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Jets are suppressed and modified in heavy ion collisions, which serve as powerful probes to the
properties of the quark-gluon plasma (QGP). Attributed to the abundant information carried by
the jet constituents and reconstructed substructures, plenty of interesting applications of machine
learning techniques have been made on a jet-by-jet basis to study the jet quenching phenomena.
Here we review recent proceedings on this topic including the tasks of reconstructing jet momentum
in heavy ion collisions, classifying quenched jets and unquenched jets, identifying jet energy loss,
locating the jet creation points as well as distinguishing between quark- and gluon-initiated jets in
the QGP. Such jet-by-jet analyses will allow us to have a better handle on the jet reconstruction
and selections to investigate the effects of jet modifications and push forward the long-standing
goal of jet tomographic probes of the QGP.
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1. Introduction

QCD predicts that nuclear matter will form a new state of matter, i.e., quark-gluon plasma
(QGP) at high temperature and density where quarks and gluons are deconfined from hadronic
matter to form a strongly-coupled viscous fluid. The experiments of relativistic heavy ion collisions
are conducted at RHIC and LHC to explore the nature of the new state of matter. In high-energy
particle collisions, jets are collimated sprays of hadrons generated in a hard QCD process. While in
heavy ion collisions, energetic partons will lose energy via the interactions with the QGP during their
passage. The lost energy will hadronize and be redistributed around the energetic partons. These
processes will quench the jet energy and modify the jet substructures. Besides, the interactions of
QGP with high-energy partons will also generate the excitation or response of the medium. Mach
cones are also expected to form in the expanding QGP when the energetic partons traverse the hot
medium at a velocity faster than the speed of sound. Eventually some particles from the medium
will stay inside the jets, which poses a challenge to the background subtraction of jets in heavy ion
collisions. With such interesting interplay between jets and the QGP, high-energy hadrons or jets
are employed as unique probes to the properties of the QGP [1, 2]. Jet quenching is clearly manifest
when calculating the ratio of the yields of high-energy hadrons or jets between those measured in
heavy ion collisions and proton-proton collisions [3–5].

Additionally, one can also study the medium modifications of jets by analyzing their substruc-
tures, again usually done by comparing the results of jets measured in nucleus-nucleus collisions
against those measured in proton-proton collisions. However, when comparing the quenched jets
and unquenched jets at the same final, measured energy range, one needs to take into account the
presence of a selection bias. Due to the steeply falling jet spectrum, jets losing too much energy will
be under-represented after imposing the selection criteria. In other words, the selected, surviving
jet samples generally possess the characteristics of the jet substructures that tend to lose less energy,
hindering in this way our interpretation about what true medium-induced modifications of jet sub-
structures are. These ambiguities affecting a typical analysis could be mitigated if one can estimate
the jet energy loss on a jet-by-jet basis, which allow us to classify and select them according to their
degree of modification.

Towards a tomographic study of the QGP using jets, more jet-by-jet analyses are highly
requested in many aspects to tackle the complicated jet-medium interactions. On the one hand,
the QGP could have different fluctuating spatio-temporal profiles of temperature and density due
to the relativistic collisions of different nucleus with different collision energy and overlapping
geometry. On the other hand, jets could be initiated with energetic partons of different flavors,
(transverse) momentum and energy at different positions inside the QGP. Then they could develop
substructures in the early stage before the medium effects jump in and traverse different lengths
through the regions of different temperature inside the QGP according to their orientations. If one
can effectively pin down these early-stage uncertainties of jet partons before the quenching, the
capabilities of jets for a tomographic study of the QGP will be enhanced to an unprecedented level.

In recent years, machine learning, especially deep learning techniques, have shown powerful
capabilities on the data analysis. These novel techniques are good at digging out hidden correlations
from big data, achieving widespread success in physics [6–12]. In particular, attributed to the rich
information carried by the jet constituents, machine learning has been widely applied in the studies
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of jets in high-energy physics [13], such as QCD/W jet tagging, top jet tagging, quark/gluon
jet classification and heavy-flavor jet classification. In these studies, various types of jet data
representations and neural network architectures have been employed to make use of the information
from jet constituents and various reconstructed substructures as much as possible, such as using the
jet image with convolutional neural network (CNN), using the jet primary Lund plane with recurrent
neural network (RNN), using the jet declustering history tree with recursive neural network (RecNN)
and using four momentum information of jet components (point cloud) or jet Lund plane with graph
neural network.

