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1. Introduction

The heavy ion program of the ATLAS experiment at the Large Hadron Collider (LHC) [1] is
rich and encompasses systems of different sizes. In the large collision systems, Pb+Pb and Xe+Xe,
it explores the phenomenon of jet quenching in quark-gluon plasma (QGP) and its dependency on
the sub-structure, color charge, or quark flavour of jets; this is reviewed in Sec. 2. In the small
collision systems, pp and p+Pb, the program focuses on the origin of collective effects, formation
of quarkonia, and the mechanism behind the jet modification; this is discussed in Sec. 3. Further-
more, photon–photon (γ+γ) and photonuclear collisions are studied by using intense photon fluxes
accompanying Pb+Pb collisions. It leads to the measurements of the γ+γ-fusion cross sections,
nuclear parton distribution functions (nPDFs), and searches for physics beyond the StandardModel;
this is described in Sec. 4.

2. Large Systems

The imbalance of the di-jet system is quantized with the transverse momenta of the jets as
xJ = psubleadingT /pleadingT . The measurement in Pb+Pb collisions at √sNN = 5.02 TeV [2] shows
an emergence of a peak structure at xJ ≈ 0.6. Only after examination the absolutely normalized
results, shown in Fig. 1, it becomes apparent that the peak is a consequence of large suppression
of di-jets with xJ & 0.8 and relatively lower suppression of di-jets with smaller xJ . The di-jet
imbalance in Xe+Xe collisions [3] is consistent with the one obtained in Pb+Pb collisions when
accounting for the same energy in the forward calorimeter and correcting for higher center-of-mass
energy in Xe+Xe collisions.

The dependence of the partonic energy loss on jet substructure is studied across multiple
lengths. At small lengths, the constituents of anti-kt (R = 0.4) jets [4] are re-clustered using
Cambridge–Aachen algorithm. Subsequently, a soft-drop procedure is used to identify the first hard
splitting within the jet. The nuclear modification factor, RAA, is studied with respect to the angle
between these two sub-jets, rg [5]. For fixed rg, RAA exhibits a relatively weak dependence on jet
pT, as illustrated in Fig. 2. Because the inclusive RAA tends to increase as pT increases, it means
that the jets with smaller rg are more prevalent among high-pT jets.

At larger lengths, large anti-kt (R = 1.0) jets are clustered from smaller anti-kt (R = 0.2)
jets [6]. Here, the kt jet algorithm is utilized to identify the hardest splitting. Figure 3 shows the
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Figure 1: Absolutely normalized xJ distributions
in pp collisions and for five centrality intervals
in Pb+Pb collisions [2]. Statistical uncertainties
are shown as vertical bars (often smaller than the
markers); systematic uncertainties are shown as
boxes. Fully correlated uncertainties due to the
pp luminosity and 〈TAA〉 are listed in legends.
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Figure 2: Nuclear modification factor, RAA, as a function of
jet pT for soft-drop groomed jets in four intervals of rg [5].
Groomed jet RAA values are compared with RAA values
of jets without significant splitting (rg = 0) and inclusive
jets (without grooming). Vertical bars represent statistical
uncertainties, whereas boxes represent bin-wise correlated
systematic uncertainties. Fully correlated uncertainties due
to the pp luminosity (1.6%) and 〈TAA〉 are not shown.
:

Figure 3: Nuclear modification factor, RAA, for R = 1.0
re-clustered jets as function of ∆R12 in four centrality inter-
vals [6]. The label “SSJ” on the x-axis identifies the single
sub-jet configuration. The vertical bars indicate statistical
uncertainties, the shaded boxes indicate systematic uncer-
tainties. The fully correlated uncertainties due to the pp
luminosity and 〈TAA〉 are represented by boxes at unity. :

RAA dependence on the angular separation of the two sub-jets before the final clustering step of
R = 1.0 jet. There is a discernible distinction between scenarios where only a single sub-jet is found
(“SSJ”), indication of coherent parton radiation, and cases where at least two sub-jets are found
(∆R12 & 0.2) and partons radiate decoherently. Due to limitations in experimental resolution, it is
not possible to measure the region where these two effects would overlap, namely ∆R12 . 0.2.

Even larger lengths can be probed in photon + multi-jet events [7]. The di-jet system is
compared to the recoiled photon. The separation between the two jets is denoted as ∆RJJ. Figure 4
shows that the energy loss is less pronounced for small values of ∆RJJ and more pronounced for
large values.

