. In both cases, we match the topological
sectors and discrete symmetries of the theories in high and low energies in a way that is manifestly
covariant on the worldsheet. The matchings are consistent with the 𝑆-duality in four dimensions
and the mirror symmetry in two dimensions. We conclude in §4 with a summary and outlook.

2. The topology of gauge theory and sigma models

2.1 Topological sectors of a gauge theory

Classical gauge theory is about the geometry of principal fibre bundles. The simplest and ear-
liest example is electromagnetism. A complete description of classical configurations requires not
only the electromagnetic field, but also a gauge potential modulo gauge transformations. This extra
information has global ramifications that can be confirmed by experiments such as the Aharonov-
Bohm effect and the quantisation of magnetic fluxes in superconductivity. The gauge potential is
a connection on a principal U(1)-bundle over the spacetime and the electromagnetic field is its
curvature. Generalisation to non-Abelian gauge groups was proposed in the physics literature: [54]
for SU(2) and [39] for arbitrary Lie groups, and subsequently non-Abelian gauge potentials were
identified [27, 52] with connections on principal fibre bundles. Though the global properties of
fibre bundles were extensively studied much earlier [36], they did not play a role in physics until
the discovery of instantons [2] and discrete fluxes [38].

We consider gauge theory with a compact connected gauge group𝐺 on a space or a spacetime 𝑋 .
Mathematically, we have a principal 𝐺-bundle 𝑃 over the manifold 𝑋 . The bundle is topologically
trivial if and only if it admits a global section. The obstructions to the existence of such a section
are in the cohomology groups 𝐻𝑘+1(𝑋, 𝜋𝑘 (𝐺)) for 𝑘 ≥ 1 [36]. When dim 𝑋 = 2 or 3, the only
obstruction is a class 𝜉 (𝑃) ∈ 𝐻2(𝑋, 𝜋1(𝐺)). For example, if 𝑋 = 𝑇3 and 𝐺 = PU(𝑁), then
𝜉 (𝑃) ∈ 𝐻2(𝑇3,Z𝑁 ) is the discrete magnetic flux discovered in physics by ’t Hooft [38]. If 𝑃 is
an SO(𝑛)-bundle over 𝑋 of any dimension, then 𝜉 (𝑃) = 𝑤2(𝑃) is the second Stiefel-Whitney class
of 𝑃. If 𝑋 is an oriented Riemannian manifold of dimension 𝑛 and 𝑃 is the bundle of positively
oriented orthonormal frames on 𝑋 , then 𝜉 (𝑃) is the obstruction to the existence of a spin structure
on 𝑋 . We will mostly be concerned with gauge theory on a four dimensional spacetime manifold.
When dim 𝑋 = 4, there is an additional obstruction 𝑘 (𝑃) ∈ 𝐻4(𝑋, 𝜋3(𝐺)). If 𝑋 is closed orientable
and 𝐺 is simple, then 𝜋3(𝐺) � Z and 𝑘 (𝑃) ∈ 𝐻4(𝑋,Z) � Z is the instanton number.

We now discuss discrete symmetries in gauge theories. In the pure gauge theory, if we
modify the holonomy of a connection along a non-contractible loop in 𝑋 by a group element in
the centre 𝑍 (𝐺), the curvature remains unchanged and therefore this is a symmetry of the action.
Since holonomies multiply when loops are joined, the symmetry group is Hom(𝜋1(𝑋), 𝑍 (𝐺)) �
𝐻1(𝑋, 𝑍 (𝐺)). In fact, this is an example of 1-form symmetry [12] (cf. [51]). There are at least two
ways to reduce the discrete symmetry of the theory to a subgroup of 𝐻1(𝑋, 𝑍 (𝐺)). First, suppose
the theory has bosonic and fermionic matter fields that are sections of the associated bundles of
the principal bundle. If the centre 𝑍 (𝐺) does not act trivially on the fibres but a subgroup 𝑍 of it
does, then the discrete symmetry is reduced to 𝐻1(𝑋, 𝑍). Second, an element 𝑔 ∈ 𝐻1(𝑋, 𝑍 (𝐺))
may change the topology of the principal bundle. In fact it modifies 𝜉 (𝑃) to 𝜉 (𝑃) + 𝛽1

𝑋
(𝑔),

where 𝛽1
𝑋

: 𝐻1(𝑋, 𝑍 (𝐺)) → 𝐻2(𝑋, 𝜋1(𝐺)) is the Bockstein map [49, §2.1]. So the symmetry is
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spontaneously broken to ker(𝛽1
𝑋
) if 𝜉 (𝑃) is to be fixed. When 𝐺 = U(1), this is related to the

uncertainty of fluxes [9].
Like any global symmetry, the 1-form symmetry can be gauged, at least classically. In a gauge

theory, if we take the quotient of the bundle by 𝑍 (𝐺), the gauge group𝐺 reduces to𝐺ad = 𝐺/𝑍 (𝐺),
but the field strength (or the curvature of the connection) remains unchanged. What distinguishes
𝐺 from other groups of the same Lie algebra is that the holonomy associated to each loop on the
spacetime 𝑋 is in 𝐺 (modulo conjugation). Since the 1-form symmetry modifies the holonomies
by elements in the centre 𝑍 (𝐺), the identification of two connections by this action means that the
gauge group in the gauged theory is 𝐺ad. Conversely, if we start from a gauge theory with gauge
group 𝐺ad, then the class 𝜉 (𝑃ad) of the 𝐺ad-bundle 𝑃ad is 𝐻2(𝑋, 𝜋1(𝐺ad)). Gauge theory with
𝑃ad is equivalent to a theory of connection and curvature on a somewhat generalised 𝐺-bundle
twisted by a flat 𝑍 (𝐺)-gerbe 𝜁 ∈ 𝐻2(𝑋, 𝑍 (𝐺)), which is the image of 𝜉 (𝑃ad) under the change of
coefficients 𝜋1(𝐺ad) → 𝑍 (𝐺) [28, 48]. We allow 𝜁 to vary and weight each of them by a phase
𝜀(𝜁), where 𝜀 ∈ 𝐻2(𝑋, 𝑍 (𝐺))∨, the Pontryagin dual of 𝐻2(𝑋, 𝑍 (𝐺)). Summing over all 𝜀, we
recover the gauge group 𝐺.

2.2 Supersymmetric gauge theories and 𝑆-duality

For the pure U(1) gauge theory in four dimensions, the partition function is a Gaussian integral.
A continuous and infinite dimensional version of the Poisson summation technique shows that the
quantum theory with the complex coupling 𝜏 = 𝜃

2𝜋 + 4𝜋
𝑒2

√
−1, where 𝑒 > 0 is the real coupling

constant and 𝜃 is the theta-angle, is equivalent to the same theory with the complex coupling− 1
𝜏

(see
for example [45, §8.5]). When the gauge group 𝐺 is non-Abelian, Goddard, Nuyts and Olive [15]
proposed a dual, magnetic group, which turns out to be the Langlands dual 𝐿𝐺 and has the curious
property that characters of𝐺 are the cocharacters of 𝐿𝐺, i.e., the electric charges in the𝐺-theory are
the magnetic charges in the 𝐿𝐺-theory, and vice versa. Montonen and Olive [30] further conjectured
that the two theories with gauge groups 𝐺 and 𝐿𝐺 are isomorphic at the quantum level by a duality
now known as the 𝑆-duality that exchanges electric with magnetic fields and fundamental particles
with collective excitations like monopoles.

