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1. Introduction

Recently, superconformal field theories in various dimensions are attracting more interest, es-
pecially in view of their applications in string theory. From these very important is the AdS/CFT
correspondence, namely, the remarkable proposal of Maldacena [1], according to which the large
N limit of a conformally invariant theory in d dimensions is governed by supergravity (and string
theory) on d+1-dimensional AdS space (often called AdSd+1) times a compact manifold. Actually
the possible relation of field theory on AdSd+1 to field theory on Md has been a subject of long
interest, cf., e.g., [2–4], and also [5] for discussions motivated by recent developments. The pro-
posal of [1] was elaborated in [6] and [7] where was proposed a precise correspondence between
conformal field theory observables and those of supergravity.

In all cases, it was known for a long time that the classification of the UIRs of the conformal
superalgebras is of great importance. For some time such classification was known only for the
D = 4 superconformal algebras su(2,2/1) [8] and su(2,2/N) for arbitrary N [9], (see also
[10, 11]). Then, more progress was made with the classification for D = 3 (for even N), D = 5,
and D = 6 (for N = 1,2) in [12] (some results being conjectural), then for the D = 6 case (for
arbitrary N) was finalized in [13]. Finally, the cases D = 9,10,11 were treated by finding the UIRs
of osp(1/2n), [14].

After the list of UIRs is found the next problem to address is to find their characters since these
give the spectrum which is important for the applications. This problem is solved in principle,
though not all formulae are explicit, for the UIRs of D = 4 conformal superalgebras su(2,2/N)

in [15]. From the mathematical point of view this question is clear only for representations with
conformal dimension above the unitarity threshold viewed as irreps of the corresponding complex
superalgebra sl(4/N) [16–22]. But for su(2,2/N) even the UIRs above the unitarity threshold are
truncated for small values of spin and isospin. Furthermore, in the applications the most impor-
tant role is played by the representations with “quantized" conformal dimensions at the unitarity
threshold and at discrete points below.

Especially important in this context are the so-called BPS states, cf., [23–32]. which we consider
in the present paper.

These investigations require deeper knowledge of the structure of the UIRs, in particular, more
explicit results on the decompositions of long superfields as they descend to the unitarity threshold
. Fortunately, most of the needed information is contained in [9–11, 15, 33], see also [34–39].

2. Preliminaries

2.1 Representations of D=4 conformal supersymmetry

The conformal superalgebras in D = 4 are G = su(2,2/N). The even subalgebra of G is the
algebra G0 = su(2,2)⊕u(1)⊕ su(N). We label their physically relevant representations of G by
the signature:

χ = [d ; j1 , j2 ; z ; r1 , . . . ,rN−1 ] (2.1)
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where d is the conformal weight, j1, j2 are non-negative (half-)integers which are Dynkin labels
of the finite-dimensional irreps of the D = 4 Lorentz subalgebra so(3,1) of dimension (2 j1 +
1)(2 j2 + 1), z represents the u(1) subalgebra which is central for G0 (and is central for G

itself when N = 4), and r1, . . . ,rN−1 are non-negative integers which are Dynkin labels of the
finite-dimensional irreps of the internal (or R) symmetry algebra su(N).

We recall the root system of the complexification G CI of G (as used in [11]). The positive root
system ∆+ is comprised of αi j , 1 ≤ i < j ≤ 4+N. The even positive root system ∆+

0̄ is
comprised of αi j , with i, j ≤ 4 and i, j ≥ 5; the odd positive root system ∆+

1̄ is comprised of
αi j , with i ≤ 4, j ≥ 5. The generators corresponding to the latter (odd) roots will be denoted as
X+

i,4+k , where i = 1,2,3,4, k = 1, . . . ,N. The simple roots are chosen as in (2.4) of [11]:

γ1 = α12 , γ2 = α34 , γ3 = α25 , γ4 = α4,4+N , γk = αk,k+1 , 5 ≤ k ≤ 3+N. (2.2)

Thus, the Dynkin diagram is:

⃝
1
−−−

⊗
3
−−−⃝

5
−−−·· ·−−− ⃝

3+N
−−−

⊗
4
−−−⃝

2
(2.3)

This is a non-distinguished simple root system with two odd simple roots [41].