The dependence of the nuclear modification factor RAA on the quark flavour is studied in
Ref. [8]. To reconstruct jets, the anti-kt (R = 0.2) algorithm is used and possible b-jets are
identified through the presence of a muon. The energy of b-jets is corrected to account also for
missing neutrinos. As seen in Fig. 5, the suppression of b-jets is comparable to that of inclusive
jets in the peripheral Pb+Pb collisions. In the central collisions, b-jets experience about 20% less
suppression.

The production of bottomonia states, Υ(1S), Υ(2S), and Υ(3S), is also modified in Pb+Pb
collisions [12]. The measurement uses µµ decay channel and Fig. 6 presents the relevant nuclear
modification factor measurement. With increasing centrality, and thus increasing 〈Npart〉, the pro-
duction of Υ states becomes more suppressed. This suppression can be attributed to a combination
of energy loss and Debye screening.

Production of charged hadrons is suppressed in heavy ion collisions as well [14]; this is shown
in Fig. 7. In both Pb+Pb and Xe+Xe collisions the suppression is stronger with higher values of

3



P
o
S
(
H
a
r
d
P
r
o
b
e
s
2
0
2
3
)
0
0
2

ATLAS Results on Hard and Electromagnetic Probes in Heavy-Ion Collisions Petr Balek

Figure 4: ∆RJJ in photon plusmulti-jet events in Pb+Pb col-
lisions in 0-10% centrality interval and in pp collisions [7].
Statistical and systematic uncertainties are plotted as verti-
cal bars and shaded boxes, respectively. Also shown are the
predictions of the JEWEL model for pp events and Pb+Pb
events, scaled by a factor of 1.2. The ratio of the Pb+Pb to
pp distributions is shown in the bottom panel.
:

Figure 5: RAA for b-jets for the centrality 0-20% compared
with the inclusive jet RAA [8]. Statistical and systematic
uncertainties are plotted as vertical bars and shaded boxes,
respectively. The boxes at unity represent the uncertainties
from 〈TAA〉 and pp luminosity. Both measurements are
compared to theoretical calculations [9–11]. :
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Figure 6: Nuclear modification factor for Υ(1S), Υ(2S),
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:

Figure 7: Nuclear modification factor for charged particles
as a function of 〈Npart〉 for selected ranges of pT measured in
Pb+Pb and Xe+Xe collisions [14]. Systematic uncertainties
are shown with brackets; statistical uncertainties are shown
with vertical lines. The horizontal widths of the brackets
represent systematic uncertainties on 〈Npart〉. : 0 100 200 300 〉
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Figure 8: The v2 (left) and v3 (right) values as a function of centrality for charged particles in selected pT
ranges [15]. The statistical uncertainties are shown as vertical bars, the systematic uncertainties with boxes.

〈Npart〉. For a fixed 〈Npart〉, the two collision systems do not yield the same level of suppression.
Understanding azimuthal anisotropy in heavy ion collisions is also crucial for comprehending

QGP. Figure 8 shows measurement of elliptic and triangular flows, up to high-pT [15]. The scalar
product method [16] is used to eliminate contributions arising from jets. When compared to similar
observables measured for jets [17], the values of v2 are positive in both cases, even at high pT.
However, values of v3 are consistent with zero, whereas for jets, the positive v3 values are observed.
A possible explanation lies in a different η ranges of the results.

3. Small Systems

In contrast to Pb+Pb or Xe+Xe collisions, there is no jet quenching expected in p+Pb collisions.
Nevertheless, there might be some less obvious modifications of jet kinematics present. Figure 9
compares the tracks produced per jet in p+Pb and pp collisions [18]. On the away side, their ratios
are consistent with unity, while on the near side, there is an enhancement of approximately 5%. This
is consistent with a theoretical prediction [19, 20] that does not include final-state effects producing
collectivity or jet quenching.

A detailed study of di-jet production in p+Pb collisions is presented in Fig. 10 in different
ranges of di-jet boost, yb, and the half of rapidity separation, y∗ [21]. The central-to-peripheral
ratio, RCP, reveals a suppression in the di-jet yield measured in central p+Pb collisions compared
to peripheral ones. For the momentum fraction of the proton, xp, the observed suppression follows
the same trend in almost all (yb, y∗) ranges. No such trend is present for the Pb momentum fraction,
xPb.