It was found that 𝑆-duality for non-Abelian gauge theory is more plausible when there is
supersymmetry. The 𝑁 = 1 pure gauge theory has a vector multiplet: a gauge field and a Majorana
or Weyl fermion in the adjoint representation of 𝐺. 𝑁 = 1 supersymmetry remains present with
the inclusion of 𝑁 = 1 matter, i.e., a chiral multiplet consisting of a scalar boson and a fermion
in the same representation. If the latter is the adjoint representation, the theory with a suitable
superpotential is the 𝑁 = 2 pure gauge theory. By having four Majorana or Weyl fermions and six
real scalar bosons in the adjoint representation, we can have the 𝑁 = 4 pure gauge theory. Some
𝑁 = 1 and 𝑁 = 2 gauge theories are strongly coupled at low energies. But there are dual theories
which are weakly coupled and equivalent to the original theories at low energies. These Seiberg
[32] and Seiberg-Witten [33] dualities are approximate dualities since they are valid for low energy
descriptions only. On the contrary, the 𝑁 =4 gauge theory is believed to exhibit exact 𝑆-duality [34].

The Euclidean versions of the 𝑁 = 2 and 𝑁 = 4 pure gauge theories can be twisted so that at
least one supersymmetry survives on an arbitrary 4-manifold. The twisted 𝑁 = 2 theory calculates
Donaldson’s invariants at high energies [41], and the duality of the low energy descriptions yields
a relation between Donaldson and Seiberg-Witten invariants [44]. The 𝑁 = 4 gauge theory has
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three inequivalent twists [29, 53]. One of them leads to the Vafa-Witten theory [40], in which
𝑆-duality predicts that the generating function of the Euler numbers of the instanton moduli spaces
is a modular form; see [47] when the gauge group is not simply laced. Another twist leads to
the Kapustin-Witten theory [26]. In this case, there are two supersymmetries, 𝛿𝑙 and 𝛿𝑟 , that can
be defined on arbitrary 4-manifolds. Consequently there is a family of topological field theories
parametrised by 𝑡 ∈ C ∪ {∞} = C𝑃1, each with a BRST operator 𝛿𝑡 = 𝛿𝑙 + 𝑡𝛿𝑟 . The parameters 𝜏
and 𝑡 combine to form a canonical parameter that determines the theory [26, §3.5],

𝛹 =
𝜃

2𝜋 +
4𝜋

√
−1

𝑒2 · 𝑡 − 𝑡
−1

𝑡 + 𝑡−1 =
𝜏𝑡 + 𝜏𝑡−1

𝑡 + 𝑡−1 ,

taking values inC𝑃1. It is real (i.e., in theR𝑃1 insideC𝑃1) if and only if |𝑡 | = 1; in particular,𝛹 = ∞
if 𝑡 = ±

√
−1. The theory depends only on 𝛹 because the 𝑡-dependence of 𝛿𝑡 can be eliminated

by the redefinition 𝛿′𝑡 := (1 + 𝑡2)−1/2𝛿𝑡 when 𝑡 ≠ ±
√
−1, satisfying (𝛿′𝑡 )2 = −

√
−1£𝜎 , 𝜎 being an

adjoint valued bosonic field.
When 𝐺 is simple, the duality transformation on the complex coupling is 𝑆 : 𝜏 ↦→ − 1

𝑛g𝜏
,

where 𝑛g is the ratio of the length-square of the long and short roots of the Lie algebra g. Let
𝑇 : 𝜏 ↦→ 𝜏 + 1 be the shift of 𝜃 by 2𝜋. Note that if 𝐺 is not simply connected, then the instanton
number can be fractional [40, 47] and 𝑇 brings about a non-trivial phase in the partition function.
The elements 𝑆, 𝑇 generate the modular group SL(2,Z) if g is simply laced (𝑛g = 1) and the Hecke
group if g is non-simply laced (𝑛g = 2 or 3). For the twisted 𝑁 = 4 gauge theory parametrised
by 𝑡 ∈ C𝑃1, the transformations on the parameters are 𝑆 : (𝜏, 𝑡,𝛹 ) ↦→

(
− 1
𝑛g𝜏

,− 𝜏
|𝜏 | 𝑡,−

1
𝑛g𝛹

)
and

𝑇 : (𝜏, 𝑡,𝛹 ) ↦→ (𝜏 + 1, 𝑡,𝛹 + 1) [26, §3.5]. For example, if 𝛹 = ∞, 𝑡 =
√
−1 and 𝜏 is purely

imaginary, the dual theory has 𝐿𝛹 = 0, 𝐿𝑡 = 1 and 𝐿𝜏 is also purely imaginary.

2.3 Topological sectors of a sigma model

Sigma model, named after a spinless scalar field in it, was introduced in the study of strong
interaction [14]. The fields in the theory include a bosonic map 𝑢 from a worldvolume 𝛴 to a
target space 𝑀 , which is usually a Riemannian manifold and is often a Lie group or a symmetric
space, as well as other matter fields (bosonic or fermionic) which are sections of the pull-backs
𝑢∗𝐸 , where 𝐸 are bundles over 𝑀 . Sigma models on a two dimensional worldsheet display many
features shared by gauge theories in four dimensions such as having solitonic classical solutions
and non-perturbative quantum effects: mass gap, confinement, etc. Moreover, the renormalisation
group equation at one-loop for the Riemannian metric on the target is the Ricci flow [11], which
was introduced into mathematics by [17].

If the worldsheet 𝛴 has a boundary 𝜕𝛴 which is a disjoint union of circles, we can impose a
D-brane boundary condition. That is, the map 𝑢 : 𝛴 → 𝑀 is required to send 𝜕𝛴 to a submanifold
𝑁 of 𝑀 on which there is a Chan-Paton vector bundle (typically a line bundle) 𝐿 → 𝑁 with a
connection. The dynamics of the bulk theory is affected by inserting the holonomies of 𝐿 around
the circles in 𝜕𝛴 in the partition function. We will need a slight variant. Suppose there is a (finite)
covering 𝑝 : 𝑀 ′ → 𝑁 and, in addition to 𝑢, there is a map 𝑢′ : 𝜕𝛴 → 𝑀 ′ satisfying 𝑝 ◦ 𝑢′ = 𝑢 |𝜕𝛴 .
We say that the brane 𝑀 ′ wraps around its support 𝑁 . It clearly includes a special case when 𝑀 ′ is
a finite number of disjoint copies of 𝑁 . If the covering is regular, then any character 𝜀 of the group
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of deck transformation defines a flat line bundle 𝑀 ′ ×𝜀 C over 𝑁 . In this way, we have the usual
notion of a D-brane consisting of a line bundle 𝐿 over 𝑁 .

For simplicity, suppose that other than the map 𝑢, the matter fields as sections of 𝑢∗𝐸 form a
single homotopy class; this is certainly true when each 𝐸 is a vector bundle. If 𝛴 is a closed surface,
the topological sectors of the sigma model are labelled by [𝛴, 𝑀], the set of homotopy classes of
maps from 𝛴 to 𝑀 . If base points are chosen in 𝛴 and 𝑀 , let [𝛴, 𝑀]0 be the set of the (based)
homotopy classes of based maps. If 𝜕𝛴 ≠ ∅ and the boundary condition is given by a brane 𝑀 ′

wrapping around 𝑁 ⊂ 𝑀 , then the topological sectors are labelled by the set [(𝛴, 𝜕𝛴), (𝑀, 𝑀 ′)]
of homotopy classes of the pair (𝑢, 𝑢′). Let [(𝛴, 𝜕𝛴), (𝑀, 𝑀 ′)]0 be the corresponding set of based
map pairs if base points (in 𝜕𝛴 and 𝑀 ′) are specified.

