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The physics of gravitational waves

1. Prerequisites

These notes assume familiarity with Einstein’s equations, which in units with G = ¢ = 1 can
be written as
Guy = 8nTy,, €))

with G*Y the Einstein tensor and T#” the matter stress energy tensor. It may be useful to recall that
because of the Bianchi identity V,G*¥ = 0, the stress energy tensor satisfies the “conservation”
equation V, T#” = 0 on shell.
For a perfect fluid, in the (— + ++) signature that we will use throughout these notes, the stress
energy tensor takes the form
" = (p + p)ut'u” + pgh”, )

where u* is the 4-velocity of the fluid element, p the energy density and p the pressure. With this
ansatz, the conservation of the stress energy tensor implies

g—i =—=(p+p)Vuu*, 3)
with 7 the fluid element’s proper time, and
with a# = u”V,u* the 4-acceleration and
yH =g +utu” ®)

the projector on the hypersurface orthogonal to u*. Let us recall that Eq. 3 simply encodes the
conservation of energy, while Eq. 4 generalizes the Newtonian Euler equation. In particular, for
p = 0 the relativistic Euler equation reduces to the geodesic equation a* = 0.

It is worth recalling that the stress energy tensor can be defined in terms of the functional
derivative of the matter action, i.e.

THY — i%_ (6)
V=8 68 y13%
For a point particle of mass m, the action is simply given by
Spp = —m / ar 7

where the integral is along the trajectory. By varying this action with respect to the trajectory, one
obtains the geodesic equation a# = 0, while the functional derivative with respect to the metric

yields
utu

T = \/%5(3) (55 - )?(z)) )

ut =’
with X (t) the trajectory. This stress energy tensor can be mapped into that of a perfect fluid with
p = 0 (dust). The same clearly applies to a collection of point particles. We can therefore conclude
that for point particles, the geodesic equation is implied by the conservation of the stress energy
tensor.
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Finally, let us recall that the “divergence” or “focusing” of neighboring geodesics is described
by the geodesic deviation equation. More precisely, given a family of geodesics x* (v, 7) labeled by
a parameter v and the proper time 7, let us introduce the separation vector v# = (dx* /dv)dv joining
two neighboring geodesics with parameters v and v + 6v. This vector then satisfies the geodesic
deviation equation

D2yH
— RH a, By
a2 - Rapyt v ©)
with RZ By the Riemann tensor and D/dr the covariant derivative along the four velocity.
Exercise 1: From the action of a point particle, S = —m f dt, derive the geodesics equations

by varying with respect to the trajectory, and the stress energy tensor by varying with respect to the
metric.

2. The propagation and generation of gravitational waves

2.1 Linear perturbations on flat space

Let us start by considering generic vacuum perturbations 4, of a flat background spacetime.
The perturbed spacetime’s metric at linear order is therefore given by

Zuv =My + My gt =gtV — ", (10)

where indices are meant to be raised and lowered with the Minkowski metric 77,,. We will now
derive the (linearized) Einstein equations for the metric perturbation 4, .
Let us first recall that the gauge group of GR is given by diffeomorphisms, i.e. coordinate
transformations. Under a transformation ¥ = ¥#(x), the metric transforms as
0x® OxP

Sy (A(x)) = —— X). 11

gyv( ( ) T ax.vgozﬁ( ) (11)
If the coordinate transformation is “infinitesimal”, ¥ = x* + &# with ,,6# < 1, a Taylor expansion
of Eq. 11 implies that the metric perturbation transforms as

il,uv = huv _-Efnyv = huv _aﬂfv_avf,u- (12)
where L, is the Lie derivative along the vector field &.
Let us use this gauge freedom to impose the Lorenz gauge condition

8 h*” =0, (13)

where we have introduced the trace-reversed metric perturbation h wv = huy — %hnﬂy, with i =
Nuvyh*” the trace. Note that this condition is also known as de Donder gauge condition, or also
as harmonic gauge condition (as it can be easily proven that it is equivalent to Ox¥ = 0, where
0 =n""d,0, is the flat space d’Alembertian and the x¥ are scalar functions defining the coordinates).
In this gauge, it is straightforward to show that the linearized Ricci tensor is

1
Ry :_EDhMV' (14)
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The Einstein equations can be written in the two equivalent forms
1 1
R,y — ERg”V =8nTyy, © Ry =8n|T, - ETg“V . (15)
From the second expression, the linearized equations can therefore be written as
1 -
Ohyy = =167 | Ty — ETgw & Ohy, =-161T,, , (16)

respectively in terms of /,,,, and h uv- Invacuum (7, = 0), both quantities satisfy the homogeneous
wave equation
Ohyy = Ohy, = 0. (17)

From this, it can already be seen that the metric perturbations (i.e. gravitational waves) on flat space
travel at the speed of light.

Let us now further investigate how many independent components/propagating degrees of
freedom the metric perturbation has. In principle, a symmetric rank-2 tensor has 10 independent
components. The Lorenz gauge condition is a vector equation and removes 4 of them, and hence
one would expect 6 degrees of freedom. However, let us note that the Lorenz gauge condition does
not fix completely the gauge. In fact, let us consider a metric perturbation £, that respects the
Lorenz condition, and let us perform an infinitesimal change of coordinates. According to Eq. 12,

one has ~
h v = h y = 0 y — av )
~,U u & Eu (18)
h=h-298,&",
and thus _
By = by — 0y — 0yvEp + Ny 0aé®. (19)
We therefore see that .
Ot = 9, h*” — OgY (20)

Clearly, if one starts with a perturbation in the Lorenz gauge, any gauge related to the original one
by harmonic generators (i.e. ones such that O&* = Q1) still satisfies the Lorenz gauge condition. In
other words, the Lorenz gauge is defined up to a harmonic gauge generator.?