Remark: We recall that the group-theoretical approach to D = 4 conformal supersymmetry de-
veloped in [9–11] involves two related constructions - on function spaces and as Verma modules.
The first realization employs the explicit construction of induced representations of G (and of the
corresponding supergroup G = SU(2,2/N)) in spaces of functions (superfields) over superspace
which are called elementary representations (ER). The UIRs of G are realized as irreducible com-
ponents of ERs, and then they coincide with the usually used superfields in indexless notation. The
Verma module realization is also very useful as it provides simpler and more intuitive picture for
the relation between reducible ERs, for the construction of the irreps, in particular, of the UIRs. For
the latter the main tool is an adaptation of the Shapovalov form [40] to the Verma modules [9, 33].
Here we shall need only the second - Verma module - construction. ♢

We use lowest weight Verma modules V Λ over G CI , where the lowest weight Λ is characterized
by its values on the Cartan subalgebra H and is in 1-to-1 correspondence with the signature χ . If
a Verma module V Λ is irreducible then it gives the lowest weight irrep LΛ with the same weight.
If a Verma module V Λ is reducible then it contains a maximal invariant submodule IΛ and the
lowest weight irrep LΛ with the same weight is given by factorization: LΛ = V Λ / IΛ [42]. The
reducibility conditions were given by Kac [42].

There are submodules which are generated by the singular vectors related to the even simple
roots γ1,γ2,γ5, . . . ,γN+3 [11]. These generate an even invariant submodule IΛ

c present in all Verma
modules that we consider and which must be factored out. Thus, instead of V Λ we shall consider
the factor-modules:

Ṽ Λ = V Λ / IΛ
c (2.4)

The Verma module reducibility conditions for the 4N odd positive roots of G CI were derived

3
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in [10, 11] adapting the results of Kac [42]:

d = d1
Nk − zδN4 (2.5a)

d1
Nk ≡ 4−2k+2 j2 + z+2mk −2m/N

d = d2
Nk − zδN4 (2.5b)

d2
Nk ≡ 2−2k−2 j2 + z+2mk −2m/N

d = d3
Nk + zδN4 (2.5c)

d3
Nk ≡ 2+2k−2N +2 j1 − z−2mk +2m/N

d = d4
Nk + zδN4 (2.5d)

d4
Nk ≡ 2k−2N −2 j1 − z−2mk +2m/N

where in all four cases of (2.5) k = 1, . . . ,N, mN ≡ 0, and

mk ≡
N−1

∑
i=k

ri , m ≡
N−1

∑
k=1

mk =
N−1

∑
k=1

krk (2.6)

Note that we shall use also the quantity m∗ which is conjugate to m :

m∗ ≡
N−1

∑
k=1

krN−k =
N−1

∑
k=1

(N − k)rk , (2.7)

m+m∗ = Nm1 . (2.8)

We need the result of [9] (cf. part (i) of the Theorem there) that the following is the complete list
of lowest weight (positive energy) UIRs of su(2,2/N) :

d ≥ dmax = max(d1
N1,d

3
NN) , (2.9a)

d = d4
NN ≥ d1

N1 , j1 = 0 , (2.9b)

d = d2
N1 ≥ d3

NN , j2 = 0 , (2.9c)

d = d2
N1 = d4

NN , j1 = j2 = 0 , (2.9d)

where dmax is the threshold of the continuous unitary spectrum. Note that in case (d) we have
d = m1, z = 2m/N −m1 , and that it is trivial for N = 1.