We use the Puppe sequence (cf. [35, §7.1]) to compute the sets of homotopy classes of maps.
If 𝑓 : 𝑋 → 𝑌 is a based map, the Puppe sequence is a long exact sequence of pointed sets

· · · → [s(𝑌 ), 𝑀]0 → [s(𝑋), 𝑀]0 → [𝐶 ( 𝑓 ), 𝑀]0 → [𝑌, 𝑀]0 → [𝑋, 𝑀]0,

where 𝐶 ( 𝑓 ) is the mapping cone of 𝑓 and s(𝑋) is the (reduced) suspension of 𝑋 . Let 𝛴 be a
closed orientable surface of genus 𝑔(𝛴). It has a cellular structure whose 0-skeleton 𝛴 (0) is a single
point and whose 1-skeleton 𝛴 (1) =

∨2𝑔 (𝛴 )
𝑖=1 𝑆1 is a bouquet of 2𝑔(𝛴) circles; 𝛴 itself is obtained by

attaching a 2-cell via a map 𝑓 : (𝑆1, 𝑠0) → (𝛴 (1) , 𝛴 (0) ). Then 𝛴 = 𝐶 ( 𝑓 ) and the Puppe sequence
reduces to the short exact sequence [49, §A.7]

0 → 𝜋2(𝑀) → [𝛴, 𝑀]0 → Hom(𝜋1(𝛴), 𝜋1(𝑀)) → 0.

If 𝜋1(𝑀) is Abelian and acts trivially on 𝜋2(𝑀), then [𝛴, 𝑀]0 can be replaced by the set [𝛴, 𝑀]
of homotopy classes of unbased maps and Hom(𝜋1(𝛴), 𝜋1(𝑀)) simplifies to 𝐻1(𝛴, 𝜋1(𝑀)).

If ( 𝑓 , 𝑓 ′) : (𝑋, 𝑋 ′) → (𝑌,𝑌 ′) is a based map of based spaces, then there is a relative Puppe
sequence of homotopy classes of maps to another pair (𝑀, 𝑁) [35, §7.1]. This can be generalised
so that 𝑀 ′ is not in 𝑀 but map to 𝑀 by 𝑝 : 𝑀 ′ → 𝑁 ⊂ 𝑀 [49, §A.7]. A corollary is the long
exact sequence of relative homotopy groups, also in this more general situation. The relative Puppe
sequence can be used to compute [(𝛴, 𝜕𝛴), (𝑀, 𝑀 ′)]0, where 𝛴 is an orientable surface whose
boundary 𝜕𝛴 is a single circle. Let 𝛴 be the closed surface after attaching a disc to the boundary.
As above, the 0-skeleton 𝛴 (0) is a single point and the 1-skeleton 𝛴 (1) is a bouquet of 2𝑔(𝛴) circles.
Suppose by attaching a disc to 𝛴 (1) via the map 𝑓 : (𝑆1, 𝑠0) → (𝛴 (1) , 𝛴 (0) ) we get 𝛴 . Then the
mapping cone of the composite pair ( 𝑓 , 𝑓 ′) : (𝐼, 𝜕𝐼) → (𝑆1, 𝑠0) → (𝛴 (1) , 𝛴 (0) ), where 𝐼 is an
interval, is (𝛴, 𝜕𝛴), and the relative Puppe sequence yields the short exact sequence [49, §A.7]

0 → 𝜋2(𝑍, 𝑍 ′) → [(𝛴, 𝜕𝛴), (𝑀, 𝑀 ′)]0 → 𝐻1(𝛴, 𝜋1(𝑀)) → 0.

We obtain [(𝛴, 𝜕𝛴), (𝑀, 𝑀 ′)] from [(𝛴, 𝜕𝛴), (𝑀, 𝑀 ′)]0 by adding another graded component 𝜋0(𝑀 ′).

2.4 Target space geometry, generalised geometry, and 𝑇-duality

Consider a sigma model whose target space is a circle and the only field on the worldsheet 𝛴
is a map to the circle. The theory is equivalent to one with the dual circle as the target. This is the
bosonic Abelian duality in two dimensions (see for example [45, §8.1]) analogous to the 𝑆-duality
of the pure U(1) gauge theory in four dimensions. More generally, when the target space has a
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circle factor and a possible 𝐵-field, we have 𝑇-duality given by the Buscher rule [6] or its global
version [4] in the case of circle fibrations.

Duality between more general target spaces again requires supersymmetry. If the target is a
Riemannian manifold 𝑀 , we have an 𝑁 = (1, 1) supersymmetric sigma model containing a bosonic
map 𝑢 : 𝛴 → 𝑀 and a fermionic field 𝜓 ∈ 𝛤 (𝑆𝛴 ⊗ 𝑢∗𝑇𝑀), where 𝑆𝛴 is the spinor bundle over
𝛴 . If the target space is Kähler and hyper-Kähler, the same theory has 𝑁 = (2, 2) and 𝑁 = (4, 4)
sypersymmetry, respectively. The 𝑁 = (2, 2) theory has two inequivalent twists: the A- and B-
twists, leading to the A- and B-models, which are topological sigma models whose BRST operator
is the surviving supersymmetry on a curved 𝛴 [43]. The A-model depends only on the symplectic
structure on 𝑀 and can be defined when 𝑀 is symplectic [42] whereas the B-model depends only
on the complex structure on 𝑀 and is anomaly free when 𝑀 is Calabi-Yau. Mathematically, the
A-model is about the Gromov-Witten invariants counting pseudo-holomorphic curves whereas the
B-model is about periods and variations of complex structures. Two spaces 𝑀 and 𝑀∨ are mirrors
of each other if the A-model on 𝑀 is equivalent to the B-model on 𝑀∨, and vice versa.

In the presence of a 𝐵-field, 𝑁 = (2, 2) supersymmetry requires bi-Hermitian geometry on
𝑀 [13]. There is a pair of complex structures 𝐽+, 𝐽− on 𝑀 that are parallel under the respective
connections ∇+,∇−. Here ∇± preserves an Hermitian metric 𝑔 (with respect to both 𝐽±) and
their torsions are proportional to ±𝐻 = ±𝑑𝐵. These conditions are equivalent to having a pair of
commuting (twisted) generalised complex structures

J± := 1
2

(
𝐽+ ± 𝐽− − (𝜔−1

+ ∓ 𝜔−1
− )

𝜔+ ∓ 𝜔− − (𝐽𝑡+ ± 𝐽𝑡−)

)
,

where 𝜔± = 𝑔𝐽±, which define a generalised Kähler metric [16, §6.4]. The theory can then be
twisted in two ways, each leading to a topological sigma model that depends only on one of J±
(cf. [24, 31]). We choose one, say J := J+. If 𝐽+ = 𝐽−, the twisted theory is a B-model in the
complex structure 𝐽+, whereas if 𝐽+ = −𝐽−, it is an A-model in a symplectic form proportional to
𝜔+. The quantum theory is anomaly-free only if 𝑐1(𝑇1,0

+ 𝑀) + 𝑐1(𝑇1,0
− 𝑀) = 0, where 𝑇1,0

± 𝑀 are the
holomorphic tangent bundles of 𝑀 in the complex structures 𝐽±, respectively [24]. Equivalently,
the first Chern class of the

√
−1-eigenbundle of J must vanish. In the absence of a 𝐵-field, if

𝐽+ = 𝐽− (B-model), this condition reduces 𝑐1(𝑇1,0𝑀) = 0 whereas if 𝐽+ = −𝐽− (A-model), it is
always satisfied. When the 𝐵-field is closed, the condition reduces to the definition of generalised
Calabi-Yau manifolds [22], of which the usual Calabi-Yau and symplectic manifolds are examples.