Let us now exploit this residual gauge freedom to simplify the (trace reversed) metric pertur-
bation BW in vacuum. Since the latter satisfies Df_z,,,, = 0, it can be decomposed, without loss of
generality, in planes waves:

By (x) = Ayye " 4 cc., 1)

where c.c. denotes the complex conjugate, A, is a constant polarization tensor, and k* is a
null-vector (k&% = 0). Similarly, the (residual) gauge generator must satisfy O&* = 0, and thus

EF(x) = BHekeX" 4 cc. | (22)

1This terminology derives from the fact that the d’Alembertian is the Minkowskian generalization of the (Euclidean)
Laplacian V2 = 5 8;0 ;. In vector analysis, a function that satisfies the Laplace equation v2 f = 0 is called harmonic.
This is because the eigenfunctions of the Laplacian on the sphere are called “spherical harmonics”, since they are the
higher dimensional analog of the Fourier basis, consisting of sines and cosines, which describes harmonic motion.

2This is also obvious because as mentioned above, the harmonic gauge condition can also be written as Ox* = 0.
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where again k k¢ = 0 and B* is a constant vector. Imposing now the condition 13, one finds that
kA, =0, (23)

i.e. the wavevector must belong to the null space of the polarization tensor.
Considering now for simplicity a wave propagating along the z axis, i.e.

0o 0

k=—+—, 24
ot 0z )
Eq. 23 yields
A" = AV, (25)
Evaluating the transformation given by Eq. 19 for = ¢ and v = i, one also finds
;lti = hy — 0i&i — 0iér = hyi — iszieik“xa - ikiBzeik"xa . (26)

from which it follows th_at we can choose B; such that }:z,l- = 0. Moreover, the condition 25 for v = i
implies A,; = 0 (since h,; = 0 and thus A,; = 0). Evaluating the same condition for v = ¢, one has
instead A" = A%’ = (0. Looking the gauge transformation for the trace,

h=h=20,& = h-2ik,B"e ", @7

one can finally see that by an appropriate choice of B’ one can set /1 = 0.
In light of the above, the residual gauge freedom allows one to write the polarization tensor as

0 0 0 O
0 hy hy O

Ay = ) 28

(Apev) 0 hy —h, O (28)
0 0 0 0

The conclusion is that gravitational waves propagating on flat space have only two independent
transverse polarizations, i.e. there exist only two propagating degrees of freedom.

2.2 Linear perturbations on curved space

Let us now generalize the previous calculation to a generic curved background. Again, the
spacetime metric is given by the background metric g,, and a perturbation /,,, and the trace
reversed perturbation can be defined as l_im, = hyy — %hg#y, with h = hy,,g"". Indices are
understood to be raised and lowered with the background metric. Choosing the Lorenz gauge
condition V, h*v = 0, where V is the covariant derivative compatible with the background metric
guv and linearizing the Einstein equations, one finds [2]

ORP + 2R, PR*Y + 8, R = —167TF, (29)
where O = gVV,V,,, R, is the (background) Riemann tensor and

Spavp =2G u(a8p)y = Ruv8ap = 28uvGap - (30)
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In vacuum R, =T}y = Gy = Suavp = 0, and Eq. 29 becomes
0h% + 2R LR =0, (31)

Note in particular the coupling between gravitational waves and the background’s Riemann tensor,
which affects their propagation (i.e. gravitational waves can be scattered by the curvature and can
therefore also travel inside an observer’s lightcone).

Let us again count the physical (propagating) degrees of freedom in vacuum. After fixing
the gauge, h,, still has, in principle, 6 independent components. However, proceeding like in the
flat background case, one easily finds that in vacuum the Lorenz gauge leaves a residual gauge
freedom, namely one can always perform a gauge transformation with a harmonic generator (i.e.
a generator £ obeying O&# = 0) and still preserve the harmonic gauge condition. Under a gauge
transformation, the metric perturbation transforms as

ilyv = hﬂv _-Egguv = huv _V/,té:v _Vvé:,u’ (32)
hence the trace transforms according to /1 = h — 2V, &H. Let us first try to set the trace h = 0 using
the residual gauge freedom of the Lorenz gauge. That would require choosing &# such that

VM - g =0 (33)

throughout the whole spacetime.

To see if this requirement is compatible with the Lorenz gauge condition’s residual freedom,
let us note that the generators of the latter must obey O&# = 0O and are therefore completely
characterized by the initial conditions to this wave equation, i.e. £ (¢ = 0,x") and 8,# (¢ = 0, x).
It is not a priori obvious that by choosing these initial conditions properly, Eq. 33 can be satisfied
in the whole spacetime. However, taking a d’Alembertian of Eq. 33, an involved calculation using
the trace of Eq. 31 and O&H = 0 yields

h

. (V,,gﬂ , E) _o. (34)

Therefore, for Eq. 33 to be satisfied in the whole spacetime, we just need to impose V¥ — h/2 =
0;(V,éH —h/2) = 0 att = 0. This can be attained by choosing the initial conditions & (¢ = 0, xb)
and 0,&#(t = 0, x") characterizing the residual gauge freedom [3].

In conclusion, also in curved spacetime the trace of the metric perturbations can be set to
zero in the Lorenz gauge. However, showing that only two non-zero components (2, and hy)
survive, like in Minkowski space, is in general not possible. We will shed light on this fact in
the next section, where we will do perturbation theory in a slightly different way, by exploiting a
scalar-vector-tensor-decomposition of the metric perturbation. As we will see, there will still be
just two propagating degrees of freedom for the gravitational field, but additional non-propagating
potentials will be present, including and generalizing the Newtonian potential.