Next we note that if d > dmax the factorized Verma modules are irreducible and coincide with
the UIRs LΛ . These UIRs are called long in the modern literature, cf., e.g., [25, 26, 34–38].
Analogously, we shall use for the cases when d = dmax , i.e., (2.9a), the terminology of semi-
short UIRs, introduced in [25, 34], while the cases (2.9b,c,d) are also called short UIRs, cf.,
e.g., [25, 26, 35–39].

Next consider in more detail the UIRs at the four distinguished reducibility points determining
the UIRs list above: d1

N1 , d2
N1 , d3

NN , d4
NN . The above reducibilities occur for the following odd

roots, resp.:

α3,4+N = γ2 + γ4 , α4,4+N = γ4 , α15 = γ1 + γ3 , α25 = γ3 . (2.10)
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We note a partial ordering of these four points:

d1
N1 > d2

N1 , d3
NN > d4

NN . (2.11)

Due to this ordering at most two of these four points may coincide.

First we consider the situations in which no two of the distinguished four points coincide. There
are four such situations:

a : d = dmax = d1
N1 = da ≡ 2+2 j2 + z+2m1 −2m/N > d3

NN (2.12a)

b : d = d2
N1 = db ≡ z−2 j2 +2m1 −2m/N > d3

NN , j2 = 0 (2.12b)

c : d = dmax = d3
NN = dc ≡ 2+2 j1 − z+2m/N > d1

N1 (2.12c)

d : d = d4
NN = dd ≡ 2m/N −2 j1 − z > d1

N1 , j1 = 0 (2.12d)

where for future use we have introduced notations da,db,dc,dd , the definitions including also the
corresponding inequality.

We shall call these cases single-reducibility-condition (SRC) Verma modules or UIRs, de-
pending on the context. In addition, as already stated, we use for the cases when d = dmax , i.e.,
(2.12a,c), the terminology of semi-short UIRs, while the cases (2.12b,d), are also called short UIRs.

The factorized Verma modules Ṽ Λ with the unitary signatures from (2.12) have only one invari-
ant odd submodule which has to be factorized in order to obtain the UIRs. These odd embeddings
and factorizations are given as follows:

Ṽ Λ → Ṽ Λ+β , LΛ = Ṽ Λ/Iβ , (2.13)

where we use the convention [10] that arrows point to the oddly embedded module, and we give
only the cases for β that we shall use later:

β = α3,4+N , for (2.12a), j2 > 0, (2.14a)

= α3,4+N +α4,4+N , for (2.12a), j2 = 0, (2.14b)

= α15 , for (2.12c), j1 > 0, (2.14c)

= α15 +α25 , for (2.12c), j1 = 0 (2.14d)

We consider now the four situations in which two distinguished points coincide:

ac : d = dmax = dac ≡ 2+ j1 + j2 +m1 = d1
N1 = d3

NN (2.15a)

z = j1 − j2 −m1 +2m/N

ad : d = dad ≡ = 1+ j2 +m1 = d1
N1 = d4

NN , j1 = 0 (2.15b)

z = 2m/N −1− j2 −m1

bc : d = dbc ≡ = 1+ j1 +m1 = d2
N1 = d3

NN , j2 = 0 (2.15c)

z = 2m/N +1+ j1 −m1

bd : d = dbd ≡ = m1 = d2
N1 = d4

NN , j1 = j2 = 0 (2.15d)

2m/N −m1

5



P
o
S
(
C
O
R
F
U
2
0
2
2
)
3
4
3

Classification of 1
16 -BPS states V.K. Dobrev

We shall call these double-reducibility-condition (DRC) Verma modules or UIRs. The cases in
(2.15a) are semi-short UIR, while the other cases are short.

• SRC cases:

•a d = da , r1 = 0 .

•b d = db , r1 ≤ 2 .

•c d = dc , rN−1 = 0 .

•d d = dd , rN−1 ≤ 2 .

• DRC cases:
all non-trivial cases for N = 1, while for N > 1 the list is:

•ac d = dac , r1rN−1 = 0 .

•ad d = dad , rN−1 ≤ 2 , r1 = 0 for N > 2.