In relativistic heavy ion collisions, machine learning techniques are also applied in the study
of jet quenching with the above motivations, including reconstructing the jet momentum [14–19],
distinguishing between quenched and unquenched jets [20–23], identifying the jet energy loss [24–
26], locating the jet creation points [27] and classifying quark and gluon jets in the heavy-ion
collisions [28, 29]. In the following, we will review the applications of machine learning on these
topics and give an outlook for the future studies.

2. Reconstruction of jet momentum in heavy ion collisions

In heavy ion collisions, the background fluctuations from the QGP medium pose huge chal-
lenges to the reconstruction of jet momentum. The conventional standard method for the "uncorre-
lated" background subtraction is area-based. The momentum of reconstructed jet is estimated by
𝑝rec

T, jet = 𝑝raw
T, jet − 𝜌 · 𝐴, which makes use of the event-averaged background density 𝜌 and jet area

𝐴. "Uncorrelated" here means that the effect of jet-medium interaction is not taken into account.
This conventional method is based on an event-by-event analysis. The density of the low-energy
background particles 𝜌 is derived from the median density of the clusters of low-energy particles
other than the jet in the event of heavy ion collision. This background subtraction method brings
large residual fluctuations, especially posing huge challenges for the momentum reconstruction of
jets with 𝑝𝑇 < 100 GeV and large-radius.

With machine learning methods, R. Haake and C. Loizides reconstruct the momentum of jets
observed by the ALICE detector, where only charged particles can be observed at that time [14].
The jet samples generated by the PYTHIA 6.4 model [30] are embedded in the QGP background
particles simulated by a simple thermal model, where the multiplicity distribution of the particles
satisfies a realistic Gaussian distribution, and the momentum distribution is a modified power law
distribution. The true value of the jet momentum after the background subtraction 𝑝true

T, ch jet is defined
by considering the momentum fraction of the PYTHIA particles in the reconstructed jet,

𝑝true
T, ch jet = 𝑝raw

T, ch jet ·
∑︁
𝑖

𝑝PYTHIA
T, const 𝑖/

∑︁
𝑖

𝑝T, const 𝑖 . (1)

Several machine learning methods, including shallow neural networks, random forests and linear
regression, are employed to reconstruct the jet momentum with subtracting the QGP background
𝑝rec

T, ch jet in a supervised learning manner. Various jet observables are taken as inputs, including
the uncorrected jet momentum, the jet momentum corrected by the area-based method, several jet
shapes observables, the number of constituents within the jet, mean and median of all constituent
transverse momenta, and the transverse momenta of the first 10 hardest particles within the jet. It is
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found that, since the machine learning methods consider both the density of background particles
and the characteristics of the jet itself, i.e., a jet-by-jet analysis, their new results are superior to
that of the established standard area-based method. It’s verified that the trained neural network
estimator is robust to thermal background of different multiplicities and anisotropies and allows
for the application on the measurement of jets down to extremely low transverse momentum, e.g.,
20 GeV, or of different jet resolution parameters. Besides, despite observing a small bias towards
the jet fragmentation function, the ML-based methods are shown to be generalizable to the low 𝑝𝑇

jet samples simulated by the HĲING model [31]. Afterwards, the bias towards the fragmentation
of PYTHIA jets have been investigated in more detail with several different modifications and the
toy thermal model in [16, 18], which demonstrates the robustness of the ML-based method to such
possible bias. With the verification, the ML-based method has been applied to the experimental
data in ALICE for charged jets and full jets [15–18].