2.3 Linear perturbations on flat space: a scalar-vector-tensor decomposition

To gain more insight on the degrees of freedom of the metric perturbation, let us go back to the
case of a flat background spacetime. Let us introduce a book-keeping parameter € < 1 and write
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8uv = NMuy + €hy,,. Moreover, let us describe matter by the perfect fluid stress energy tensor
" =€[(p+p)uru” +pgh]. 35)

One can then split the components of the metric perturbation according to their transformation
properties under spatial rotations. For instance, h;, is a scalar under rotations, h;; a vector, h;; a
tensor. Moreover, we can perform a Helmholtz decomposition of the vector into the gradient of a
scalar plus a divergenceless vector (i.e. a curl), and similarly decompose the tensor into two scalars,
a divergenceless vector and a transverse traceless tensor. As a result, one has [3-5]

hye =2,
hyi = 6,~y +B; with 5iﬁi =0,
1 1. T (36)
hij = §H6ij +6(isj) + (8,'6]' - géijv )/l + hij ,
with 9;’ = 0 and 9;h"" =0 = K" TE.

Here, spatial indices are understood to be raised and lowered with the Euclidean metric 6;;; ¢,
¥, H and A are scalars under spatial rotations; 8 and & are divergenceless vectors and AT is a
transverse (0;hT"" = 0) and traceless tensor. One can easily verify that the number of degrees
of freedom of this decomposition is correct. For instance, h;; has three independent components,
which correspond to y (one degree of freedom) and S; (two degrees of freedom). Similarly, 4;; has
6 independent components, which correspond to the scalars A and H (one degree of freedom each),
the divergenceless vector g; (two degrees of freedom) and the transverse traceless tensor 4211/ (two
degrees of freedom). Moreover, one can verify that these decompositions are uniquely defined (up

to boundary conditions). For instance, to obtain y we can compute
dihei = V2y +0i; = V7, (37)
and we can formally invert this expression to obtain
y =V (8:hi) . (38)

Here V=2 is the inverse of the (Euclidean) Laplacian, which is well defined if boundary conditions
are given for y (e.g. it is reasonable to assume that y decays “fast” at large distances to preserve
asymptotic flatness) and which can be expressed explicitly in terms of a Green function (see below).
Once v is determined, 5; can be computed as

Bi = hei = 8; [V72 (9ihi)] - (39)
Similarly, one can show that the decomposition of 4;; is well defined and unique by computing hi
él-hif and él-ajhif.
A similar decomposition can be performed on the stress energy tensor [3],
T = p,
T, =06;S+S; withg;S' =0,
1, (40)
Tij = pé,’j +(‘)(,-0'j) + 8,'3]' - géijV 0'+O','j,

with 8;0' =0 and 9;0” =0 =",
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where p, S, p, o are scalars, S; and o; divergenceless vectors and o7;; a transverse traceless tensor.
Similarly, the generator £ of infinitesimal coordinate transformations can be expressed as

£ =A,

; . ; (41)

fl =90;,C+B;, withd;B'=0

with A and C scalars and B; a divergenceless vector.
By using this decomposition for the generator in Eq. 12, we obtain [3]

b = ¢+0A, 42)
Bi = PBi—0:B;, (43)
y = y+A-4,C, (44)
H = H-2V’C, (45)
1 = a1-2C, (46)
éi = & — ZBi . (47)
hi'o= hl (48)

First, let us notice that hl.TjT is gauge invariant. Moreover, one can remove two scalars and one
divergenceless vector by a suitable choice of A, C and B;. For instance, one can choose to remove
v, A and g;, so that

hie =24,

hii = Bis (49)
1

hij = §H6ij + h;r]T

This particular choice is called Poisson gauge, and unlike the Lorenz gauge, it fixes completely the
coordinates at linear order (i.e. there is no residual gauge freedom).

Alternatively, one can construct particular combinations of the scalar and vector potentials that
are gauge invariant (recall that hl.TjT is already gauge invariant). These are Bardeen’s gauge invariant
variables [5], i.e.

1
Y ==¢+dy - 5004,

1 2
=_ - 50
0 3(H V/l), (50)
1
Zi=pBi— 53“91',

which reduce respectively to —¢, H/3 and 3; in the Poisson gauge. Thus, using the Poisson gauge
is exactly equivalent to using Bardeen’s gauge invariant variables.

We can now express the linearized Einstein equations in terms of the Bardeen variables (or
alternatively compute them in the Poisson gauge). For the Einstein tensor we obtain [3]

Gtt :—VZG,
Gui = —~V2%, - ,0,0
ti—_z i — ViotU, (51)

1 1 1
Gij = —EDhiTjT = 0a0,%)) = 50:0; (2 +6) + 6 5v2 QQy +6) — 026
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with O the flat d’Alembertian. Decomposing also the right-hand side (i.e. the stress energy tensor),
we find that for the ##-component of the equations one has

Gy =81l & V0 =-8np. (52)

From the ti-components one then has
1
0= G”' - 87TTn‘ = (—6,6,0 - 87T6,S) + (—Eszi - 87TSi) . (53)

where the first term in round brackets is the scalar part and the second is the (divergenceless) vector
part. Since the Helmholtz decomposition of a vector is unique, in order for this equation to be
satisfied both terms must vanish, i.e.

00 +81S=0,
(54)
IV2%; + 878 =0.
The same procedure can be applied to the spatial components:
1
0=G;; —8rT;; = —E(DhiTjT +1670y;) — [0:0,2 ) + 810 })]
0 1 8
- 3,0, (¢ o 8770') +0i; 5V2 2y +6) — 8760 + gﬂVZO' - 87p| , (55)
leading to
Onj! = ~16n03;,
0;2; +8no; =0,
- ! (56)

W+ % +8mo =0,
2 0y _ 342 —
v (lﬁ+7) —56,8— 127Tp—0
Let us consider now the energy conservation and relativistic Euler equations, which we have seen
to follow from the conservation of the matter stress-energy tensor, d, 7" = 0. Decomposing this

vector equations in two scalar equations and one equation for a divergenceless vector in the (by
now) usual way, one gets [3]

V23S = 9, p,
33
Vo =-Zp+=4,S 57
o 2p+2 i S, (57)
Vo = 26,S;.

