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Quantum properties of𝑈 (1)-like gauge theory on 𝜅-Minkowski Kilian Hersent

The 𝜅-Minkowski space correspond to a (quantum) deformation of the Minkowski space and is
thought to light some quantum gravity effects up, at least in some regime. This thought comes from
several arguments.

First, 𝜅-Minkowski is build as the space having the symmetries of 𝜅-Poincaré, a deformation
of the Poincaré algebra. Therefore, they both intrinsically encode an energy scale 𝜅, thought to
be of the order of the Planck mass, at which they are relevant. Their low energy limit, that is
when 𝜅 → +∞, corresponds to the usual Minkowski space and its usual Poincaré symmetries. A
field theory on 𝜅-Minkowski could then by construction contain both the low-energy physics and
corrections due to 𝜅 deformation.

Second, the 𝜅-Poincaré algebra realises a Doubly Special Relativity. Indeed, in such a space,
the composition of momenta is also deformed. Therefore, changing from one frame to another
by such composition gives a conservation of the speed of light but also of the energy scale 𝜅.
The Doubly Special Relativity framework thus gives two upper bounds on physical speed and
energy. This framework has been shown to trigger some phenomenological effects such as time-
delay observation from highly energetic astrophysical sources [1]. For a complete review on
phenomenology of quantum gravity see [2].

For a physical insight of field theories on 𝜅-Minkowski, one could consider a gauge theory. For a
complete review about gauge theory on quantum spaces, see [3]. In this paper, the simplest gauge
theory is considered and turns out to be a deformed 𝑈 (1) gauge theory. The one-loop one-point
function, also called the tadpole, was computed and turns out to be non-zero [4] and even gauge
dependant. This may either point out some instabilities in this theory, or some deeper results and
prospects concerning noncommutative gauge theories.

The section 1 introduces briefly the 𝜅-Minkowski space. The gauge theory on 𝜅-Minkowski is
constructed in section 2 and the computation of the tadpole is discussed in section 3.

1. Introducing 𝜅-Minkowski

We present here a brief construction of the 𝜅-Minkowski space M𝜅 . For a more complete review
on 𝜅-Minkowski history and phenomenology, see [5]. In order to build the 𝜅-Minkowski space, one
must first study the 𝜅-Poincaré algebra.

1.1 The symmetries of 𝜅-Minkowski

The derivation of the 𝜅-Poincaré algebra P𝜅 was first done in [6]. It is defined as Hopf algebra [7]
having as generators (𝑃𝜇)𝜇=0,...,𝑑 , (𝑀 𝑗) 𝑗=1,...,𝑑 and (𝑁 𝑗) 𝑗=1,...,𝑑 , where 𝑑 is the space dimension.
They are respectively called the deformed translations, the deformed rotations and the deformed
boosts, as they reduces to the usual translations, rotations and boosts of the Poincaré algebra in the
limit 𝜅 → +∞.

In [8], the 𝑃0 generator is changed for the generator E = 𝑒−𝑃0/𝜅 . We will follow this choice
throughout this paper. The latter authors showed the 𝜅-Poincaré can be defined through the
bicrossproduct P𝜅 = T𝜅 ⊲◀𝑈so(1, 𝑑), where T𝜅 is often called the deformed translation algebra and
is generated by the 𝑃𝜇’s and 𝑈so(1, 𝑑) corresponds to the universal enveloping algebra of the Lie
algebra of rotation and boosts so(1, 𝑑).
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𝜅-Minkowski is then defined as the Hopf dual of T𝜅 [8], which implies that M𝜅 is generated by
(𝑥𝜇)𝜇=0,...,𝑑 and satisfies

[𝑥0, 𝑥 𝑗] = 𝑖

𝜅
𝑥 𝑗 , [𝑥 𝑗 , 𝑥𝑘] = 0. (1)

Then, the dual and the bicrossproduct structures allow to define the action of P𝜅 on M𝜅 . For T𝜅 , it
writes for any 𝑓 ∈ M𝜅 ,

(𝑃𝜇 ⊲ 𝑓 ) (𝑥) = −𝑖𝜕𝜇 𝑓 (𝑥), (E ⊲ 𝑓 ) (𝑥) = 𝑓 (𝑥0 + 𝑖

𝜅
, 𝑥 𝑗). (2)