To address the interpretability of the above ML-based method [14], T. Mengel et al. develop
a multiplicity-based method as an alternative to the area-based method to subtract the background
from jets in heavy ion collisions [19]. In this method, 𝑝rec

T, jet = 𝑝raw
T, jet − 𝜌Mult · (𝑁tot − 𝑁signal),

where 𝑁tot is the total number of particles in the jets, 𝑁signal is the number of particles in the signal
other than the background and 𝜌Mult is the mean transverse momentum per background particle in
an event. This multiplicity method shows a lower variance of momentum residual than the area
method and gives comparable performance with that of the neural network in Ref. [14]. With
the help of symbolic regression as an interpretable machine learning method, the authors argue
that the trained neural network in Ref. [14] is using a relationship similar to the multiplicity-based
method. Furthermore, they emphasize the advantage of the interpretable machine learning methods
in providing clear understanding of the methods especially when applied outside the range of the
training data and estimating the measurement uncertainty.

In the above studies, the jet-medium interaction or the correlated background has not been
considered. How to reasonably define the jet momentum in such a more realistic scenario and apply
machine learning methods for its reconstruction should be further studied in the near future.

3. Discriminating between quenched and unquenched jets

In order to investigate the modification effects of jets in the QGP, several groups have carried
out research to distinguish between unquenched jets and quenched jets based on MC simulations
with different machine learning methods [20–23]. In such a classification task, the labeling of the
samples is straightforward and clear. In this section we will review these works.

To explore how different deep learning methods discriminate between the quenched and un-
quenched jets, L. Apolinário et al. use several neural network architectures and jet data repre-
sentations to classify the unquenched and quenched jets [20] with the 𝑍 + jet samples generated
by the Monte Carlo generator JEWEL 2.0.0 [32]. The underlying events and recoil scattering are
ignored in their study. They use CNN, RNN and fully-connected neural networks with jet image, jet
primary sequence of Lund plane and two jet observables (jet transverse momentum and number of
jet constituents), respectively, as inputs for the classification task. With these setups, they achieve
the best classification performance with CNN taking the unnormalized jet image as the input and
the second best with RNN taking Lund plane as the input. Different jet data representations carry
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different physical information. This comparison helps us understand how deep learning identifies
the type of jets. Besides, since the 𝑍 + jet samples are considered, the ratio of the transverse
momentum between the jet and the 𝑍 boson 𝑥 𝑗𝑍 = 𝑝𝑇, 𝑗𝑒𝑡/𝑝𝑇,𝑍 can serve as an effective measure
of the jet quenching degree. The correlations between the outputs of these neural networks and 𝑥 𝑗𝑍

are examined to conclude that these neural networks can effectively serve as the classifiers of jet
quenching.

In Ref. [21], L. Liu et al. use a long short-term memory (LSTM) neural network to classify the
unquenched jets generated by PYTHIA 8 and the quenched jets generated by JEWEL. They take
the primary Lund sequence of jets as inputs for this classification task. To take into account the
effect of uncorrelated thermal background for the quenched jets, underlying events are embedded
properly in both event generators. To tackle the non-determinism of the raw outputs with respect
to different trained LSTM models, the authors design a calibration method accordingly. With the
identification of quenched jets, the modifications of jet substructures by the quenching effect are
investigated by looking at the top 40% and bottom 60% quenched jets, respectively. The quenched
class (top 40%) shows obvious modifications of jet substructures with the enhancement of wider
and softer splitting. While the less quenched class (bottom 60%) shows a similar quenching pattern
with the unquenched jets.