•bc d = dbc , r1 ≤ 2 , rN−1 = 0 for N > 2.

•bd d = dbd , r1,rN−1 ≤ 2 for N > 2, 1 ≤ r1 ≤ 4 for N = 2.

3. Reduction of supersymmetry for 1
16 -BPS states

We need to present explicitly the reduction of the supersymmetries in the irreducible UIRs. This
means to give explicitly the number κ of odd generators which are eliminated from the corre-
sponding lowest weight module, (or equivalently, the number of super-derivatives that annihilate
the corresponding superfield). Then corresponding state is called κ

4N -BPS state. First were studied
the 1

2 -BPS, the 1
4 -BPS states, 1

8 -BPS states, see [43] and references therein.

Here consider the 1
16 -BPS states, or κ = N/4.

3.1 R-symmetry scalars

We start with the simpler cases of R-symmetry scalars when ri = 0 for all i, which means also
that m1 = m = m∗ = 0. These cases are valid also for N = 1. More explicitly:

• a d = da
|m=0

= 2+2 j2 + z > 2+2 j1 − z , j1 arbitrary,

κ = N +(1−N)δ j2,0 , or casewise : (3.1)

κ = N, if j2 > 0,

κ = 1, if j2 = 0

Here, κ is the number of anti-chiral generators X+
3,4+k, k = 1, . . . ,κ , that are eliminated. We need

κ = N/4, which may happen only in the last case κ = 1 for N = 4, i.e., for su(2,2/4).

• b d = db
|m=0

= z > 2+2 j1 − z , j1 arbitrary, j2 = 0,

κ = 2N (3.2)

6



P
o
S
(
C
O
R
F
U
2
0
2
2
)
3
4
3

Classification of 1
16 -BPS states V.K. Dobrev

These short UIRs may be called chiral since they lack all anti-chiral generators X+
3,4+k , X+

4,4+k ,
k = 1, . . . ,N. However, there do not occur 1

16 -BPS states.

• c d = dc
|m=0

= 2+2 j1 − z > 2+2 j2 + z , j2 arbitrary,

κ = N +(1−N)δ j1,0 , or casewise : (3.3)

κ = N, j1 > 0,

κ = 1, j1 = 0

Here, κ is the number of chiral generators X+
1,4+k, k = 1, . . . ,κ , that are eliminated. This is similar

to case a), 1
16 -BPS states happen only in the last case for κ = 1 and N = 4, i.e., for su(2,2/4).

• d d = dd
|m=0

= − z > 2+2 j2 + z , j2 arbitrary, j1 = 0,

κ = 2N (3.4)

These short UIRs may be called anti-chiral since they lack all chiral generators X+
1,4+k , X+

2,4+k ,
k = 1, . . . ,N. As in case b) there do not occur as 1

16 -BPS states.

• ac d = dac
|m=0

= 2+ j1 + j2 , z = j1 − j2 ,

κ = 2N +(1−N)(δ j1,0 +δ j2,0), or casewise : (3.5)

κ = 2N, if j1, j2 > 0,

κ = N +1, if j1 > 0, j2 = 0,

κ = N +1, if j1 = 0, j2 > 0,

κ = 2, if j1 = j2 = 0.

Here, κ is the number of mixed elimination: chiral generators X+
1,4+k, (k = 1, . . . ,N+(1−N)δ j1,0),

and anti-chiral generators X+
3,4+k, (k = 1, . . . ,N +(1−N)δ j2,0). We need κ = N/4, which may

happen only in the last case κ = 2 for N = 8, i.e., for su(2,2/8).

• ad d = dad
|m=0

= 1+ j2 = − z , j1 = 0,

κ = 3N +(1−N)δ j2,0, or casewise : (3.6)

κ = 3N, j2 > 0,

κ = 2N +1, j2 = 0.