For simplicity, we avoid the full Hopf algebra structure of P𝜅 , that can be found in [3]. Still,
the coalgebra sector of T𝜅 is of interest. Indeed, it writes

Δ𝑃0 = 𝑃0 ⊗ 1 + 1 ⊗ 𝑃0, Δ𝑃 𝑗 = 𝑃 𝑗 ⊗ 1 + E ⊗ 𝑃 𝑗 , ΔE = E ⊗ E . (3)

First, this relation shows that T𝜅 is not cocommutative which, by duality, imposes that M𝜅 is
noncommutative. Second, by the action (2) and the comodule algebra structure, one obtains that
some generators must follow a deformed Leibniz rule. Explicitly, if we consider a star-product ★
on M𝜅 , writing 𝑋 𝑗 = 𝑃 𝑗 and 𝑋0 = 𝜅(1 − E), one has

𝑋𝜇 ⊲( 𝑓 ★ 𝑔) = (𝑋𝜇 ⊲ 𝑓 ) ★ 𝑔 + (E ⊲ 𝑓 ) ★ (𝑋𝜇 ⊲ 𝑔), (4)

for any 𝑓 , 𝑔 ∈ M𝜅 . The equation (4) correspond to a twisted Leibniz rule and so defines twisted
derivations 𝑋𝜇. For simplicity, we drop the action symbol ⊲ in the following.

1.2 The star-product structure

We follow the procedure of [3] to build the star product leading to the 𝜅-Minkowski star-product
of [9, 10], where more mathematical insight can be found.

Considering the Lie algebra (1), the corresponding Lie group is the affine group G = R⋉R𝑑 . Its
right invariant Haar measure can be shown to be the usual Lebesgue measure and will therefore be
the one considered. From that, one defines the convolution product ◦̂ and the involution ∗ of 𝐿1(G).
Then, one defines the Weyl quantization map 𝑄 = 𝜋 ◦ F , where 𝜋 is a bounded non-degenerate
∗-representation of 𝐿1(G) and F is the Fourier transform. Finally, the star-product★ and involution
† of 𝜅-Minkowski are defined as 𝑓 ★ 𝑔 = 𝑄−1(𝑄( 𝑓 ) ◦̂𝑄(𝑔)) and 𝑓 † = 𝑄−1(𝑄( 𝑓 )∗), which gives

( 𝑓 ★ 𝑔) (𝑥0, 𝑥 𝑗) =
∫

d𝑝0
2𝜋

d𝑦0 𝑒−𝑖 𝑝0𝑦
0
𝑓 (𝑥0 + 𝑦0, 𝑥 𝑗)𝑔(𝑥0, 𝑒−𝑝0/𝜅𝑥 𝑗), (5a)

𝑓 †(𝑥0, 𝑥 𝑗) =
∫

d𝑝0
2𝜋

d𝑦0 𝑒−𝑖 𝑝0𝑦
0
𝑓 (𝑥0 + 𝑦0, 𝑒−𝑝0/𝜅𝑥 𝑗), (5b)

where 𝑓 is the complex conjugate of 𝑓 .

Given the star-product (5a), the Lebesgue integral defines a twisted trace, that is for any 𝑓 , 𝑔 ∈ M𝜅 ,∫
d𝑑+1𝑥 𝑓 ★ 𝑔 =

∫
d𝑑+1𝑥 E𝑑 (𝑔) ★ 𝑓 . (6)
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2. Gauge theory on 𝜅-Minkowski: a twisted approach

We consider here derivation based gauge theory [11]. This first requires to take a M𝜅 -module
E, that is a linear space with an action ⊳ : E ⊗M𝜅 → E satisfying (𝑚 ⊳ 𝑓 ) ⊳ 𝑔 = 𝑚 ⊳( 𝑓 ★ 𝑔) for any
𝑚 ∈ E. The simplest relevant choice for this module is to take it as a copy of our algebra. Explicitly,
E = M𝜅 and ⊳ = ★. This choice will be kept throughout the paper.