To identify the important features with high discriminating power for the quenching effects,
Y. S. Lai et al. classify the unquenched jets generated by PYTHIA 8 [33] and the quenched jets
generated by JEWEL 2.2.0 with the Particle Flow Network (PFN) [34] and Energy Flow Network
(EFN) [34], taking IRC-unsafe and IRC-safe jet observables as inputs for this classification task [22].
It is found that the PFN gives better classification performance, which shows that a large amount of
jet quenching information is contained in IRC-unsafe physics. Besides, dense neural network (DNN)
and linear classifier are used for this classification task, taking complete sets of IRC-safe observables,
i.e., N-subjettiness [35, 36] and Energy Flow Polynomials (EFP) [37] as inputs. Through a detailed
comparative study with different number of observables, it’s demonstrated that a large amount of
jet quenching information is contained in the soft radiations within the jets, which is consistent
with the observation in Ref. [24]. They also design the novel analytical observables which are
highly-discriminating and understandable. In addition, the changes in classification accuracy when
including and then subtracting the background in heavy ion collision are presented. It is found that
including the background will significantly reduce the classification accuracy while subtracting the
background will slightly reduce the accuracy further. On the one hand, the verification shows that
part of the jet quenching information is irreversibly lost in the presence of the QGP background,
which poses a challenge for the further applications of deep learning techniques to the realistic
experimental data. On the other hand, the difference between the classification performance before
and after the background subtraction can serve as a measure of the capability of different background
subtraction schemes to retain relevant information and help us select and optimize the background
subtraction schemes.

In Ref. [23], M. C. Romão et al. perform three analyses to study the correlations between jet
substructures for quenched and unquenched jet samples using JEWEL+PYTHIA, respectively, and
check their robustness to the quenching effects. Firstly, the authors employ the Principal Component
Analysis (PCA) method in an unsupervised manner to study the linear correlations between 31 jet
substructures and find that the first 10 principal components can explain 90% of the distributions
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of all observables. Secondly, they use the AutoEncoder method also in an unsupervised manner
to capture the non-linear correlations between these observables and find that 10 latent degrees
of freedom can encode almost full information while 5 ones are enough to capture above 90%
information. Besides, compared with principal components, same number of latent degrees of
freedom learned in AutoEncoder can give systematically better quality of jet reconstruction, which
highlights the importance of non-linear correlations between jet observables. Thirdly, they use
Boosted Decision Trees (BDT) method to check the discriminating power of specific and pairs
of observables between unquenched and quenched jets compared with the full set. The identified
observables can serve as the optimal candidates for taggers of quenching effects. Last but not least, it
is found that, though the robustness of correlations among jet substructures to the quenching effects,
quenching effects manifest themselves by the strong population migration of these observables.

4. Identifying jet quenching degree

Compared to unquenched jets, quenched jets actually have a larger diversity, which is mainly
due to the fact that the degree of jet modifications are affected by the in-medium traversed length
of jets and the temperature of medium along the propagation of jets. In this sense, unquenched
jets can be viewed as the quenched jets with vanishing in-medium traversed length. Therefore,
though it is worth trying to find a classifier that separates these two types of jets maximally, the
physical interpretation on the outputs of the trained neural networks is unclear, which hinders their
applications on the experimental data. Compared with the task of distinguishing between quenched
jets and unquenched jets, switching to identify the degree of in-medium modifications of jets could
be more experimentally applicable in the future.

We use CNN to predict the jet energy loss on a jet-by-jet basis with the jet image in a supervised
manner [24, 25]. A hybrid strong/weak coupling model [38, 39] is used to simulate the energy
loss process of jets in the QGP created in Pb-Pb collisions. The amount of energy loss, quantified
through the ratio variable 𝜒 ≡ 𝑝𝑇/𝑝initial

𝑇
suffered by jets due to the propagation through a hot and

dense QCD medium. 𝑝𝑇 is the transverse momentum of a given jet in the presence of a medium
with cone size 𝑅, and 𝑝initial

𝑇
is the transverse momentum of the same jet had there been no medium,

see [24] for further details on how to establish such a correspondence. A good prediction accuracy
on the energy loss ratio 𝜒 is achieved after the training and validating of the neural network.

