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1. Introduction
The concept of partial compositeness (PC) [1–5] offers a promising means to address the

hierarchical structure of fermion masses and mixings. Here, the mass terms are induced from linear
mixings of elementary fermions of each Standard-Model (SM) flavour with composite fermionic
operators O�, containing new fundamental fields that are bound together by a confining interaction.
Below the condensation scaleΛ2 , the light fermion mass eigenstates are thus a superposition of ele-
mentary SM-like fermions and composite resonances excited by the operatorsO�, which provide the
connection to the composite Higgs (CH) [6–8] and thus to electroweak symmetry breaking (EWSB).

Focusing on the third-generation up-type quarks, the PC Lagrangian reads

Lmix =
_@

Λ
[O@
�
]−5/2

UV

@!O
@

�
+ _C

Λ
[OC
�
]−5/2

UV

C'OC� + h.c. . (1)

Here, @! and C' are the embeddings of the SM-like fields into irreducible representations of the
global symmetry of the composite sector, the couplings _@,C are dimensionless O(1) parameters at
the flavor scale ΛUV and [O@,C

�
] are the dimensions of the composite-sector operators.

Assuming a walking, i.e. almost conformal, behaviour betweenΛUV and the IR scaleΛ2 , at the
latter the linear mixing couplings will read as dictated by their renormalisation group (RG) scaling

_@ (Λc) ' _@ (ΛUV) (Λ2/ΛUV) [O
@

�
]−5/2 . (2)

The large hierarchies between the SM Yukawa couplings are thus naturally explained by small
differences in the scaling dimensions [O@

�
] which translate to exponentially large differences in the

strengths of the mixings at low energies (see [9–12] for reviews).
While the initial focus in the literature was on effective low-energy descriptions of PC, more re-

cently UV realisations have been explored [13–23], considering the fundamental degrees of freedom
leading to the composites that mix with the SM-like fermions. Here, the straightforward assumption
of three-fermion bound states [13–15, 17] faces severe challenges since the operators’ scaling dimen-
sions need to deviate very significantly from the large canonical value of [O�]0, 2 = 3[F ]2 = 9/2,
in order to avoid too suppressed fermion (in particular top-quark) masses. Lattice results indicate
that such large anomalous dimensions are not realised [24–27], asking for alternatives.

One such alternative, dubbed "fundamental partial compositeness" (FPC) [18–20], assumes
the composite fermions to consist of an elementary fermion F and a scalar S (see also [28–31]).
The scaling dimension is then expected close to [O�]0, 2 = [F ]2 + [S]2 = 5/2, which solves the
issue of the too suppressed top-quark mass (S could also emerge ultimately from fermions at higher
scales). However, in the original works on FPC, the concrete investigation of a dynamical generation
of the hierarchically light fermion masses was left open [18–20, 32]. This will be explored here
by analysing explicitly the possible range of anomalous dimensions of the O� operators via the
functional Renormalisation Group (fRG) [33–35], allowing for a systematic and versatile treatment
of non-perturbative effects and the study of emergent composites [36–40].

2. Effective action and emergent composites
To realise FPC, fundamental scalarsSU,8 and fermions F U,0 are introduced in the fundamental

representation of the confining, techni-color (TC) like gauge group �TC, with gauge-index U [12,
18–21]. The strongly coupled TC part of the full effective action Γ, that we employ in our
renormalisation-group approach, reads (with the dots indicating higher-order interactions)

ΓCH =

∫
G

{
/�/4 �`a�`a + Lgf+ghosts + /S/2 [

(
�`S8

)† (
�`S8

)
+ S8†<2

S S
8]

+ /F F̄ 0
(
f`�` + <F

)
F 0 +

√
/k /F /S H

8,0

TC k
8,0 n8 9 Φ

9 nTC F 0 + h.c. + · · ·
}
, (3)
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Figure 1: Left: Generation of interaction between two TC-fermions (black arrow lines) and two TC-scalars
(dashed) from the TC-gluons (curly) and SM fermions (blue arrow line) mediated box diagrams. All vertices
(Γ̄(=) (?1, ..., ?=), black and blue dots) and propagators (1/Γ̄(2) (?1, ?2)) are full correlation functions [40].
Right: Rewriting the full B-channel (fermion–scalar)2 interaction as a composite B exchange and a remnant,
containing the momentum-dependence of the resonant tensor structure and other tensor structures.

where nTC is the antisymmetric tensor of �TC . The TC field strength and covariant derivative read

�`a = m`�a − ma�` − i 6TC
[
�`, �a

]
, �` = m` − i 6TC�` , (4)

where we keep the colour indices and generators of the TC-gauge group implicit.
Here, we focus on the minimal incarnation of �TC = Sp(#TC) with #TC = 2 and 4 Weyl

fermions F U,0, 0 = 1, .., 4, per TC [19, 41], resulting in the global symmetry-breaking pattern
SU(4)F → Sp(4)F due to fermion condensation. The SM-like Higgs doublet thereby emerges
within the resulting set of Goldstone bosons. The TC-fermions are accordingly assumed to form
weak chiral doublets F 1,2 with vanishing hypercharge . = 0 and SU(2)! singlets F 3,4 with . =
∓1/2. Together with 12 complex scalar degrees of freedom per TC, forming 3 generations of colour
triplets S@ with . = −1/6 and colour singlets S; with . = 1/2, they build the composite operators
that mix with the SM quarks and leptons. This economic realisation of FPC is accordingly called
“minimal fundamental partial compositeness" (MFPC) [18, 19, 41]. For <F =<S = 0, which we
will assume below, the TC-fermions (scalars) exhibit a global SU(4)F (Sp(24)S) flavour symmetry,
corresponding to transformations along the index 0 (8) in (3). In the last line of (3), H8,0TC are the
Yukawa couplings between the components of k8,0, comprising the SM fermions embedded in the
full global symmetry, and the fundamental TC-fields. Moreover, n8 9 is the anti-symmetric tensor in
Sp(24)S and the TC-scalar fields have been arranged asΦ = (S,−nTCS∗)T, see [12, 18, 21, 41, 42].