Here, κ is the number of mixed elimination: both types chiral generators X+
1,4+k , X+

2,4+k , (k =

1, . . . ,N), and anti-chiral generators X+
3,4+k, (k = 1, . . . ,N +(1−N)δ j2,0). However, there do not

occur 1
16 -BPS states.
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• bc d = dbc
|m=0

= 1+ j1 = z , j2 = 0,

κ = 3N +(1−N)δ j1,0, or casewise : (3.7)

κ = 3N, j1 > 0,

κ = 2N +1, j1 = 0 .

Here, κ is the number of mixed elimination: chiral generators X+
1,4+k , (k = 1, . . . ,N+(1−N)δ j1,0)

and both types anti-chiral generators X+
3,4+k, X+

2,4+k , (k = 1, . . . ,N). However, there do not occur
1
16 -BPS states.

The case •bd for R-symmetry scalars is trivial, since also all other quantum numbers are zero
(d = j1 = j2 = z = 0).

3.2 R-symmetry non-scalars

Here we need some additional notation. Let N > 1 and let i0 be an integer such that 0 ≤ i0 ≤
N −1, ri = 0 for i ≤ i0 , and if i0 < N −1 then ri0+1 > 0. Let now i′0 be an integer such that
0 ≤ i′0 ≤ N −1, rN−i = 0 for i ≤ i′0 , and if i′0 < N −1 then rN−1−i′0

> 0.1

With this notation the cases of R-symmetry scalars occur when i0 + i′0 = N −1, thus, from now
on we have the restriction:

0 ≤ i0 + i′0 ≤ N −2 (3.8)

Now we can make a list for the values of κ , with the same interpretation as in the previous
subsection, only the last case is added here.

• a d = da = 2+2 j2 + z+2m1 −2m/N > 2+2 j1 − z+2m/N ,

j1, j2 arbitrary,

κ = 1+ i0(1−δ j2,0)≤ N −1 . (3.9)

Here are eliminated the anti-chiral generators X+
3,4+k , k ≤ κ . We need κ = N/4, thus, N =

4+ i0(1−δ j2,0). We have the following 1
16 -BPS cases:

j2 = 0 ⇒ N = 4 (3.10a)

j2 ̸= 0 ⇒ N = 4+4i0 ⇒ N = 4s,s = 1,2, ..., i0 = s−1 (3.10b)

• b d = db = z+2m1 −2m/N > 2+2 j1 − z+2m/N ,

j2 = 0 , j1 arbitrary,

κ = 2+2i0 ≤ 2N −2 . (3.11)

1Both definitions are formally valid for N = 1 with i0 = 0 since r0 ≡ 0 by convention and with i′0 = 0 since
rN ≡ 0 by convention.
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Here are eliminated the anti-chiral generators X+
3,4+k , X+

3,4+k , k ≤ 1+ i0 . We need κ = N/4, thus,
we have:

N = 8+8i0, ⇒ N = 8s, s = 1,2, ..., i0 = s−1 (3.12)

• c d = dc = 2+2 j1 − z+2m/N > 2+2 j2 + z+2m1 −2m/N ,

j1, j2 arbitrary,

κ = 1+ i′0(1−δ j1,0)≤ N −1 . (3.13)

Here are eliminated the chiral generators X+
1,4+k , k ≤ κ . We need κ = N/4, thus, N = 4+ i′0(1−

δ j1,0). We have the following cases:

j1 = 0 ⇒ N = 4 (3.14a)

j1 ̸= 0 ⇒ N = 4+4i′0 ⇒ N = 4s,s = 1,2, ..., i′0 = s−1 (3.14b)

• d d = dd = 2m/N − z > 2+2 j2 + z+2m1 −2m/N ,

j1 = 0, j2 arbitrary,

κ = 2+2i′0 ≤ 2N −2 . (3.15)

Here are eliminated the chiral generators X+
1,4+k , X+

2,4+k , k ≤ 1+ i′0 . We need κ = N/4, thus, we
have:

N = 8+8i′0, ⇒ N = 8s,s = 1,2, ..., i′0 = s−1 (3.16)

• ac d = dac , z = j1 − j2 +2m/N −m1 , j1, j2 arbitrary,

κ = 2+ i0(1−δ j2,0)+ i′0(1−δ j1,0)≤ N . (3.17)

Here are eliminated chiral generators X+
1,4+k , k ≤ 1 + i′0(1 − δ j1,0) , and anti-chiral generators

X+
3,4+k , k ≤ 1+ i0(1−δ j2,0) .