From the average jet images normalized by jet 𝑝𝑇 sliced in several different 𝜒 bins, one can
clearly see that as the jet energy loss increases, more soft particles gradually populate at large angle
within the jet, which provides an intuitive understanding of the success for our prediction task. In
addition to using jet images as input, we also use some jet observables and their combinations as the
inputs to fully-connected neural networks to perform the same task in parallel for comparison and
interpretation [24]. These jet observables include jet fragmentation function (JFF), jet shape, and
some single-value jet observables, such as jet 𝑝𝑇 , jet mass 𝑀 , jet multiplicity and some groomed
jet substructures 𝑧𝑔, 𝑛𝑆𝐷 , 𝑅𝑔, 𝑀𝑔. It is found that the performance given by the jet fragmentation
function, jet shape and jet features increase. If combining jet fragmentation function and jet shape
as inputs, their performance will be closer to the performance given by the jet image normalized by
𝑝𝑇 . If all these observables are used as inputs, they can reproduce the performance given by the jet
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image. This can provide an indirect interpretation for the success of CNN prediction using the jet
image as the input.

With the prediction of jet energy loss at hand, many interesting applications are allowed to
make. Usually one selects jets according to their final, measured energy (FES), such that they are
above a certain momentum threshold, 𝑝𝑇 > 𝑝cut

𝑇
. By estimating the energy lost by the jets in the

medium, one can have an initial energy selection (IES) instead, i.e., 𝑝initial
𝑇

> 𝑝
cut,initial
𝑇

(at the same
time we also require 𝑝𝑇 > 𝑝cut

𝑇
to ensure that it is within the scope where the neural network is

trained. As long as 𝑝
cut,initial
𝑇

is sufficiently higher than 𝑝cut
𝑇

, we are actually considering all the
jets of 𝑝initial

𝑇
> 𝑝

cut,initial
𝑇

). We show that this novel selection method can effectively remove the
selection bias induced by the final-state interaction of the jets with the QGP, which helps us to reveal
the quenching effects on jet substructures, e.g., 𝑧𝑔, 𝑛𝑆𝐷 and 𝑅𝑔 [24], as well as get access to the
genuine spatial distribution and the possible initial-state anisotropy of the jets over the transverse
plane of the nuclear collision [25].

5. Jet tomographic study of quark gluon plasma

As aforementioned, jet energy loss is strongly related to the traversed length of jets in the QGP.
That is to say, selecting the jet samples that lose different degrees of energy is actually selecting
the jet samples created at different positions of the QGP. We demonstrate this picture within the
strong/weak hybrid coupling model where the creation positions of jets are taken from the Monte
Carlo simulations directly. By looking at the creation-point distributions of the jets in the transverse
plane of collisions sliced in different energy loss ratio 𝜒 bins, one can find that the jets that lose little
energy is mainly distributed in the surface of the QGP. As the energy loss increases, the creation
positions of jets are gradually distributed towards the central area of the QGP. It is worth noting
that for the jets that lose a lot of energy, their creation positions will be away from the central
area again, and they will pass through the central area in the opposite direction to obtain a longer
traversed distance or traverse the areas with higher temperature [24]. This picture can be seen more
clearly if one only considers the jets with certain direction [25]. Besides, constraining the measured
jet substructures additionally will allow us to have a finer selection of the creation positions of
jet samples [24, 26]. The above observation serves as an important step forward towards the jet
tomographic study of QGP.

In Ref. [27], Z. Yang et al. employ a point cloud neural network to locate the initial jet
production positions directly with the full information of the final hadrons inside the jets and the
global information of 𝛾 and jet in 𝛾-jet events in heavy-ion collisions. The training of the neural
network is done on the jet samples from the CoLBT-hydro model [40] and the generalizability is
examined on the jet samples from the LIDO model [41]. The validating and testing errors with
the form of root mean square are around 2.2∼2.4 fm, respectively. With the prediction of initial
jet production locations, the signal of Mach cone and diffusion wake in the expanding QGP can be
amplified by selecting jet samples within specific spatial regions to have long jet traversed lengths
with the known propagation direction relative to the radial flow. This deep learning assisted jet
tomography will help confirm the existence of Mach cones in experimental data. Besides, one can
use this method to investigate the path length dependence of jet energy loss form the measured 𝛾-jet
𝑝𝑇 distributions.
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6. Discriminating between quark and gluon jets in heavy ion collisions

Quark- and gluon-initiated jets could become independent probes since their partonic origins
experience different evolution, both in vacuum and medium. In vacuum, their microscopic processes
and corresponding splitting functions are different. The splitting angle of gluon are larger on average,
which indicates a larger phase space for the medium-induced radiative energy loss. In addition, the
in-medium traversed length dependence of quark and gluon partonic energy loss is different with
a color factor. Therefore, with the same traversed length, the gluon jets will lose more energy on
average than quark jets and they will be modified by the medium differently.