If the target space 𝑀 is a hyper-Kähler manifold with a Riemannian metric 𝑔, three complex
structures 𝐼, 𝐽, 𝐾 and the corresponding Kähler forms 𝜔𝐼 , 𝜔𝐽 , 𝜔𝐾 , there is a family of complex
structures [26, §5.1]

𝐽𝑤 := 1 − 𝑤̄𝑤
1 + 𝑤̄𝑤 𝐼 +

√
−1 𝑤 − 𝑤̄

1 + 𝑤̄𝑤 𝐽 +
𝑤 + 𝑤̄

1 + 𝑤̄𝑤 𝐾

parametrised by 𝑤 ∈ C ∪ {∞} = C𝑃1. For any pair (𝐽+, 𝐽−) of complex structures given by
(𝑤+, 𝑤−) ∈ C𝑃1 × C𝑃1 and for any closed 𝐵-field, the conditions for 𝑁 = (2, 2) supersymmetry
are automatically satisfied. The theory is a B-model if 𝑤+ = 𝑤−. If 𝑤+ ≠ 𝑤−, the target space has
a Kähler structure (𝑔, 𝜔′, 𝐽′) given by

𝜔′ := (1 + |𝑤+ |2) (1 + |𝑤− |2)
2|𝑤+ − 𝑤− |2

(𝜔+ − 𝜔−), 𝐽′ := (1 + |𝑤+ |2)1/2(1 + |𝑤− |2)1/2

2|𝑤+ − 𝑤− |
(𝐽+ − 𝐽−).

7
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Upon twisting, the sigma model is an A-model with the symplectic form 𝜔′ by a 𝐵-field transform
of 𝐵′ = (𝜔+ + 𝜔−) (𝐽+ − 𝐽−)−1. The complexified Kähler form is [26, §5.2]

𝐵′ +
√
−1𝜔′ = −

√
−1

(
𝑤+ + 𝑤−
𝑤+ − 𝑤−

𝜔𝐼 +
√
−1𝑤+𝑤− + 1

𝑤+ − 𝑤−
𝜔𝐽 +

𝑤+𝑤− − 1
𝑤+ − 𝑤−

𝜔𝐾

)
.

Moreover, the twisted theory is anomaly-free for all pairs (𝑤+, 𝑤−) ∈ C𝑃1 × C𝑃1.
Suppose the worldsheet 𝛴 has a boundary 𝜕𝛴 and the boundary condition is given by a brane

with a line bundle 𝐿 over its support 𝑁 ⊂ 𝑀 . Consider the topological A- and B-models in
the absence of a 𝐵-field. Consistency with the respective supersymmetry in the bulk imposes
constraints on the geometry of the branes (cf. [1]). For example, in the A-model, 𝑁 is Lanrangian
and 𝐿 is flat (A-branes), whereas in the B-model, 𝑁 is complex and 𝐿 is holomorphic (B-branes).
In special situations, there can be coisotropic A-branes [25]. With a 𝐵-field and a bi-Hermitian
or generalised complex target space 𝑀 , the condition for supersymmetry is that 𝑁 is a generalised
complex submanifold of 𝑀 [5, 55]. This means that the generalised complex structure J preserves
the direct sum of 𝑇𝑁 and its annihilator (𝑇𝑁)◦ ⊂ 𝑇∗𝑀 [16, §7]. Note that in general 𝑁 is not
generalised complex on its own, for neither is 𝑇𝑁 ⊕ (𝑇𝑁)◦ the generalised tangent space of 𝑁 .
When 𝑀 is symplectic or complex, the condition reduces to the one for A- or B-branes.

3. Dimensional reduction of the Kapustin-Witten theory

3.1 Reduction along orientable surfaces

We consider gauge theory on a spacetime manifold 𝑋 = 𝛴 ×𝐶, where 𝐶 is a closed orientable
surface of small size while the surface 𝛴 is also orientable and is either open or closed but of
large size. At low energies, fields on 𝑋 have to achieve minimal energy along 𝐶 but can be slowly
varying along 𝛴 . So a gauge theory on 𝑋 reduces to a sigma-model on the worldsheet 𝛴 [3, 18].
For the twisted 𝑁 = 4 gauge theory of Kapustin and Witten [26], the equations for minimal energy
configurations along 𝐶 are, for all 𝑡 ∈ C𝑃1 parametrising the theory, Hitchin’s equations

𝐹𝐴 = 1
2 [𝜙, 𝜙], 𝑑𝐴 ∗ 𝜙 = 0, 𝑑𝐴 𝜙 = 0,

where 𝐴 is a connection on a principal𝐺-bundle 𝑃 over𝐶 and 𝜙 ∈ 𝛺1(𝐶, ad 𝑃). The Hitchin moduli
space MH(𝐶,𝐺) is the space of pairs (𝐴, 𝜙) satisfying the above equations modudo the group of
gauge transformations [20]. Among the low energy degrees of freedom is a map 𝑢 : 𝛴 → MH(𝐶,𝐺),
which reconstructs a𝐺ad-bundle (𝑢×id𝐶)∗U (and thus almost the𝐺-bundle) over 𝑋 in gauge theory,
where U → MH(𝐶,𝐺) × 𝐶 is the universal bundle of structure group 𝐺ad [26, §7.2]. The 𝐺ad-
bundle lifts to a 𝐺-bundle along 𝐶, because of MH(𝐶,𝐺), and in fact along 𝛾 × 𝐶 for any curve
𝛾 ⊂ 𝛴 , but not necessarily along 𝛴 .

We match the topological sectors in the gauge theory on 𝑋 = 𝛴 × 𝐶 and the sigma model on
𝛴 with target MH(𝐶,𝐺) in a way that is generally covariant on the worldsheet 𝛴 ; for the matching
in the canonical formalism when 𝛴 has a spacetime splitting, see [26, §7.2]. Suppose 𝛴 and 𝐶
are both closed and orientable. In gauge theory, the topology of the 𝐺-bundles over 𝑋 are clas-
sified by elements in 𝐻2(𝑋, 𝜋1(𝐺)) � 𝐻2(𝐶, 𝜋1(𝐺)) ⊕ 𝐻1(𝛴, 𝐻1(𝐶, 𝜋1(𝐺))) ⊕ 𝐻0(𝐶, 𝜋1(𝐺))
as well as in 𝐻4(𝑋, 𝜋3(𝐺)) � 𝐻2(𝐶, 𝜋3(𝐺)). Topological sectors of the sigma model are
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classified by [𝛴,MH(𝐶,𝐺)], the set of homotopy classes of the map 𝑢. We recall the ho-
motopy groups 𝜋𝑘 (MH(𝐶,𝐺)) for small 𝑘; see [49, §A.4] and references therein for details.
First, 𝜋0(MH(𝐶,𝐺)) = 𝐻2(𝐶, 𝜋1(𝐺)), i.e., the connected components M𝑚0

H (𝐶,𝐺) of MH(𝐶,𝐺)
are classified by the topology 𝑚0 = 𝜉 (𝑃) of the 𝐺-bundle 𝑃 over 𝐶. Furthermore, for each
𝑚0 ∈ 𝐻2(𝐶, 𝜋1(𝐺)), the fundamental group 𝜋1(M𝑚0

H (𝐶,𝐺)) � 𝐻1(𝐶, 𝜋1(𝐺)) is Abelian and it
acts trivially on 𝜋2(M𝑚0

H (𝐶,𝐺)). The latter fits in the exact sequence

0 → 𝐻2(𝐶, 𝜋3(𝐺)) → 𝜋2(M𝑚0
H (𝐶,𝐺)) → 𝐻0(𝐶, 𝜋1(𝐺ad)) → 0.

By the Puppe sequence (applied to 𝑀 = M
𝑚0
H (𝐶,𝐺)), we have an exact sequence [49, §3.2]

0 → 𝜋2(M𝑚0
H (𝐶,𝐺)) → [𝛴,M𝑚0

H (𝐶,𝐺)] → 𝐻1(𝛴, 𝐻1(𝐶, 𝜋1(𝐺))) → 0.