These equations can be used to simplify the Einstein equations 52, 54 and 56. In particular, as
expected from the Bianchi identify, one can show explicitly that three of those equations (one
involving a divergenceless vector and two involving scalars) are automatically satisfied on shell (i.e.
if the matter stress energy conservation is enforced). The remaining Einstein equations can then be
written as [3]

V20 = —8np (1d.o.f.),

V2 =4n (p +3p —30,5) (1d.o.f), 58)
V2%, = -167S; (2 d.o.f’s),

Ohll = ~16n0y, (2d.o.fs).

10
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These are six independent equations for the six gauge invariant degrees of freedom of the metric
perturbation. As can be seen, only the transverse traceless tensor modes (i.e. the gravitational waves)
are propagating, while the scalar and vector modes are not, as they satisfy elliptic (Poisson-like)
equations.

The solution of the Poisson equation can be easily written in terms of the Laplacian’s Green
function. Let us recall indeed the distributional identity,

1
V2— = 4763 (), (59)
|x]
which implies that the Laplacian’s Green function is proportional to 1/|X — X’|. We can then write,

for instance,
p(t.X)
X - X

0(1,%) =2 dx’, (60)

which resembles the Newtonian potential (as we will further discuss later on). Far from a localized
source, we can then approximate |X — X’| ~ |X| = r and write

o 2 =
0(,X) ~— / &Ex'p (1,7). (61)
r
It is tempting to call “mass” the integral of p, M = f d3xp. We can in fact see that this quantity is
conserved: d

and using the conservation of the stress-energy tensor (Eq. 57) one has

%( / d3x) = / V2SS dx = / VS - i d2s, (63)

where in the last equality we used Gauss’ theorem to reduce the integral to the flux of VS through a
surface at infinity with normal unit vector 7. If there is no matter at infinity, V.S vanishes, proving

the conservation of the “mass”. Solving in a similar way the equation for ¢ one gets
. 1 M
0 -1 [ @ pesp-305 -2, (64)
r

r

with M = f d*x (p +3p — 30;S). Using the conservation of the stress-energy tensor (Eq. 57), we
can prove that

M-M= / d&x’ (3p - 38) = —2/ Vio &y’ =0, (65)

where in the last step we used again the absence of matter at infinity. This proves that M = M. For
Y; we obtain

4
S~ — / S;dx’, (66)
r
and with similar steps one finds that
n; = / S;d>x’, (67)

which physically describes the linear momentum of the source, is conserved.

11
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In summary, the scalar and vector gauge invariant Bardeen variables present a Newton-like
behavior, i.e.

0~ —, (68)

As will become clearer from the post-Newtonian (PN) formalism, these three non-propagating
degrees of freedom generalize the Newtonian potential (), and encode relativistic effects such as
periastron precession and light bending (¢) and frame dragging (%;).

2.4 Generation of gravitational waves: a first derivation of the quadrupole formula

Let us consider now not the propagation, but the generation of gravitational waves from matter
sources, by solving
TT
Oh;; = -16m0y; . (69)

This will lead us to a first derivation of the quadrupole formula. We will then highlight some
shortcomings of this derivation, which will be amended in section 3.

The solution of Eq. 69 can be obtained in terms of retarded potentials. The Green function of
the flat space d’Alembertian O = —9? + V? is

. 1 .
G (1,X) = —mé (t=1x]) , (70)

which indeed satisfies the distributional identity
0G (1,%) = 5(1)sP (%) . (71)

The solution can then be written as

oii (1= X =%, %
Wl (%) =4 / i (1] | )d3x’. (72)

X =%

In order to find the source o;; from the stress-energy tensor, we have to invert the Eq. 40. To this
purpose we can formally define the projector

Pij=6ij— V72,0, (73)

and write
1
o = (Pikle - EPiijl) T (74)
Using the fact that partial derivatives commute and thus V=29; = 9;V~2, one can show that Eq. 74

implies 6,0/ = 0 and O'ii =0, i.e. Eq. 74 correctly defines the transverse and traceless part of the
matter stress energy tensor. We can therefore write

1
h’ll‘;T = —167TD_10'ij = —1671":'_1 (Pikle - EPiijl) Tkl- (75)

12
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Because the flat d’Alembertian and partial derivatives commute, we can then proceed to write
1
hl=—-16n (Pikle — EPiij’) 0Ty =
1 Tia (t = X =3[, X")
=4|prpP! - -p;P" / d’x’ = 76
( i J 2 J |.£ _ )-Ct,l X ( )
1
1+0 (—)] ,
’

where in the last step, besides approximating |X — X’| with r = |X|, we have also commuted 1/r

4 1
== (P[."le—EPiijl)/Tkl (t—|x=X1,%)d

with the projectors, which is appropriate at leading order in 1/r. Moreover, in the last step we can
approximate, up to subleading terms in 1/r,

Pij ~ 6ij — ninj, (77

where n; = x;/r is a unit vector in the direction of the observer. Defining P, jkl = PikP jl - %Pi ijl,
one can write this “Green” formula in more compact form as

4 a4 4 ’
h;l;T = ;Pijkl Tkl ([ - |x - X | , X )d3x . (78)

To go from this equation to the quadrupole formula, one can note that from the conservation
of the stress energy tensor (in flat space) it follows that

G (T"x'xT) = 217 + 9y (Tx'x! ) = 205 (T™%a7 + TR ). (79)
Using this equation, and neglecting surface terms that vanish if the source is confined, Eq. 78 then
becomes )

hl.TjT = ;Pijkl 07 (T”x'kx’l) dx’. (80)

Defining the inertia tensor
I = / d*x p x'ix"7 81)

and the quadrupole tensor

1

Qij = Iij = 3163 (82)

where [ = [ ii, we finally arrive at the “quadrupole formula”

2G

BT — 2=
Yooty

P, 0w, (83)
where = = d/dr and we have reinstated G and ¢ for physical clarity.