We have the following 1
16 -BPS cases:

j1 = j2 = 0, ⇒ N = 8 (3.18a)

j1 = 0, j2 ̸= 0, ⇒ N = 8+4i0 (3.18b)

j1 ̸= 0, j2 = 0, ⇒ N = 8+4i′0 (3.18c)

j1 ̸= 0, j2 ̸= 0, ⇒ N = 8+4i0 +4i′0 (3.18d)

• ad d = dad , j1 = 0 , z = 2m/N −m1 −1− j2 , j2 arbitrary,

κ = 3+ i0(1−δ j2,0)+2i′0 ≤ 1+N + i′0 ≤ 2N −1 . (3.19)

9
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Here are eliminated chiral generators X+
1,4+k , X+

2,4+k , k ≤ 1+ i′0 , and anti-chiral generators X+
3,4+k ,

k ≤ 1+ i0(1−δ j2,0) .
We have the following 1

16 -BPS cases:

j2 = 0, ⇒ N = 12+8i′0 (3.20a)

j2 ̸= 0, ⇒ N = 12+4i0 +8i′0 (3.20b)

• bc d = dbc , j2 = 0 , z = 2m/N −m1 +1+ j1 , j1 arbitrary,

κ = 3+2i0 + i′0(1−δ j1,0)≤ 1+N + i0 ≤ 2N −1 . (3.21)

Here are eliminated chiral generators X+
1,4+k , k ≤ 1 + i′0(1 − δ j1,0) , and anti-chiral generators

X+
3,4+k , X+

4,4+k , k ≤ 1+ i0 .
We have the following 1

16 -BPS cases:

j1 = 0, ⇒ N = 12+8i0 (3.22a)

j1 ̸= 0, ⇒ N = 12+8i0 +4i′0 (3.22b)

• bd d = dbd = m1 , j1 = j2 = 0 , z = 2m/N −m1 ,

κ = 4+2i0 +2i′0 ≤ 2N . (3.23)

Here are eliminated chiral generators X+
1,4+k , X+

2,4+k , k ≤ 1+ i′0 , and anti-chiral generators X+
3,4+k ,

X+
3,4+k , k ≤ 1+ i0 .

We have the following 1
16 -BPS cases:

N = 16+8i0 +8i′0 (3.24)

In the next Section we shall use the above classification in order to resent explicitly the more
interesting 1

16 -BPS cases.

4. Explicit presentation of 1
16 -BPS states

As we saw in the previous section we need to have N ≤ 4 in order to have 1
16 -BPS states. Thus,

below se start with N = 4.

4.1 SU(2,2/4)

The most interesting case is when N = 4, then κ = N/4 = 1. Group-theoretically the case N = 4
is special also since the u(1) subalgebra carrying the quantum number z becomes central and one
can invariantly set z = 0, i.e., consider the case PSU(2,2/4).

We give now the explicit list of these states.

10
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•a d = d1
41 = 2+2 j2 +2m1 + z− 1

2 m > d3
44 . The last inequality leads to the restriction:

2 j2 + r1 + z > 2 j1 + r3 . (4.1)

Thus, for the signature of the 1
16 -BPS states we have:

χ = [d = 2+2m1 + z− 1
2 m ; j1 , 0; z ; r1 ,r2 ,r3], j2 = 0, z > 2 j1 + r3 − r1 (4.2)

Here is annihilated the anti-chiral generators X+
3,5. This case is possible also for PSU(2,2/4), i.e.,

to set z = 0 except for R-symmetry scalars (since that would require 0 > j1).