Thus the topological sectors of the two theories match except for the parts 𝐻0(𝐶, 𝜋1(𝐺)) �
𝐻2(𝛴, 𝜋1(𝐺)) in four dimensions and 𝐻0(𝐶, 𝜋1(𝐺ad)) � 𝐻2(𝛴, 𝜋1(𝐺ad)) in two dimensions. This
discrepancy is consistent with the observation that 𝑢 recovers only a 𝐺ad-bundle on 𝛴 . We should
restrict to a subset of maps 𝑢 that gives rise to honest 𝐺-bundles. Field-theoretically, this can
be achieved by allowing discrete 𝐵-fields on the target and summing over them, much like the
lift of 𝐺ad to 𝐺 in gauge theory (§2.1). More precisely, for each 𝑒0 ∈ 𝑍 (𝐺)∨, we have a flat
𝐵-field 𝑒0(𝜉 (U)2,0) ∈ 𝐻2(MH(𝐶,𝐺),U(1)) on MH(𝐶,𝐺), where 𝜉 (U)2,0 is the (2, 0)-component
of 𝜉 (U) ∈ 𝐻2(MH(𝐶,𝐺) × 𝐶, 𝑍 (𝐺)) obtained from 𝜉 (U) ∈ 𝐻2(MH(𝐶,𝐺) × 𝐶, 𝜋1(𝐺ad)) by
the map 𝜋1(𝐺ad) → 𝑍 (𝐺) of coefficients. The 𝐵-field contributes a phase 𝑢∗(𝑒0(𝜉 (U)2,0)) ∈
𝐻2(𝛴,U(1)) � U(1) in the path integral whereas summing over 𝑒0 ∈ 𝑍 (𝐺)∨ selects the desired
subset of maps 𝑢 [49, §3.2]. However if we fix (𝑚0, 𝑒0) ∈ 𝜋1(𝐺) × 𝑍 (𝐺)∨, the 4-dimensional
theory does not have a standard 𝐺-bundle: it is an honest 𝐺-bundle along 𝐶 with the topology
𝑚0 ∈ 𝐻2(𝐶, 𝜋1(𝐺)) � 𝜋1(𝐺) but is twisted along 𝛴 by 𝑍 (𝐺)-gerbes 𝜁 ∈ 𝐻2(𝛴, 𝑍 (𝐺)) � 𝑍 (𝐺)
[28, 48], each weighted by a phase 𝑒0(𝜁).

In four dimensions, the 1-form symmetry group is 𝐻1(𝑋, 𝑍 (𝐺)). Since 𝑋 = 𝛴 × 𝐶, we
have 𝐻1(𝑋, 𝑍 (𝐺)) � 𝐻1(𝛴, 𝑍 (𝐺)) ⊕ 𝐻1(𝐶, 𝑍 (𝐺)). In the two dimensional theory, 𝐻1(𝐶, 𝑍 (𝐺))
becomes an ordinary 0-form, internal symmetry, acting on the target space MH(𝐶,𝐺). The part
𝐻1(𝛴, 𝑍 (𝐺)) that remains a 1-form symmetry in two dimensions is related to sectors of the
low energy theory that have so far remained hidden. The map 𝑢 : 𝛴 → MH(𝐶,𝐺) pulls back
the universal 𝐺ad-bundle and the latter should be lifted to a 𝐺-bundle (especially along 𝛴) as
explained above. However, for a general worldvolume 𝛴 , the lift is not unique and different
lifts are parametrised by elements of 𝐻2(𝛴, 𝜋1(𝐺)) that are in the image of the Bockstein map
𝛽1
𝛴

: 𝐻1(𝛴, 𝑍 (𝐺)) → 𝐻2(𝛴, 𝜋1(𝐺)). So 𝐻1(𝛴, 𝑍 (𝐺)) acts among the sectors with discrete
parameters in im(𝛽1

𝛴
) and each sector is weighted by a phase determined by the fractional part of

the instanton number, as required by gauge theory. If 𝛴 is an orientable worldsheet, the situation
simplifies because the lift of a 𝐺ad-bundle on 𝛴 to a 𝐺-bundle is always unique and the 1-form
symmetry 𝐻1(𝛴, 𝑍 (𝐺)) acts within the only sector.

For simplicity, we always assume that 𝐶 is of genus 𝑔(𝐶) > 1 and focus on the smooth
part of MH(𝐶,𝐺) which we denote by the same notation. A generic Hitchin pair (𝐴, 𝜙) on 𝐶
is irreducible and represents a smooth point on the moduli space. The space MH(𝐶,𝐺), of real
dimension 4(𝑔(𝐶) − 1) dim𝐺, is a hyper-Kähler quotient of an infinite dimensional affine space

9
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[20]. Following [26, §4.1], we let 𝐼 be the complex structure on MH(𝐶,𝐺) induced by that on
𝐶, 𝐽 be the rotation from 𝛿𝐴 to 𝛿𝜙 (both are in 𝛺1(𝐶, ad𝑃)), and 𝐾 = 𝐼𝐽. At low energies, the
sigma-model metric on the target space MH(𝐶,𝐺) is 4𝜋

𝑒2 = Im 𝜏 times the standard hyper-Kähler
metric whereas the theta term in the four-dimensional gauge theory reduces to a globally defined
closed 𝐵-field 𝐵𝜃 = − 𝜃

2𝜋𝜔𝐼 = −(Re 𝜏) 𝜔𝐼 on MH(𝐶,𝐺). In fact, 𝐵𝜃 is the integration of the 4-form
𝜃

8𝜋2 tr 𝐹U ∧ 𝐹U on MH(𝐶,𝐺) × 𝐶 along 𝐶, where 𝐹U is the curvature of the universal bundle [49,
§A.5]. This continuous 𝐵-field on MH(𝐶,𝐺) is in addition to the above discrete 𝐵-fields from
various 𝑒0 ∈ 𝑍 (𝐺)∨.

The twisted 𝑁 = 4 gauge theory parametrised 𝑡 ∈ C𝑃1 reduces to the topological sigma model
with the hyper-Kähler target MH(𝐶,𝐺) parametrised by (𝑤+, 𝑤−) = (−𝑡, 𝑡−1) [26, §5.1], which is
anomaly-free as expected. The corresponding generalised complex structure on the target is

J𝑡 =
1

1 + 𝑡𝑡

( −
√
−1(𝑡 − 𝑡)𝐽 − (Im 𝜏)−1((1 − 𝑡𝑡)𝜔−1

𝐼
− (𝑡 + 𝑡)𝜔−1

𝐾
)

Im 𝜏((1 − 𝑡𝑡)𝜔𝐼 − (𝑡 + 𝑡)𝜔𝐾 )
√
−1(𝑡 − 𝑡)𝐽𝑡

)
.

Following the general pattern (cf. §2.4), if 𝑡 = ±
√
−1, then𝑤+ = 𝑤− = ∓

√
−1, and the 2-dimensional

theory is a B-model in the complex structures ±𝐽. If 𝑡 ∈ R ∪ {∞}, then the theory is an A-model;
for example, the symplectic structure is ±(Im 𝜏) 𝜔𝐾 if 𝑡 = ∓1 and ±(Im 𝜏) 𝜔𝐼 if 𝑡 = 0,∞. For other
values of 𝑡, the theory is an A-model with the symplectic form 𝜔𝑡 upon a 𝐵-field transform by 𝐵𝑡 ,
where [26, §5.2]

𝜔𝑡 := (Im 𝜏) 1 − 𝑡2𝑡2
(1 + 𝑡2) (1 + 𝑡2)

(
𝜔𝐼 −

𝑡 + 𝑡
1 − 𝑡𝑡 𝜔𝐾

)
, 𝐵𝑡 := −(Im 𝜏)

√
−1(𝑡2 − 𝑡2)

(1 + 𝑡2) (1 + 𝑡2)

(
𝜔𝐼 +

1 − 𝑡𝑡
𝑡 + 𝑡 𝜔𝐾

)
.

Combining the 𝐵-field 𝐵𝜃 and the complexified Kähler form 𝐵𝑡+
√
−1𝜔𝑡 , we obtain the cohomology

class [𝐵𝜃 + 𝐵𝑡 +
√
−1𝜔𝑡 ] = −𝛹 [𝜔𝐼 ], showing that𝛹 is the relevant parameter in the 2-dimensional

theory as well. These 2-dimensional theories depend only on 𝐽, 𝜔𝐼 , 𝜔𝐾 that are defined without
choosing a complex structure on 𝐶. This reflects the metric independence of the 4-dimensional
topological theories.