While this final result looks reasonable, two key assumptions were used to derive it, namely (i)
linear perturbation theory and (i) the conservation of the stress energy tensor on flat space. Neither
of these assumptions is justified for a compact binary system, as (i) the spacetime is not a perturba-
tion of Minkowski space near black holes or neutron stars, and (i) 0,T#” = 0 implies the geodesic
equation in flat space (cf. section 1), which in turn implies straight line motion (which clearly
cannot describe quasicircular binary systems). In fact, when applying the Green and quadrupole

13
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formulae to binary systems one gets into paradoxes such as that described in the next exercise. This
shows that a better, more rigorous treatment of gravitational wave generation is needed, which will
prompt us to go beyond linear theory in the next section.

Exercise 2: Consider an equal-mass, Keplerian binary (i.e. a binary with large separation,
for which the laws of Newtonian mechanics are applicable) on a circular orbit on the (x, y) plane,
and an observer (far from the source) along the z axis. Compute the gravitational-wave signal
according to the “Green formula” of the lectures, and according to the quadrupole formula. Show
that the amplitudes of the two predictions differ by a factor 2.

2.5 Dimensional analysis

Let us try to derive the quadrupole formula from dimensional arguments. A matter source can
be characterized by its multipole moments, e.g. the mass monopole M = f p d3x, the mass dipole
D! = f px' dx, the mass quadrupole Q; j» the angular momentum (i.e. the first moment of the
mass current) L; = f peijk x/ vE d3x etc. Since metric perturbations are dimensionless, one can
try to write a monopole gravitational wave signal using dimensional analysis as 7 ~ GM/(rc?),
a dipole signal as & ~ GD/(rc®) ~ GP/(rc?) (where P is the linear momentum), an angular
momentum term /& ~ GL/(rc*). These terms are zero (or static) because of conservation of mass,
linear momentum and angular momentum. The quadrupole term, again by dimensional analysis, is
instead & ~ GQ/(rc*). Note that radiation sourced by the mass monopole and dipole and by the
angular momentum can be present beyond GR, because in that case the mass, linear momentum and
angular momentum of matter may not be conserved (due to exchanges with additional gravitational
degrees of freedom different from the tensor gravitons). Similarly, the static scalar and vector
degrees of freedom of Eq. 68 will generally become dynamical beyond GR.

3. Post-Newtonian expansion

In order to assess which of the two expressions for the generation of gravitational waves (the
quadrupole formula or the “Green formula”) is correct, let us take a small detour. We will now study
perturbations of flat space not by expanding in the perturbation amplitude (like we did previously),
but in powers of 1/¢ (with ¢ — o). This is known as post-Newtonian (PN) expansion, and will
allow us to re-derive the quadrupole formula in a more rigorous way.

3.1 The motion of massive and masseless bodies

Let us start by writing the following ansatz for the metric:

80i = —3 (34)

)(51']'+/m

8ij s
J c2

Il
—_
— <
|
[\
<

c2

where y;; is traceless ( Xii = 0) and we have used Cartesian coordinates x* = (ct,x’). Latin indices
are meant to be raised and lowered with the flat spatial metric 6;;. Note that we have reinstated ¢
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(which was set to 1 in the previous sections), as that will be our book-keeping parameter. Before
venturing into the actual calculation, let us note that the choice of powers of ¢ appearing in Eq. 84
is exactly the one that will be needed to consistently solve the Einstein equations (i.e. should we
choose different powers, the Einstein equations would set the potentials to zero, or they would not
allow for a consistent solution). However, it is possible to make sense of this ansatz also in a more
physical way.

Let us consider a point particle moving in the geometry described by Eq. 84. From the point
particle action (Eq. 7), one can obtain the Lagrangian (by recalling that by definition S = / Ldr).
By replacing therefore Eq. 84 into Eq. 7, one obtains

d
S = —mc2/ d_:dt = —mc/ =gy XHXVde

2wV 2 nay
=—mc/\/02+2¢—w—lzv—(l——f)v2—xu—2dt
c c c

12 & 2 2 oyt iy
~ —mczf (l+ ¢ Y ¢ idd + v Y nw X )dt,

¢z 2c¢2 2¢* 24 ot 8¢t ct 2c4

(85)

where v = & = dx'/dt, v? = 6;;v'v/, and in the last step we have Taylor expanded in 1/c (for
¢ — o0). The Lagrangian for a point particle therefore reads

+ +
2¢2 2¢2 2 8?2 2 2c2

2 (v2 ) ( e v v Xijvivj) . 36)
As can be seen, in the limit ¢ — oo the ansatz of Eq. 84 leads to the correct Newtonian limit
(note the appearance of the Newtonian Lagrangian after the irrelevant constant offset term), as well
as to deviations from the Newtonian Lagrangian that are suppressed by O(1/c?) relative to the
Newtonian dynamics. These are known as 1PN corrections (where nPN denotes terms that are
suppressed by 1/c" relative to the leading order Newtonian term).