While the presence of the azimuthal correlations iswidely acknowledged in heavy ion collisions,
their presence in pp collisions was not expected. To shed more light onto this phenomenon,
Fig. 11 shows a measurement of v2 in pp collisions for two particle–particle selections [22]. The
correlations are evaluated using either only particles from the underlying event (“hUE-hUE”) or by
pairing a particle from the underlying event with a particle from a jet (“hUE-hJ”). While the first
pairing yields a significant non-zero v2, the second one yields v2 consistent with zero. This suggests
a “factorization” between hard-scattering processes and the physics responsible for the ’ridge’ effect.
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Measurement of Υ production in high-statistics pp collisions is presented in Fig. 12, featuring
precise subtraction of pile-up events and underlying-event contributions [23]. It shows that as
the collision multiplicity increases, the likelihood of observing Υ(2S) and Υ(3S) states diminishes
compared to the ground state Υ(1S). This suggests a possible correlation between the underlying
event and the hard scattering process.

4. Ultra-Peripheral Collisions

The nature of heavy ion collisions provides an opportunity to also study the electromagnetic
interaction between nuclei. To gain a deeper understanding of the photon flux in such collisions,
exclusive di-lepton production is studied [24, 25]. The cross sections of γγ → e−e+ and γγ → µ−µ+

are shown on Figs. 13 and 14, respectively. The measurements are compared to STARlight [26]
and SuperChic 3 [27] event generators.

Additionally, the exclusive di-lepton production can be also utilized in searches for physics
beyond the StandardModel. Ameasurement of di-τ production can set constraints on the anomalous
magnetic moment, aτ [28]. The extracted limits on aτ are shown in Fig. 15. They are consistent with
the StandardModel prediction and have comparable precision as reported by DELPHI collaboration
at LEP [29].

Di-leptons produced via γγ scattering are also present even when hadronic hard-scattering
process has occurred. A study focusing on di-muons produced in non-ultra-peripheral collisions is
presented in Ref. [32] and shown in Fig. 16. With increasing centrality, a broadening of the di-muon
acoplanarity, α, distribution is observed along with a depletion at low α. The same features are also
seen in theoretical calculations [33, 34].

A measurement of di-jet photoproduction in ultra-peripheral Pb+Pb collisions is shown in
Fig. 17 [35]. The cross section is measured differentially with respect to the scalar sum of the

7



P
o
S
(
H
a
r
d
P
r
o
b
e
s
2
0
2
3
)
0
0
2

ATLAS Results on Hard and Electromagnetic Probes in Heavy-Ion Collisions Petr Balek

10
 [GeV]eem

2−10

1−10

1

10b/
G

eV
]

µ [
ee

dm
σd

ATLAS

=5.02 TeVNNsPb+Pb 
-1 0n0n L=1.72 nb-e+ e→γγ

Data 2018
STARlight
STARlight 0n0n
SuperChic

 [GeV]eem

0.5
1

1.5

D
at

a 
/ M

C

10 20 30 40 50

Figure 13: Differential cross sections measured inclusively
in ZDC categories for exclusive di-electron production as a
function of mee [24]. The data are compared to the predic-
tions from Starlight [26] and SuperChic 3 [27]. The bottom
panel present the ratios of data to the predictions. The shaded
area represents the total uncertainty of the data, excluding
luminosity uncertainty.
:

Figure 14: Differential cross sections shown as a function of
|yµµ | compared with cross sections from STARlight [25, 26].
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Figure 16: Differential cross sections as a function of α for γγ → µµ pairs passing the Fid-α selection in
selected centrality intervals [32]. Vertical bars indicate combined statistical and systematic uncertainties,
excluding the background subtraction uncertainties, which are indicated by a shaded band at zero, and overall
normalization uncertainties, which are quoted on each panel as “Scale". Also shown are the results of
’QED’ [33] and ’PWF’ [34] theoretical calculations.
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Figure 17: Triple-differential cross sections for di-
jet photoproduction as a function of xA for differ-
ent bins of HT [35]. Systematic uncertainties are
shown as shaded boxes, while statistical uncertain-
ties shown as vertical lines are usually smaller than
the size of the markers. A comparison is shown to
the cross sections computed using PYTHIA 8 with
nCTEQ PDFs, a photon flux from Starlight, and a
zγ-dependent breakup fraction.

jet transverse momenta, HT, the nuclear parton momentum fraction, xA, and the photon parton
momentum fraction, zγ. This detailed measurement will help to constrain nuclear PDFs.

5. Summary

In the 11th International Conference on Hard and Electromagnetic Probes of High-Energy
Nuclear Collisions, the ATLAS experiment presented a diverse range of new results, utilizing
data recorded during Run 2 of the LHC. This includes the exploration of the jet substructure and
interaction between partons and QGP in large systems, investigation of QGP-like behaviour in small
systems, and using ions as a source of photons of high intensity for searches of physics beyond the
Standard Model.
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