With (𝑤+, 𝑤−) = (−𝑡, 𝑡−1), the 𝑆-duality of gauge theory in four dimensions is compatible
with the mirror symmetry of sigma models in two dimensions. For example, if 𝑡 =

√
−1 and 𝜏

is purely imaginary, the sigma model is a B-model in the complex structure 𝐽. Its mirror, with
𝐿𝑡 = 1, is an A-model with the symplectic form (Im 𝜏)𝜔𝐾 . This is the important special case
in which 𝑆-duality in four dimensions gives rise to the geometric Langlands programme when
reduced to two dimensions [26]. 𝑆-duality in gauge theory maps (𝑚0, 𝑒0) ↦→ (𝑒0,−𝑚0) [26, §7.2],
a discrete analogue of the Hodge star operation. This is possible because of the isomorphisms
𝜋1(𝐿𝐺) � 𝑍 (𝐺)∨, 𝑍 (𝐿𝐺) � 𝜋1(𝐺)∨. For sigma models, the target space M𝑚0

H (𝐶,𝐺) with a 𝐵-field
given by 𝐿𝑚0 = 𝑒0 is mirror to M

𝑒0
H (𝐶, 𝐿𝐺) with a 𝐵-field given by 𝐿𝑒0 = −𝑚0. Mathematically

[8, 19], the mirror symmetry is a 𝑇-duality in the sense of Strominger, Yau and Zaslow [37],
extended by [7, 21] in the presence of 𝐵-fields. When𝐺 is not simply connected, the transformation
𝑇 : 𝜏 ↦→ 𝜏 + 1 brings a non-trivial phase in the sigma model as well because [𝜔𝐼/2𝜋] need not be
integral [26, §4.1].

3.2 Reduction along non-orientable surfaces

We consider the 𝑁 = 4 gauge theory on a particular closed orientable 4-manifold 𝑋 that is not
a product of two surfaces but contains embedded non-orientable surfaces. Let the non-orientable

10
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surface 𝐶′ be a connected sum of 𝑔(𝐶′) copies of R𝑃2 and let 𝜋 : 𝐶 → 𝐶′ be its orientation
double cover. Then 𝐶 is orientable and is of genus 𝑔(𝐶) = 𝑔(𝐶′) − 1 and the non-trivial deck
transformation 𝜄 on 𝐶 is an involution reversing its orientation. Let 𝛴 be another closed orientable
surface with an orientation reversing involution, also denoted by 𝜄, and let 𝛴 = 𝛴/𝜄. If the fixed
point set 𝛴 𝜄 of 𝜄 is non-empty, then 𝛴 is an orientable surface whose boundary 𝜕𝛴 is identified
with 𝛴 𝜄. The 4-manifold is 𝑋 = 𝛴 × 𝜄 𝐶. Since the diagonal action of 𝜄 on the closed orientable
4-manifold 𝛴 ×𝐶 is fixed-point free and orientation preserving, 𝑋 is smooth, orientable and closed
[49, §4.1]. Globally, 𝑋 is not a product of two surfaces, but there is a projection map 𝜋𝑋 : 𝑋 → 𝛴

(by forgetting 𝐶). If 𝜎 ∈ 𝛴◦, the interior of 𝛴 , then 𝜋−1
𝑋
(𝜎) is a copy of 𝐶. But if 𝜎 ∈ 𝜕𝛴 , then

𝜋−1
𝑋
(𝜎) is a copy of 𝐶′ embedded in 𝑋 .
It will be useful to recall the cohomology groups of surfaces with coefficients in any Abelian

group 𝐴 [49, §A.8]. By the naturality of the universal coefficient formula, the map 𝜋∗ : 𝐻2(𝐶′, 𝐴) →
𝐻2(𝐶, 𝐴) is zero. On the other hand, we have ker(𝜋∗ : 𝐻1(𝐶′, 𝐴) → 𝐻1(𝐶, 𝐴)) = 𝐴[2] , the 2-
torsion subgroup of 𝐴. Let 𝜕𝛴 be the disjoint union of ℎ = ℎ(𝜕𝛴) copies of the circle. Then in the
long exact sequence

0 → 𝐻0(𝛴, 𝐴) → 𝐻0(𝜕𝛴, 𝐴) → 𝐻1((𝛴, 𝜕𝛴), 𝐴) → 𝐻1(𝛴, 𝐴) → 𝐻1(𝜕𝛴, 𝐴) → 𝐻2((𝛴, 𝜕𝛴), 𝐴) → 0,

the map 𝐻0(𝛴, 𝐴) � 𝐴 → 𝐻0(𝜕𝛴, 𝐴) � 𝐴⊕ℎ is the diagonal map, 𝐻1(𝜕𝛴, 𝐴) � 𝐴⊕ℎ →
𝐻2((𝛴, 𝜕𝛴), 𝐴) � 𝐴 sums over the components in 𝐴⊕ℎ, and 𝐻1((𝛴, 𝜕𝛴), 𝐴) � 𝐻1(𝛴, 𝐴) ⊕
coker(𝐴→ 𝐴⊕ℎ) → 𝐻1(𝛴, 𝐴) � 𝐻1(𝛴, 𝐴) ⊕ ker(𝐴⊕ℎ → 𝐴) is block diagonal, being the identity
isomorphism on 𝐻1(𝛴, 𝐴) and zero on its complement. Here 𝛴 is the closed surface obtained from
𝛴 by attaching a disk to each boundary circle.

For a gauge theory on 𝑋 with gauge group 𝐺, the topological sectors are labelled by the
instanton numbers in 𝐻4(𝑋, 𝜋3(𝐺)) � 𝜋3(𝐺) and the discrete fluxes in 𝐻2(𝑋, 𝜋1(𝐺)). To
compute the cohomology groups 𝐻•(𝑋, 𝐴) for any Abelian group 𝐴, consider a map of pairs
(𝛴, 𝜕𝛴) × 𝐶 → (𝑋, 𝜕𝛴 × 𝐶′) and the commutative diagramme

· · · // 𝐻𝑘−1(𝜕𝛴 × 𝐶′, 𝐴)
𝛿𝑘−1
𝑋 //

(id𝜕𝛴 ×𝜋 )∗ ��

𝐻𝑘 ((𝑋, 𝜕𝛴 × 𝐶′), 𝐴) //

𝜃𝑘 ��

𝐻𝑘 (𝑋, 𝐴) //

��

𝐻𝑘 (𝜕𝛴 × 𝐶′, 𝐴)
𝛿𝑘
𝑋//

(id𝜕𝛴 ×𝜋 )∗ ��

𝐻𝑘+1((𝑋, 𝜕𝛴 × 𝐶′), 𝐴) //

𝜃𝑘+1 ��

· · ·

· · · // 𝐻𝑘−1(𝜕𝛴 × 𝐶, 𝐴)
𝛿𝑘−1
𝛴 ×𝐶// 𝐻𝑘 ((𝛴, 𝜕𝛴) × 𝐶, 𝐴) // 𝐻𝑘 (𝛴 × 𝐶, 𝐴) // 𝐻𝑘 (𝜕𝛴 × 𝐶, 𝐴)

𝛿𝑘
𝛴 ×𝐶// 𝐻𝑘+1((𝛴, 𝜕𝛴) × 𝐶, 𝐴) // · · ·

in which the rows are the long exact sequences of the pairs and the vertical maps 𝜃𝑘 are excision
isomorphisms [49, §A.9]. Thus 𝐻𝑘 (𝑋, 𝐴) fits in the short exact sequence

0 → coker(𝛿𝑘−1
𝑋 ) → 𝐻𝑘 (𝑋, 𝐴) → ker(𝛿𝑘𝑋) → 0.