Note however that this counting is only applicable to massive particles, and not to photons (for
which v ~ ¢). In the latter case, the terms Yv?/c?, $v*/(2¢?) and y;jv'v/ /(2¢?), which are of order
1PN for a massive particle, are of order OPN (i.e. Newtonian order). In more detail, one can write
the Lagrangian from photons as L oc d7/dt, which using Eq. 84 leads to

R 2 QiR
Lx\/l—ﬁ2+2£2—2w’ﬁ +2(//18 _leﬁﬁ]
C

c3 c? c?
Y inf 1
=\/1—ﬁ2+@(2¢+2l//ﬁ2—)(ij,3ﬁ])+0(c—3), (87)

with 8/ = vi/c and y = 1/4/1 — 82. In other words, the bending of light in GR is determined at
leading order by both ggo (¢) and g;; (¥ and y;;), but not by go; (w;). The same can be seen,
e.g., by using Eq. 84 into the dispersion relation for a photon, p#p¥g,, = 0, with p# = (E, pY)
the 4-momentum, and solving for the energy E to derive the Hamiltonian describing the photon’s
motion.
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3.2 The Einstein equations

Let us now compute the potential appearing in the metric from the Einstein equations. To do
so, let us first perform the usual scalar-vector-tensor decomposition on the metric ansatz of Eq. 84:

w; = 0w+ a)l-T,
1 (88)
Xij = (3i5.i - §5i.iV2) X+ 06X+ Xig

where the index “T” identifies divergenceless (i.e. transverse) vector fields and “TT” transverse and
traceless tensors. Let us first adopt the same gauge that we used in linear theory, i.e. the Poisson
gauge, defined by

0=0;0w' =d:x", (89)
which yields w = y = )(l.T = 0. Let us also describe matter as a perfect fluid with stress energy

tensor
T = (p + pchutu” + pgh”, (90)

with u!/u® = vi/c [and therefore u® = 1 — (¢ — v?/2)/c? + O(1/c*) because of the 4-velocity
normalization]. Using then the Einstein equations, in which we reinstate ¢ to obtain G, =
81T,/ c*, one gets the following equations for the potentials [6]:

v=s+0(5). on
C
V2wl = 4(4mpvi + g0) + O (iz) , ©2)
C
p 2 v\2 3 1
Vo =an (35 40) + Sosousm (2) - Jo.v0( L), )
1

As a consistency check, note that by taking the divergence of Eq. 92, both sides evaluate to zero: the
left hand side because a)iT is transverse, and the right hand side because of the continuity equation
for the number density, which at leading (Newtonian) order reads d,p + 8;(pv’) = 8,V2¢/(4n) +
0;(pv') = 0. (This is because the rest mass density and the energy density differ by the internal
energy p/[c*(I" — 1)], with T the adiabatic index; see e.g. [6].)

One can then write

b=on+ P 95)

¢:¢N+‘/’z%+..., (96)
. . a)i

wh = Wiy + CZZPN +.., 97)

ij ij
Xij _ XopN +X2.5PN
TS T2 3

+..., (98)

where ¢y is the Newtonian potential (obtained by solving V2 ¢N = 4np), and we have left indicated
the terms that appear at 1PN order and higher in the Lagrangian for massive particles derived in
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the previous section. These PN terms can be obtained explicitly by solving Egs. 91-94 and their
higher order generalizations. In particular, one can show explicitly that the leading order term for
X;!T appears at O(1/c?) (2PN order in the Lagrangian for massive particles). This is a conservative
term (as it is of even parity in c, i.e. it is left unchanged by a time reversal). However, a dissipative
term appears at O(1/c?), i.e. at 2.5 PN order. This corresponds to the loss of energy and angular
momentum to gravitational waves (see e.g. [6] for details).

One unsightly feature of the Poisson gauge is however apparent from Eq. 93, which features
a double time derivative of ¢ on the right-hand side. That term corresponds to 9, in Eq. 58, i.e.
one can re-express it in terms of the matter density by writing it as =3¢, /c*> = =122V 2p ;,/c* +
O(1/c*) = -1278 ;/c*+O(1/c*). That requires, however, solving a non-local equation to compute
V~2p. A better option is to eliminate the term —3¢ ;,/c? by performing a gauge transformation
with generator &y o 9,X, where X = —2V~2¢ is the Newtonian “superpotential” [7] (see also the
appendix of [9]). This leads to the “standard PN gauge”, which is defined exactly as a gauge in
which the 1PN spatial metric is isotropic (i.e. x;; is zero at 1PN, which we have seen to be already
the case in our Poisson gauge) and in which no term proportional to ¢ ;, appears at 1PN in the
equation for V2¢ [7, 8].

Even more simply, one can do the calculation starting directly in the standard PN gauge, which
satisfies the gauge conditions [7]

1

Oyl ~ S0il}; = 0. (99)
1 1

Ouhly ~ 50h; = =5 oo (100)

where g, = 14y + hy, and the indices of &, are raised and lowered with the Minkowski metric.
In this gauge, the Einstein equations at 1PN order become

2 ) 2
v (¢_¢_2+4—22) =4 (p+2pv—2+2p%+3£2 , (101)
c c c c c
VZw — 47Tp, (102)
Viw, = 167pv; + 8,0, (103)

with V2®, = 47p¢. Solving these equations by using the Green function of the flat Laplacian one
gets the 1PN metric in the standard PN gauge as [7]

2
B N PN, P D Dy
goo = -1- 2—C2 - 2—C4 +4—C4 +4—c4 + 6—04 (104)
TV 1W;
Ve e (1
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in terms of the PN potentials

Vi=/d3x’ ‘% (107)
W,-=/d3x’ p(i’,t)[V()?’,&)-_gl;f’)](x—x’)i’ (108)
@, = / e e (?l’xf)_vg,?{’t)z, (109)
cpzz_/d%"%, (110)
d>4=/d3x’fll;(’i—/;;,)|. (111)

Note that to obtain this result we have used the relation [7] 8,0;X = W; —V; (where VX = —2¢, as
defined previously), which follows from the explicit expression for the Newtonian superpotential,
X = f d’x'p(¥',t) |¥ — ¥’|, and from the continuity of the number density [d;p = —0;(pv') at
Newtonian order]. While the choice of the standard PN gauge bears no physical significance (the
Poisson gauge has the same physical validity, since observables in general relativity are gauge
invariant), Eq. 104 is the metric usually adopted to describe tests of general relativity in the solar
system (e.g. periastron precession, light bending, Shapiro time delay, lunar laser ranging, frame
dragging, etc; see [7] for more details).