2.1 Untwisted gauge theory

Building a gauge theory on 𝜅-Minkowski has long been considered a complicated task due to
the non-cyclic property of the trace (6). Indeed, if we consider a usual gauge theory on a quantum
space, the gauge group is the set of elements satisfying 𝑔★𝑔† = 1 and the deformed field strength 𝐹
transforms as 𝐹𝑔 = 𝑔†★𝐹★𝑔. If we further choose the action to be the straightforward generalisation
of the usual𝑈 (1) action 𝑆 =

∫
d𝑑+1𝑥 𝐹† ★ 𝐹, then the gauged transformed action writes

𝑆𝑔 =

∫
d𝑑+1𝑥 (𝐹𝑔)† ★ 𝐹𝑔 =

∫
d𝑑+1𝑥 E𝑑 (𝑔) ★ 𝑔† ★ 𝐹† ★ 𝐹 ≠ 𝑆, (7)

where we used (6). Therefore, 𝑆 is not gauge invariant because of the twisted property of the trace.
In section 2.2, a twisted derivation based gauge theory was used to bypass this issue.

Apart from the twisted framework developed in this paper, there has been two previous attempts
in building a gauge theory: [12–16] and [17, 18]. However, these method relies on intractable
star-products so that they can only produce first order corrections. One can also mention another
recent attempt based on Poisson gauge theory [19, 20]. For a more complete discussion on these
gauge theory see [3].

2.2 Twisting the derivations

The non-cyclicity of the trace (6), hampering from having a straightforward gauge invariant
action, is a first hint that our theory must be twisted somehow. Furthermore, the twists considered
will most probably be powers of E, since the twist of (6) is E𝑑 . This choice of twist is also
convenient since, at the low energy limit 𝜅 → +∞, it vanishes, i.e. E = 1. The low energy limit will
then be by essence untwisted. Finally, we have natural candidates for twisted derivations, which are
the 𝑋𝜇’s from (4).

To build our gauge theory, we will then start from twisted derivations. This gauge theory was
first considered in [21, 22]. One should note that, the twist E𝑑 of (6) contains the space dimension
𝑑 so that a gauge invariant action may require 𝑑 to take some specific value.

When considering twisted derivations, one has to consider twisted connection, curvature and
gauge transformations to ensure their algebraic compatibility with the twisted derivations. Then,
for our module E = M𝜅 , the twisted connection ∇𝜇 : M𝜅 → M𝜅 must satisfy, for any 𝑓 , 𝑔 ∈ M𝜅 ,

∇𝜇 ( 𝑓 ★ 𝑔) = ∇𝜇 ( 𝑓 ) ★ 𝑔 + E( 𝑓 ) ★ 𝑋𝜇 (𝑔), (8)

where ∇𝜇 = ∇𝑋𝜇
. One then defines the deformed gauge potential as 𝐴𝜇 = ∇𝜇 (1).

The deformed field strength then expresses as

𝐹𝜇𝜈 = 𝑋𝜇 (𝐴𝜈) − 𝑋𝜈 (𝐴𝜇) + E(𝐴𝜇) ★ 𝐴𝜈 − E(𝐴𝜈) ★ 𝐴𝜇, (9)

where the twist E appears again.
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The gauge group derivation appears to be untwisted and correspond to a deformed𝑈 (1) group

U(1) = {𝑔 ∈ M𝜅 , 𝑔
† ★ 𝑔 = 𝑔 ★ 𝑔† = 1}. (10)

However, the gauge transformation of the potential and the field strength are twisted and writes

𝐴
𝑔
𝜇 = E(𝑔†) ★ 𝐴𝜇 ★ 𝑔 + E(𝑔†) ★ 𝑋𝜇 (𝑔), 𝐹

𝑔
𝜇𝜈 = E2(𝑔†) ★ 𝐹𝜇𝜈 ★ 𝑔. (11)

2.3 The gauge invariant action

Consider now the previous action 𝑆 =
∫

d𝑑+1𝑥 𝐹† ★ 𝐹. Doing again the computation (7) with
the transformation (11), one obtains that 𝑆 is gauge invariant if 𝑑 + 1 = 5. Therefore, the gauge
invariant action writes

𝑆 =

∫
d5𝑥 𝐹† ★ 𝐹. (12)

This action is then invariant under U(1) (10) transformations. Moreover, one can show that it is
also 𝜅-Poincaré invariant. Finally, its low energy limit 𝜅 → +∞ coincide with the standard Abelian
Yang-Mills action in 5 dimensions.

First, note that this dimension constraint is rather robust since a twisted action ⊳was considered,
but leaves the constraint untouched [23]. Explicitly, by setting𝑚 ⊳ 𝑓 = 𝑚★𝜎( 𝑓 ) with𝜎 ∈ Aut(M𝜅 )
an automorphism of 𝜅-Minkowski, 𝑑 + 1 = 5 is still necessary for 𝑆 to be gauge invariant. Second,
the phenomenological consequences of the extra-dimension has been discussed in [22], where a
compactification scheme is considered.