The kernel and cokernel of 𝛿𝑘
𝑋

are isomorphic to those of the composite map 𝛿𝑘
𝛴 ×𝐶 ◦ (id𝜕𝛴 ×

𝜋)∗. Using these, we conclude [49, §A.9] that the graded components of 𝐻1(𝑋, 𝐴) are 𝐴⊕ℎ
[2] ,

𝐻1(𝛴, 𝐴), 𝜋∗𝐻1(𝐶′, 𝐴) whereas those of 𝐻2(𝑋, 𝐴) are 𝐴⊕ℎ
[2] , 𝐻

1(𝐶, 𝐴)⊕(ℎ−1) , 𝐻1(𝛴, 𝐻1(𝐶, 𝐴)),
(𝐴/2𝐴)⊕ℎ. So the topological sectors in the gauge theory are labelled by elements in 𝜋3(𝐺),
𝜋1(𝐺)⊕ℎ[2] , 𝐻

1(𝐶, 𝜋1(𝐺))⊕(ℎ−1) , 𝐻1(𝛴, 𝐻1(𝐶, 𝜋1(𝐺))), (𝜋1(𝐺)/2𝜋1(𝐺))⊕ℎ.
We now consider the reduction to two dimensions. If 𝛴 is large while 𝐶 and 𝐶′ are small, the

fields 𝐴, 𝜙 in the low energy theory satisfy Hitchin’s equations along the fibres 𝐶 or 𝐶′ of 𝜋𝑋. The
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gauge theory on 𝑋 reduces to a sigma-model on 𝛴 : the interior 𝛴◦ is mapped to MH(𝐶,𝐺) by 𝑢
while the boundary 𝜕𝛴 is mapped to MH(𝐶′, 𝐺) by 𝑢′. Here MH(𝐶′, 𝐺) is the Hitchin moduli
space for the non-orientable surface 𝐶′ [23]. The map 𝑝 : MH(𝐶′, 𝐺) → MH(𝐶,𝐺) that pulls
back bundles, connections and sections from 𝐶′ to 𝐶 is a regular 𝑍 (𝐺)[2]-covering onto its image
N(𝐶,𝐺), which is in the 𝜄-invariant subspace MH(𝐶,𝐺) 𝜄 of the same dimension. At low energies,
the map 𝑢 from 𝛴◦ extends to 𝛴 and satisfies 𝑢 |𝜕𝛴 = 𝑝 ◦ 𝑢′. In this way, the boundary lives on a
brane which wraps around non-trivially on N(𝐶,𝐺). We have a sigma-model on the worldsheet 𝛴
with boundary, with a pair of maps (𝑢, 𝑢′) : (𝛴, 𝜕𝛴) → (MH(𝐶,𝐺),MH(𝐶′, 𝐺)). The maps yield
two𝐺ad-bundles: (𝑢×id𝐶)∗U on 𝛴◦×𝐶 and (𝑢′×id𝐶′)∗U′ on 𝜕𝛴×𝐶′, whereU′ → MH(𝐶′, 𝐺)×𝐶
is the universal bundle for the non-orientable𝐶′. They match to form a𝐺ad-bundle on 𝑋 [49, §4.1].

If 𝐶′ is the connected sum of 𝑔(𝐶′) > 2 copies of R𝑃2, then a generic Hitchin pair on 𝐶′

is irreducible and represents a smooth point on MH(𝐶′, 𝐺). The moduli space MH(𝐶′, 𝐺) is of
real dimension 2(𝑔(𝐶′) − 2) dim𝐺 and is Kähler in 𝐽. The homotopy groups 𝜋𝑘 (MH(𝐶′, 𝐺)) for
small 𝑘 are yet to be worked out fully, but it is expected (see [49, §A.4] and references therein)
that 𝜋0(MH(𝐶′, 𝐺)) � 𝐻2(𝐶′, 𝜋1(𝐺)) � 𝜋1(𝐺)/2𝜋1(𝐺), 𝜋1(MH(𝐶′, 𝐺)) � 𝐻1(𝐶′, 𝜋1(𝐺)) and
𝜋2(MH(𝐶′, 𝐺)) � 𝐻0(𝐶′, 𝜋1(𝐺ad)) � 𝜋1(𝐺ad). Shortening the notations to M = MH(𝐶,𝐺),
M′ = MH(𝐶′, 𝐺), the long exact sequence of relative homotopy groups (with 𝑝 : M′ → M) is

0 → 𝐻2(𝐶, 𝜋3(𝐺)) → 𝜋2(M,M′) → 𝐻1(𝐶′, 𝜋1(𝐺)) → 𝐻1(𝐶, 𝜋1(𝐺)) → 𝜋1(M,M′) → 𝐻2(𝐶′, 𝜋1(𝐺)) → 0.

This yields coker(𝜋2(M) → 𝜋2(M,M′)) � 𝜋1(𝐺)[2] and a short exact sequence [49, §A.10]

0 → 𝜋3(𝐺) → 𝜋2(M,M′) → 𝜋1(𝐺)[2] → 0.

We now compute the set of topological sectors of the sigma model when the worldsheet 𝛴 has
a boundary. First, suppose 𝜕𝛴 is a single circle, i.e., ℎ = 1. Then the relative Puppe sequence yields

0 → 𝜋2(M,M′) → [(𝛴, 𝜕𝛴), (M,M′)]0 → 𝐻1(𝛴, 𝐻1(𝐶, 𝜋1(𝐺))) → 0.

If we consider maps without base points, there is an additional set of parameters from 𝜋0(M′) =
𝜋1(𝐺)/2𝜋1(𝐺). Therefore the graded components of [(𝛴, 𝜕𝛴), (M,M′)] are 𝜋3(𝐺), 𝜋1(𝐺)[2] ,
𝐻1(𝛴, 𝐻1(𝐶, 𝜋1(𝐺))), 𝜋1(𝐺)/2𝜋1(𝐺). This agrees with the gauge-theoretic calculation when
ℎ = 1 [49, §4.3]. Now suppose 𝜕𝛴 consists of ℎ > 1 copies of the circle. Each time ℎ in-
creases by 1, the new circle is mapped to a connected component of M′ labelled by an element
in 𝜋0(M′) = 𝜋1(𝐺)/2𝜋1(𝐺). The image of the circle can wind around in M′ in ways labelled
by an element in ker(𝜋1(M′) → 𝜋1(M)) = 𝜋1(𝐺)[2] . Finally, the cylindrical neck in 𝛴 near the
new circle can wind around in M in ways labelled by 𝜋1(M) = 𝐻1(𝐶, 𝜋1(𝐺)). Combining the
above, the graded components of [(𝛴, 𝜕𝛴), (M,M′)] are 𝜋3(𝐺), 𝜋1(𝐺)⊕ℎ[2] , 𝐻

1(𝐶, 𝜋1(𝐺))⊕(ℎ−1) ,
𝐻1(𝛴, 𝐻1(𝐶, 𝜋1(𝐺))), (𝜋1(𝐺)/2𝜋1(𝐺))⊕ℎ, in perfect agreement with the topological sectors in
4-dimensional gauge theory (§3.1). The matching of discrete parameters in the canonical formalism
(where 𝛴 is a cylinder) can also be accurately made [49, §4.2–3].