3.3 A more rigorous derivation of the quadrupole formula

By using now the PN expansion in place of the linear approximation, let us revisit the generation
of gravitational waves from binary systems. This will lead us to re-derive the quadrupole formula
in a more rigorous fashion, which will in turn shed light on the discrepancy between quadrupole
formula and “Green formula”, which we discovered in Exercise 2. As previously mentioned, the
problem with the linear theory derivation of the quadrupole formula is two-fold: the assumption of
“weak gravity” (h,, < 1) and the use of the stress energy tensor conservation in flat space. Here,
we will fix both of these shortcomings.

To drop the weak gravity assumption, let us start from the full Einstein equations, which we
write in “relaxed form” in the harmonic gauge, defined by

Ox? =0. (112)

It is important to keep in mind that the coordinates x%, despite the space-time indices, are not
vectors but scalars, as can be seen from their transformation properties under diffeomorphisms.
Using this fact, it is straightforward to see that the condition 112 can be rewritten in terms of the
pseudo-tensor3:

A" = — \=gg"". (113)

3A pseudo-tensor is an object that transforms as a tensor under linear transformations, but not under more general
coordinate transformations.
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Expanding then

1 1
OxY = —=0d, (V—88""0,x") = —=0, (\—gg""9,”) =
g /‘( ) =3 ﬂ( )

| (114)
= ——0, (V—gg"?) < 0, H"”,
ﬁ H ( ) H
the condition 112 turns out to be equivalent to
9 H" =0. (115)

Note that the quantity H*” becomes the trace reversed metric perturbation at linear order. Indeed,
if g#v =Y —h*” +O(h?), then 6g = —h+O(h?), and H*” = h*” — %h’“’ +0O(h%) = h* +O(h?).
As a result, at linear order the harmonic gauge condition 115 coincides with the Lorenz gauge
condition 13.

In the harmonic gauge, the fully non-linear Einstein equations take the form

0, " = -16x7"", (116)

where O,, = n#¥d,,0, is the flat space d’Alembertian operator and

nv
™ = (-g)TH + , (117)
167
with
AR = 167(-g)t" + (aﬁHﬂ“a(,HVﬁ - aaaﬁHﬂVHaﬁ) . (118)
Here, tff is the Landau-Lifshitz pseudo-tensor,
167(-g)1%F = ga,g8"P HE LY (119)

1 & 7 — —
+§g/lﬂg(lﬁH’/2’Hﬁf1 _ Zg#Vg/l((lH,fD)VHﬁp

1 — —
+§(2ga/lg:3.u ~ 8¢ 28y 080t — ooy HTHLY

which describes the stress-energy of the gravitational field. Because it is a pseudo-tensor, it can be
non-zero in a set of coordinates but vanishing in a different one. This is simply a consequence of
the well known fact that in general relativity the gravitational field can be locally set to zero (by
choosing Riemann normal coordinates where the metric is locally 7, and the Christoffel symbols
vanish, c.f. section 4). Indeed, there is no way of defining a local energy density for the gravitational
field: only the global energy (or mass) of an asymptotically flat spacetime is well defined in general
relativity.

Taking now a (partial derivative) divergence of Eq. 116 and using the condition 115, one
obtains the conservation law d,7#” = 0, which is equivalent to the equations of motion of matter
(c.f. section 1). Note that because we have not made any approximations thus far, these are the fully
nonlinear equations of motion of matter, i.e. unlike in the case of linear theory, we are not assuming
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straight-line motion or ,T#” = 0#. We can then follow the same procedure of section 2.4 to derive
the quadrupole formula, i.e. we can invert Eq. 116 as

A" = 167071717 (120)
which gives in particular the “Green formula”
Fij (. 2 4 ij " S\ 3.,
A7 (1,7) ~ = TJ(Z——,x)dx . (121)
r c
Using the conservation law 4, 7" = 0 like in section 2.4, one can write
o2
H” =~ _Qij7 (122)
r

where now
Qij — / T”x’ix’jd3x'. (123)

Let us now examine the relation between 7#” and 7#”. Reinstating the appropriate powers of c,
and using the PN expanded metric of Eq. 84 and the stress energy tensor for a system of two point
particles [cf. Eq. 8], one finds that [10]

1o ()]

1+O(é)} , (124)

1

Therefore, at leading PN order /' ~ T"', and Eq. 123 reduces to the quadrupole formula derived

Tll‘ — Ttt

Ttl — Ttl

i =

| o 1 ..
TV + — |0'¢0 ¢ — =6 0rp0* ¢
4 2

in linear theory; however, '/ cannot be approximated by 7%/ at leading PN order, i.e. the Green
formula 121 does not reduce to the Green formula of linear theory. It follows that if one applies the
formulae derived in linear theory, only the quadrupole formula is correct.

Exercise 3: Show that the additional terms contributing to T/ in Eq. 124 solve the factor 2
discrepancy between the Green and quadrupole formula found in Exercise 2. [Hint: use the fact
that the solution to V?g(x,y’,y") = |x —y’|"Yx = y”’|~! (with V? the Laplacian with respect to x)
in the sense of distributions is g = In(|x — y’| + |x —y”’| + |y’ —y”’|) + constant. ]

4. Local flatness and the equivalence principle

In the previous section, when discussing the Landau-Lifshitz pseudotensor, we recalled that in
general relativity the gravitational field can always be locally set to zero, i.e. it is always possible
to choose a “Local Inertial Frame” where the gravitational force vanishes (i.e. where the metric

4The fact that 9, 7" = 0 does not imply straight-line motion can be tracked back to the presence of second derivatives
of H# in Eq. 118: as a result, even though the left hand side of the relaxed Einstein equations is written in terms of the
flat wave operator, wavefronts do not follow straight lines in the eikonal approximation.
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is locally flat and the Christoffel symbols vanish). This can be seen as a manifestation of the
equivalence principle of general relativity. In this section, we will provide a proof of this statement,
which will clarify issues such as that of the non-existence of a covariant stress-energy tensor for
the gravitational field. The coordinates that we introduce will also be useful when deriving the
response of a gravitational wave detector in the following.