3. The one-loop one-point function

From (9), one can put the action (12) under the form

𝑆 =

∫
d5𝑥 𝐾𝜇𝜈𝐴𝜇𝐴𝜈 +𝑉 𝜇𝜈𝜌

(3) 𝐴𝜇𝐴𝜈𝐴𝜌 +𝑉 𝜇𝜈𝜌𝜎

(4) 𝐴𝜇𝐴𝜈𝐴𝜌𝐴𝜎 (13)

where 𝐴 was assumed to be real valued, i.e. 𝐴 = 𝐴. One can compute the one-loop one-point
function via the Fadeev-Popov procedure [4] with a BRST gauge fixing [24]. Two different gauge
fixing were considered that writes 𝑋𝜇𝐴𝜇 = 0 and 𝐴0 = 𝜆. The first one correspond to a deformation
of the Lorenz gauge fixing and the second one is a parametrized temporal gauge fixing, the temporal
gauge being recovered when 𝜆 → 0. One obtains that

=

{ ∫
d5𝑥 I(𝜅)𝐴0(𝑥) (𝑋𝜇𝐴𝜇 = 0)

Γ
gh
1 (𝐴0) + 𝜆

∫
d5𝑥 J (𝜅)𝐴0(𝑥) (𝐴0 = 𝜆)

, (14)

where I and J are gauge dependant divergent integral (which must be regularized), that vanish
when 𝜅 → ∞ and Γ

gh
1 is the ghost contribution to the tadpole.
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The fact that (14) is non zero implies that the classical vacuum is not stable against quantum
fluctuation. In other words, 𝐴𝜇 has a non-zero vacuum expectation value. Several comments are in
order.

First, the condition 𝐴 = 𝐴 can be relaxed and has been shown to be non-vanishing also. Adding
matter in the action (13), as detailed in [22], gives a zero contribution to the tadpole.

Second, in the low energy limit (𝜅 → +∞) both expressions of (14) vanishes. Therefore,
the good commutative limit is observed. Recall that such a commutative limit correspond to
5-dimensional𝑈 (1) gauge theory.

Finally, the result (14) is explicitly gauge dependant. As we started from a gauge invariant
action (12), the gauge symmetry has been broken in the procedure. Note that in the temporal gauge
(𝜆 → 0) one has a zero tadpole (14), since the ghost decouples. However, this is purely a gauge
artefact.

Still, several arguments put forward that our theory is not to be thrown away so quickly.
Indeed, a non-zero tadpole has been experienced in other quantum spaces like 2-dimensional

Moyal [25] or R3
𝜆

[26], with the same computation procedure. This could imply that one cannot
apply the usual Feynman path integral method [27] and/or BRST liturgie in a noncommutative
context.

Moreover, the notion of vacuum of 𝜅-Minkowski has not reach consensus. First, considering
𝜅-Poincaré as the space of symmetry, one get rid of Poincaré symmetry and so looses the notion
of particle as irreducible representation of the little group. This issue is quite known as it appears
in quantum field theory in curved spacetime, see [28] for a review. Some studies shows that the
representation theory of 𝜅-Poincaré and its little group are quite close to the undeformed one [29–
32]. Still, the definition of 𝜅-Minkowski vacuum and its energy, as studied in [33–36], has several
definitions and has even shown some pathological behaviour. This issue can be traced back to the
fact that the various definitions of the Casimir operator are coordinate dependant. Therefore, the
vacuum expectation value of 𝐴, as computed in (14), is non-zero as it possibly may not be expressed
in the physical vacuum.

Finally, some studies on the Moyal space are considering an alternative field as 𝐴 to encode
the photon [37–43]. The latter is called the “covariant coordinate” and is expressed as A𝜇 =

𝐴𝜇 − 𝑖Θ−1
𝜇𝜈𝑥

𝜈 , with [𝑥𝜇, 𝑥𝜈] = Θ𝜇𝜈 . From [38], it appears that the covariant coordinate of 𝜅-
Minkowski may not be computable. However, the fact that (14) is non vanishing may hint the
possibility that 𝐴 is not the physical photon of the theory.
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