To use quark and gluon jets as independent probes to the QGP, it would be interesting to explore
the differences between these two types of jets and classify them [28, 42]. If one can select purer
samples of quark and gluon jets, it will help us pin down the dependence of energy loss of jets
with different flavor on the in-medium traversed length, and push forward the jet tomographic study.
Another reason for distinguishing between quark and gluon jets is to check the universality of energy
loss for different processes, e.g. comparing dĳet events (with a mix of quark- and gluon-initiated
jets) with boson-jets (where the parton recoiling from the boson is predominantly a quark).

In Ref. [28], Y.-T. Chien and R. K. Elayavalli use physics-motivated jet observables, jet image
and jet substructures defined by the telescoping deconstruction (TD) method, respectively, as inputs
to identify the quark and gluon jets in the pp and Pb-Pb collisions generated by JEWEL. Both CNN
and the TD method can give the best classification performance. Furthermore, it is found that for
the quenched jets in heavy ion collisions, the discriminating performance of the TD method will
decrease due to the significantly increased soft particles that affect the jet substructures.

In Ref. [29], we use deep learning techniques to perform a similar task with the strong/weak
hybrid model. By looking at the average of 𝑝𝑇 -normalized quark and gluon jet images sliced in
different energy loss ratio 𝜒 bins, one can find that with the increase of energy loss, quark jets and
gluon jets show the same qualitative characteristics, i.e., there are more soft particles populating at
large angle in the jet cone. But the quantitative characteristics is different. Losing the same fraction
of energy, gluon jets look wider than quark jets, and there are more soft particles at large angle area.
In fact, the gluon jets losing a certain amount of energy, i.e. at a given 𝜒𝑔 look like quark jets that
lost significantly more energy, i.e. with a 𝜒𝑞 ≪ 𝜒𝑔. We employ a CNN to classify the quark and
gluon jets from jet images. It is found that, overall, the accuracy of classifying quark and gluon jets
in the medium is a bit lower than that in the vacuum, and the decrease of accuracy depends on the
fraction of the quenched jets. It can also be inferred from the results of classification for quenched
jets with different 𝜒, i.e., the greater the energy loss is, the more difficult the classification is. This
observation agrees with that in Ref. [28].

7. Summary and Outlook

In this proceedings, we have comprehensively reviewed the applications of machine learning
techniques in jet quenching physics, including the background subtraction for jet momentum re-
construction in heavy ion collisions, distinguishing between quenched jets and unquenched jets,
determining the degree of jet energy loss and the initial jet creation positions in QGP and classifying
quark jets and gluon jets in heavy ion collisions. On the bases of these studies, many interesting
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applications have been made, including revealing the genuine modifications of jet substructures due
to quenching effects, getting access to the spatial and angular distribution of the initial jets produc-
tion in the transverse plane of collisions and amplifying the signal of Mach cone and diffusion wake
induced by the jets in the expanding QGP.

In the future studies, it is very essential to embed the correlated fluctuating background in
the simulated jet samples to mimic the realistic scenario and examine the generalizability of some
applications between different jet quenching Monte Carlo models, which are crucial to their final
applications to the experimental data. In addition, many interesting applications deserve to be
explored in the near future, such as directly determining the traversed length by the jets in the QGP
to pin down the path-length dependence of jet energy loss, reconstructing the substructures of the
twin vacuum partner of the quenched jets to build up the one-to-one correspondence in the aspects
other than the transverse momentum. In these tasks, novel types of neural network architectures
associated with jet data representations and quantum machine learning method are worth exploring
to improve the performance and get better generalizability.
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