Note that the image of 𝑝 : MH(𝐶′, 𝐺) → MH(𝐶,𝐺) is always in the component 𝑚0 = 0, as
the pull-back map 𝜋∗ : 𝐻2(𝐶′, 𝜋1(𝐺)) → 𝐻2(𝐶, 𝜋1(𝐺)) is zero. Since M

𝑚0=0
H (𝐶,𝐺) is the only

component that can support branes, 𝑚0 is no longer a discrete parameter of the theory. That neither
is non-zero 𝑒0 allowed when 𝜕𝛴 ≠ ∅ is another interesting phenomenon. For the untwisted theory
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whose worldsheet boundary lives on a brane, the Freed-Witten anomaly-free condition [10] involves
the topology of the 𝐵-field on the support of the brane and that of the normal bundle. In our twisted
theory, the anomaly-free condition is simply the triviality of the 𝐵-field on the support of the brane
[49, §4.1]. This implies 𝑒0 = 0 and hence the absence of 𝑒0. The disappearance of flat gerbes is
consistent with the fact that the 𝐺ad-bundle on 𝑋 from the pair (𝑢, 𝑢′) always lifts to a 𝐺-bundle
even along 𝛴 because 𝐻2(𝛴, 𝜋1(𝐺)) = 0. It is also reflected in the calculation of the relative
homotopy group. Although 𝜋1(𝐺ad) appears in 𝜋2(M′), it does not in 𝜋2(M,M′) and hence there
is no mismatch between the topological sectors of the gauge theory and of the sigma model.

Among the graded components of the 1-form symmetry 𝐻1(𝑋, 𝑍 (𝐺)) in four dimensions, we
have 𝐻1(𝛴, 𝑍 (𝐺)), whose role was explained in §3.1, and 𝜋∗𝐻1(𝐶′, 𝑍 (𝐺)), which is a subgroup
of 𝐻1(𝐶, 𝑍 (𝐺)). The latter is now a 0-form symmetry acting on the target M = MH(𝐶,𝐺)
preserving the support N = N(𝐶,𝐺) of the branes. The group 𝐻1(𝐶′, 𝑍 (𝐺)) is the extension of
𝜋∗𝐻1(𝐶′, 𝑍 (𝐺)) by 𝑍 (𝐺)[2] , which acts as deck transformations of 𝑝 : M′ → N. As mentioned
above, the connected components of M′ = MH(𝐶′, 𝐺) are labelled by 𝑚2 ∈ 𝐻2(𝐶′, 𝜋1(𝐺)) =

𝜋1(𝐺)/2𝜋1(𝐺). Naively, the branes are classified by (𝑚2, 𝑒2) because each 𝑒2 ∈ 𝑍 (𝐺)∨[2] defines
a flat line bundle M′ ×𝑒2 C over N. However, a group element 𝑧 ∈ 𝑍 (𝐺)[2] changes 𝑚2 to
𝑚2 + 𝛽2(𝑧), where 𝛽2 : 𝑍 (𝐺)[2] → 𝜋1(𝐺)/2𝜋1(𝐺) is the map induced by the exact sequence
0 → 𝜋1(𝐺) → 𝜋1(𝐺ad) → 𝑍 (𝐺) → 1. In a sector with a fixed 𝑚2, the unbroken subgroup is
ker(𝛽2). Thus instead of 𝑒2, we should take 𝑒2 ∈ ker(𝛽2)∨. On the other hand, any two choices of
𝑚2 related by a symmetry 𝑧 ∈ 𝑍 (𝐺)[2] are equivalent in the sense that the coverings are isomorphic.
So we should take 𝑚̄2 ∈ coker(𝛽2) as the true discrete parameter. In fact, N is a disjoint union of
connected components N𝑚̄2 labelled by 𝑚̄2 [49, §A.10], and for each 𝑒2, there is a flat line bundle
𝐿 𝑒̄2 over N𝑚̄2 . We thus find branes B𝑚̄2,𝑒̄2 labelled by (𝑚̄2, 𝑒2) [49, §4.3].

The presence of these branes supported on N(𝐶,𝐺) is compatible with the supersymmetry 𝛿𝑡
that is made a BRST transformation in the topological field theory. When 𝑡 = ±

√
−1 or equivalently

when 𝛹 = ∞, the reduction to two dimensions is a B-model in the complex structure ±𝐽. For
other values of 𝑡 or 𝛹 , the reduction is an A-model (possibly after a 𝐵-field transform) with the
symplectic form 𝜔𝑡 , which is a linear combination of 𝜔𝐼 and 𝜔𝐾 . Happily, N(𝐶,𝐺) is both a
complex submanifold in 𝐽 and a Lagrangian submanifold in 𝜔𝐼 and 𝜔𝐾 and hence also in 𝜔𝑡 . This
can also be phrased as a statement in generalised geometry. Since the involution 𝜄 preserves 𝐽
but reverses 𝜔𝐼 , 𝜔𝐾 , the tangent bundle of N(𝐶,𝐺) ⊂ MH(𝐶,𝐺) 𝜄 plus its annihilator, which is
ker(𝜄∗ − 1) ⊕ ker(𝜄∗ + 1) ⊂ (𝑇 ⊕ 𝑇∗)MH(𝐶,𝐺), is preserved by the generalised complex structures
J𝑡 in §3.1. Therefore MH(𝐶,𝐺) 𝜄, and hence N(𝐶,𝐺), is a generalised complex submanifold with
respect to J𝑡 for all 𝑡 ∈ C𝑃1, and hence supersymmetry remains in the presence of such branes.

Finally, the mirror symmetry between MH(𝐶,𝐺) and MH(𝐶, 𝐿𝐺) from 𝑆-duality in the 4-
dimensional gauge theory is enriched by the presence of branes constructed above. First, the
relevant sector (𝑚0, 𝑒0) = (0, 0) when 𝜕𝛴 ≠ ∅ is indeed mirror to (𝐿𝑚0,

𝐿𝑒0) = (0, 0) in the
dual theory. As for the other discrete parameters 𝑚2 ∈ 𝜋2(𝐺)/2𝜋1(𝐺), 𝑒2 ∈ 𝑍 (𝐺)∨[2] ,

𝐿𝑚2 ∈
𝜋2(𝐿𝐺)/2𝜋1(𝐿𝐺), 𝑒2 ∈ 𝑍 (𝐿𝐺)∨[2] , we indeed have the natural isomorphisms of the 2-torsion groups
𝑍 (𝐿𝐺)∨[2] � 𝜋2(𝐺)/2𝜋1(𝐺) and 𝜋2(𝐿𝐺)/2𝜋1(𝐿𝐺) � 𝑍 (𝐿𝐺)∨[2] . However, the true parameters of
the branes are 𝑚̄2 ∈ coker(𝛽2) and 𝑒2 ∈ ker(𝛽2)∨. Fortunately, under the above isomorphisms, the
map 𝐿𝛽2 in the dual theory is the Pontryagin dual of 𝛽2. Therefore 𝐿𝑚̄2 ∈ coker(𝐿𝛽2) � ker(𝛽2)∨
and 𝐿𝑒2 ∈ ker(𝐿𝛽2)∨ � coker(𝛽2). The mirror of the brane B𝑚̄2,𝑒̄2 is 𝐿B𝑒̄2,𝑚̄2 [49, §4.4].
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4. Summary and outlook

We considered the reduction of the twisted 𝑁 = 4 gauge theory on an orientable space-
time 4-manifold containing embedded non-orientable surfaces to a 2-dimensional sigma model
on a worldsheet with boundary. The boundary conditions of the sigma-model are specified by
branes constructed from the Hitchin moduli space of the non-orientable surface. The resulting
2-dimensional theory is anomaly-free. We matched the discrete fluxes together with the instanton
number in the gauge theory with the homotopy classes of relative maps in the sigma model in a
way that is manifestly covariant on the worldsheet. The agreement of topological sectors and their
duality is another non-trivial test of 𝑆-duality using the known results on the topology of Hitchin
moduli spaces associated to orientable and non-orientable surfaces. Conversely, 𝑆-duality provides
evidence for some of the anticipated results on the homotopy groups of the moduli spaces.

The interplay between 𝑆-duality of gauge theory on our 4-manifold and the mirror symmetry
of the low energy sigma model can shed new insight on the geometric Langlands programme for
a non-orientable surface and its orientation double cover. The 4-manifold containing embedded
non-orientable surfaces can be used in the dimensional reduction of other 4-dimensional theories.
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