•c d = d3
44 = 2+2 j1 − z+ 1

2 m > d1
41 =⇒

2 j1 + r3 − z > 2 j2 + r1 , (4.3)

Thus, for the signature of the 1
16 -BPS states we have:

χ = [d = 2+2 j1 − z+ 1
2 m ; j1 , 0; z ; r1 ,r2 ,r3], j1 = 0,−z > 2 j2 + r1 − r3 , (4.4)

Here is annihilated the chiral generator X+
1,5. This case is possible also for PSU(2,2/4), i.e., to set

z = 0 except for R-symmetry scalars (since that would require 0 > j2).

4.2 SU(2,2/8)

The 1
16 -BPS cases for SU(2,2/8) are given as follows:

• a d = da = 2+2 j2 + z+2m1 −m/4 > 2+2 j1 − z+m/4 ,

j1, j2 arbitrary,

κ = 1+ i0(1−δ j2,0) . (4.5)

Here are eliminated the anti-chiral generators X+
3,4+k , k ≤ κ . We have κ =N/4= 2, i0 = 1, j2 ̸= 0.

We have the following 1
16 -BPS cases:

χ = [d = da ; j1 , j2 ̸= 0; z ; 0 ,r2 ̸= 0 , ...,r7] (4.6)

• b d = db = z+2m1 −m/4 > 2+2 j1 − z+m/4 ,

j2 = 0 , i0 = 0, j1 arbitrary,

κ = N/4 = 2 . (4.7)

Here are eliminated the anti-chiral generators X+
3,5 , X+

4,5. The signature is:

χ = [d = db ; j1 , 0; z ; r1 ̸= 0 ,r2 , ...,r7] (4.8)
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• c d = dc = 2+2 j1 − z+m/4 > 2+2 j2 + z+2m1 −m/4 ,

j1, j2 arbitrary,

κ = 1+ i′0(1−δ j1,0) . (4.9)

Here are eliminated the chiral generators X+
1,4+k , k ≤ κ . We have κ = N/4 = 2, i′0 = 1, j1 ̸= 0.

We have the following 1
16 -BPS cases:

χ = [d = dc ; j1 ̸= 0 , j2 ; z ; r1 , ...,r6 ̸= 0,r7 = 0] (4.10)

• d d = dd = m/4− z > 2+2 j2 + z+2m1 −m/4 ,

j1 = 0, i′0 = 0, j2 arbitrary,

κ = N/4 = 2 . (4.11)

Here are eliminated the chiral generators X+
1,5 , X+

2,5 . The signature is:

χ = [d = dd ; 0 , j2 ; z ; r1 , ...,r7 ̸= 0] (4.12)

• ac d = dac = 2+ j1 + j2 +m1 , z = j1 − j2 +m/4−m1 ,

κ = 2+ i0(1−δ j2,0)+ i′0(1−δ j1,0)≤ N . (4.13)

Here are eliminated chiral generators X+
1,4+k , k ≤ 1 + i′0(1 − δ j1,0) , and anti-chiral generators

X+
3,4+k , k ≤ 1+ i0(1−δ j2,0) .

We have the following 1
16 -BPS cases:

j1 = j2 = 0, (4.14a)

j1 = 0, i0 = 0 (4.14b)

j2 = 0, i′0 = 0 (4.14c)

i0 = 0, i′0 = 0 (4.14d)

In all cases from (4.13) follows that κ = 2. The signatures are correspondingly as follows

χac
a = [d = dac ; 0 , 0; z ; r1 , ...,r7] (4.15a)

χac
b = [d = dac ; 0 , j2 ; z ; r1 ̸= 0 , ...,r7] (4.15b)

χac
c = [d = dac ; j1 , 0; z ; r1 , ...,r7 ̸= 0] (4.15c)

χac
d = [d = dac ; j1 , j2 ; z ; r1 ̸= 0 , ...,r7 ̸= 0] (4.15d)

Case χac
a is possible for R-symmetry scalars.
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