4.1 The local flatness theorem and Riemann normal coordinates

The local flatness theorem states that at any given event (i.e. space-time point) P, there exists
a coordinate system such that g, |p = 17, and I, | p = 0 (or equivalently dogyv|p = 0). We will
now provide two proofs of this theorem.

Algebraic proof: Let us start with a system of coordinates {x®} such that P corresponds to
x% = 0. Let us then perform a coordinate transformation to some new coordinates {x®} also
centered in P:

x¥ = A%’xﬁ +0(x*) o x%= A‘z,xﬁ, +0(x"), (125)
where A‘;; and A(Z;, are constant matrices (the Jacobian of the transformation and its inverse) that
satisfy

A‘;’A’;, =6% and A% AL =6 (126)
The metric at P transforms as
ox® OxP B
swple = sopy g | = sepAv Ay (127)

The matrix A has 16 coefficients, 10 of which can be chosen to set g,/p'|p = 17o/p’- The remaining
6 degrees of freedom correspond to the 6 generators of the Lorentz transformations, which are
isometries of the Minkowski metric.
In order to show that the Christoffel symbols vanish, let us expand the transformation to second
order:
a _ 4d B 1 a B.y 3
x® = A%xE + EBﬁyx xV +0(x7), (128)

where B‘z,'y is the Hessian of the transformation. Note that B‘;;y has the same symmetries as
the Christoffel symbols, i.e. it is symmetric under the exchange 8 < y. As well known, the
Christoffel symbols are not tensors under generic coordinate transformations (otherwise it would
not be possible to set all of them to zero with a choice of coordinates, which is what we are trying
to prove), but they transform according to

, OxP 0xY ox® ox®  9xP OxY

1—‘(1, ;y = 1—‘(1’ - =

By BY gxB 9xY" dx®  9xBoxY 0xB dxV’ (129)
_ AW AB A7 Ta _ pa 4B 47
= A A gAY gy — By Ap Ay

We can therefore impose F“',y, =0 by solving for B%y' This equation has a unique solution, because
B and I" share the same symmetries.

This concludes our first proof of the local flatness theorem. The coordinates where the latter
holds are known as “Riemann Normal Coordinates” (RNCs). We will now give a more geometric

proof of the theorem, which includes a procedure to explicitly construct these coordinates.
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Geometric proof: Let us consider a spacetime endowed with coordinates x*, and explicitly
construct RNCs x# around an event P. To assign coordinates to a neighboring point P’, let us
consider the unique geodesic connecting P and P’, and the vector v tangent to this geodesic in P.
Let us decompose this vector onto its components on a tetrad centered in P, i.e. on a basis of four
orthogonal unit-norm vectors {€q)} a=1

vh = Q@eH (130)
By definition, the tetrad vectors satisfy the orthonormality and completeness relations

€(a) " €(B) = 8uve|q)€(p) = Nap » .
uo(a) _ SH (13D)
)

e(a)e#

where the tetrad (bracketed) indices are raised and lowered with the Minkowski metric 17,5, whereas
the space-time indices are raised and lowered with the space-time metric g, .
As a working hypothesis, let us choose the new coordinates of the point P’ to be

x® =Q@IA, (132)

with A1 = Ap — Ap, where A is the affine parameter of the geodesic connecting P and P’. First,
let us check that this definition is invariant under a re-parametrization of the geodesic. We know
that the geodesic equation is invariant under affine transformations of the parameter, 1’ = ad + b.
Under this transformation, A" = aAA, and

At et dd K

Hly= — =" =, 133
Ve = ar = (133)
Thus, the coordinates of P’ remain unchanged:
: Q@) ,
xY |y =aAl =xY (134)

To see that the coordinates that we constructed are indeed RNCs, let us first check that the
metric at the event P is given by the Minkowski metric in the new coordinates. To this purpose let
us first compute the Jacobian of the transformation from the old to the new coordinates evaluated
at the point P. From Eq. 132 one has

’

dx(l

=Q@) 135
o, (135)
Therefore, one also has
dx@ o x| dx? Ix® :
_— = :Q(ﬂ) @ = = Q(Q). 136
|, =" “00 T x| |, T x|, (136

From the arbitrariness of the components Q") one then gets

ox?
a/
x| p

= e, (137)
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and therefore
oxP

p OxXP’

To compute instead the Christoffel symbols at P, let us consider a one parameter family of

3 ox?
gl = 8aplr o

= Zaplp €y g = Narpp - (138)
P

events along the geodesic connecting P and P’. This family has coordinates growing linearly with
A, ie. x® o A, which implies d2x? /dA? = 0. Since this one-parameter family is (by definition) a
geodesic with affine parameter A, one must have

dx”’
p dl

d2x a’
da?

’ dxll, ’ ’ ’
-T - =T W) —
- cf,(’v’|P d/l = CL/V/ PQ H Q V)= 0 (139)

P

Since the procedure can be repeated for all geodesics originating from P, the components Q) are

arbitrary, from which it follows that F‘L’,V, p = 0, which completes the proof.

We can therefore conclude that around the event P, the metric in RNCs is g,/ = 7, + O(x")2.
It is possible to prove [11] that the quadratic terms O(x’)? are proportional to components of the
Riemann tensor, i.e. those terms, being dimensionless, scale as (x”/L)?, with L the curvature radius

of the spacetime (defined from the Riemann tensor).

4.2 Fermi Normal Coordinates

Let us now slightly modify the idea behind the geometric construction of RNCs to build
a set of coordinates describing the reference frame of an observer in motion along a generic
timelike worldline y with 4-acceleration a*. The coordinates, usually referred to as “Fermi normal

coordinates” (FNCs) are defined in a worldtube surrounding the worldline y.

i
(0)
the “t