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In the hunt for newphysics phenomena, such asAxion-like particles (ALPs), it is crucial to compare
experimental data to theoretical models. This involves inferring the most likely values of a model’s
parameters — such as particle masses and cross sections. However, traditional likelihood-based
inference techniques are oftentimes not practically feasible without making significant simplifying
assumptions, which decrease the reliability of the inference. This is especially the case for ALP-
searches with gamma-ray telescopes such as the upcoming Cherenkov Telescope Array. Recently
however, new likelihood-free inference (LFI) techniques based on machine learning have emerged
to help overcome these limitations. In particular, “Neural Ratio Estimation” (NRE) stands out
with its reported accuracy and efficiency. In this contribution, we have applied NRE to simulated
CTA-data of the active galactic nucleus NGC1275 in the Perseus Cluster, in order to probe the
viability of this technique for ALP-searches with cosmic gamma-rays. Our example-inferences
provide encouraging evidence that NRE will be applicable to deriving sensitive and accurate
limits. We also identify some challenges in the practical execution of such an analysis, as well as
concrete next steps towards deriving formal and reliable limits on the ALP mass and coupling to
photons.
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1. Introduction

Axion-like particles (ALPs) arise in many theories beyond the standard model, and are popular
dark matter candidates [1]. Unlike the QCD-axion, their mass <0 and coupling to photons 60W
(hereafter their “coupling”) are not dependent on each other. However, ALPs retain the property
that when travelling in magnetic fields, they may oscillate into photons (and vice versa) with a
probability that depends on <0 and 60W , the energy of the ALP (or photon), and the magnetic field
[1]. Therefore, photons from the bright active galactic nucleus (AGN) NGC1275 in the Perseus
Cluster, which has particularly strong magnetic fields, may arrive at earth as ALPs instead [2]. This
would result in energy-dependent attenuations of the AGN’s W-ray flux1, which may be resolvable
by the upcoming Cherenkov Telescope Array (CTA) [2], making inference of <0 and 60W possible.
However, modelling the ALP-photon mixing is dependent on many nuisance parameters, making
likelihood-based inference techniques prohibitively expensive, unless the (large) uncertainties on
several parameters are neglected. Here, we probe the viability of using the likelihood-free inference
technique Neural Ratio Estimation (NRE), to avoid deriving overconfident limits on <0 and 60W .

2. Modelling expected W-ray spectra of NGC1275

We assume that the intrinsic spectrum of NGC1275 follows an exponentially cut-off power
law [3] with reference energy 153.86 GeV, and treat its amplitude Φ, powerlaw index Γ and cutoff-
energy �cut as nuisance parameters. We convolve the intrinsic spectrum with the CTA instrument
response function2 using gammapy version 0.19. [4, 5]. ALP-photon mixing and attenuation by the
extragalactic background light is implemented using gammaALPs [6], and we model the magnetic
field configuration of NGC1275 as a Gaussian turbulence field as described in Ref. [6]. For
inference, we assume log-uniform priors with bounds 1–103 neV and 10−11–10−8 GeV−1 for <0 and
60W respectively, and we assume the nuisance parameter values and priors indicated in Table 1.

3. Inferring parameters of interest from (simulated) data using NRE

In NRE, the Bayesian posterior is estimated by means of a neural network (we refer to Ref. [7]
for a comprehensive explanation). The network is trained on simulated observations, in this case of
the W-ray spectrum of NGC1275, generated from values of the model parameters (<0, 60W and nui-
sance parameters) that were drawn from their Bayesian prior distributions. We generate the training
set according to the specifications in Section 2. We performNRE using SWYFT version 0.3.2 [8], and
use the default network architecture provided by the class swyft.get_marginal_classifier.

As shown in Table 1, we neglect several parameter uncertainties to avoid overcomplicating
this initial study. However, we highlight that the uncertainty in the magnetic field configuration
of the Perseus Cluster, which is particularly difficult to account for in likelihood-based inference,
is naturally accounted for in this study. This is because every simulation of the neural network’s
training set will correspond to a different random field configuration. Its uncertainty is therefore
reflected in the variability of the training set.

1Enhancements of the flux are also possible, as photons may avoid absorption by the extragalactic background light,
if temporarily travelling as ALPs.

2We use the publically available prod3 IRF for CTA south at zenith 20◦ and for 50h of observation time
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Φ Γ �cut �0 =0/=2 Aabell Acore/Acore2 V/V2 [ :L/:H @

Value 4.47–7.08 2.37–2.66 10−2–10 10 39/4.05 500 80/200 1.2/0.58 0.5 0.18/9 −2.80
Units 10−9 cm−2 s−1 TeV−1 TeV µG 10−3 cm−3 kpc kpc kpc kpc−1

Table 1: Nuisance parameter values and units used in the APL mixing and propagation model. Columns
4-11 refer to parameters used in the gaussian turbulence B-field model that is implemented in gammaALPs
[6]. Where a range is indicated, we assume a log-uniform prior over that range for that parameter.

Figure 1: Posteriors from two different simulated observations. The contour lines divide the multivariate
distribution into sections of equal probability mass. The neural network used for inference was trained on
∼ 106 simulations, and validation loss did not plateau. Plots made using SWYFT version 0.3.2 [8]

We validate our posterior using a distance to random point (DRP) coverage test, proposed by
Lemos et. al. [9]. This test establishes the (non-)equivalence between a posterior estimator and
the Bayesian posterior function on the condition that the estimator’s expected coverage probability
(ECP) (i.e. the expectation that any chosen credible region will encompass the true parameter
values) is (not) always equal to the chosen credibility level. We refer to ref. [9] for details.

4. Results and discussion

We simulate the W-ray spectrum of NGC1275 as described in Section 2 (in histograms of 200
bins, assuming 50 h of observation time), and infer the corresponding posteriors, for specific points
in (<0, 60W)-parameter space where other W-ray experiments have excluded ALPs3. This way, we
avoid that the quality of the inference is obscured by low experimental sensitivity, assuming that
CTA will be similarly or more sensitive than existing W-ray experiments at very high energies [2].

Figure 1 shows example-posteriors for two such points in excluded parameter space. We make
the heuristic argument that these posteriors exclude the null hypothesis (no ALPs), as the posterior
volume is insignificant at low values of the ALP-mass <0. The convergence around the true value
of the coupling 60W is clearly less decisive. It remains to be seen how much future, more advanced
applications of NRE (see below) will be able to improve on this.

3see https://cajohare.github.io/AxionLimits/docs/ap.html for an overview.
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Figure 2: Coverage plot for our posterior
estimator, based on a DRP coverage test [9].

The coverage plot in Figure 2 shows that the ECP
deviates visibly from the credibility, indicating that our
posterior estimator may be improved, although it is not
clear how much. However, the lack of any systematic
deviations provides evidence that our posteriors are not
significantly overconfident, underconfident, or biased [9].

A major limitation in our analysis is that we have not
employed a GPU, in practice preventing us from training
our neural network to the point where validation loss
has plateaued. This is a further, strong indication that
our posteriors may be improved by longer training. This
will be clarified in future work. Beyond this, deeper
neural network architectures, larger training sets, and even
different loss functions may be explored for improved inference.

Future analyses will aim at deriving formal limits on ALPs by exploring a larger section of
the ALP parameter space, while neglecting uncertainties of fewer nuisance parameters. Based on
the results presented here, and given the large potential for improvements, Neural Ratio Estimation
appears promising in terms of performing more reliable searches for ALPs using cosmic W-ray data.
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