A relevant example of a higher order term in (3) is the two-scalar–two-fermion scattering,
which is generated from the box diagrams depicted in the left panel of Figure 1. These lead to

ΓS2F2 =

∫
G

/S/F 6SF S†S F̄ F + · · · , (5)

where · · · indicate all further two-scalar–two-fermion terms. After performing derivatives w.r.t the
RG invariant fields /1/2

q
(?) q(?), as indicated by subscripts, we obtain the momentum-dependent

and RG-invariant scattering coupling (neglecting Dirac, flavour, and TC tensor structures)

PS†S F̄ F Γ̄
(4)
SS†FF̄ (?1, ?2, ?3, ?4) ' 6SF (?1, ?2, ?3), 6SF (?) ∝ (A664

TC(?) + AHH4
TC(?))/?, (6)

where we dropped the momentum conservation (2c)4X(?1 + · · · + ?4) and PS†S F̄F projects on the
two-scalar–two-fermion term in (5), while the relation between couplings follows from Figure 1.
The coupling is suppressed in the UV due to asymptotic freedom of the TC interactions, with A6/H
being combinatorial factors of the diagrams and we focused on a symmetric point with (?2

8
)1/2 = ?.

The resonant two-scalar–two-fermion scatteringsmay give rise to the formation of the fermionic
compositesB ∼ SF , just as for mesons in QCD via resonant four-quark scatterings. These resonant
channels can be described by the propagation of a new degree of freedom, a composite operator
consisting of both fundamental TC fields, O0, 8B ∼ n8 9 S

U, 9 F U,0T , which may also include higher-
order terms. All symmetries of the TC fields (containing the SM gauge symmetries) are encoded
in the indices 0, 8, while T projects on the corresponding spin indices of the TC fields, keeping
the construction general. Indeed, the effective four-field interaction can be exactly rewritten as the

3
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exchange of an emergent (resonant) composite of both fundamental external fields in a specific
momentum channel and a residual contribution, see Figure 1, right panel, which is known as
dynamical hadronisation or more generally emergent compositeness [36–39]. The corresponding
composite fields are simply introduced in the path integral via the respective current term [37, 39, 43],
exp

{∫
G
�B B(i 5 )

}
. Here, i 5 denote the fundamental fields being integrated in the path integral.

The introduction of the composite fields via a current is just a convenient reparametrisation of the
fundamental theory in terms of emergent composites and no reduction to an effective field theory.
The effective action follows from a Legendre transformation and includes the composite’s dynamics,

ΓB =

∫
G

{/B B̄
(
f`m` + <B

)
B + ℎB

√
/B /S /F

[
S

(
B̄F

)
+ S†

(
F̄ B

) ]
+ · · · } , (7)

where we have omitted flavour and chiral indices as well as T and n8 9 . The RG-invariant scattering
coupling, neglecting again Dirac, flavour, and TC structure and momentum conservation, reads

Γ̄
(3)
SFB̄ (?1, ?2, ?3) ' ℎB (?1, ?2) . (8)

Importantly, (7) encodes the diagrammatic relation of Figure 1 via the equation of motion
(EOM)of the composite fieldB. For B-channel configurations B= (?1+?2)2 this relates (7) to (5)with

ΓB |BEoM = ΓS2F2 , (ℎ2
B (B) <B (B))/(B + <

2
B (B)) ∝ 6SF (B) , (9)

and <B (B) ∝
√
B. It follows from (6) that ℎ2

B (B)<B (B)/(B + <
2
B (B)) ∝ 6

4
TC(B)/

√
B (assuming the

TC gauge interactions to dominate), and given the two-scalar–two-fermion B-channel scattering
becomes resonant in the IR, this is well described in terms of the B-exchange. We note that the
full effective action in the presence of the composites includes (3) and (7) and that the approach
at hand allows for a global description in terms of the dominant degrees of freedom, linking the
low-energy interactions with those in the fundamental high energy theory, which is not possible in
standard effective theory approaches to strongly coupled theories.

After introducing the dynamical composites in the effective action, also the linear mixing terms

Γmix =

∫
G

{
_!C /

1/2
@ /

1/2
B @̄!B@' + _

'
C /

1/2
C /

1/2
B C̄'BC! + h.c.

}
, (10)

allowed by the symmetries, will be generated - responsible for the SM fermion masses in FPC. The
scattering vertices of the fundamental fields are obtained by taking derivatives of the fundamental
effective action, or, more conveniently, of the action including the composite (Eqs. (3), (7) and (10))
on the EOM, w.r.t these fields (see (9)). Via the relation in Figure 1, the latter approach avoids the
non-practical evaluation of higher terms in the fundamental fields. The EOM solution reads

BEoM =
√
/S/F//B ℎ2

B/(f`m` + <B) SF +
√
/ 5//B _ 5 5 , (11)

with 5 the respective SM fermion. Performing k,S, F -derivatives, we obtain the relation

H
5

TC = H
5

c,TC − _ 5 (ℎ
2
B <B)/(?

2 + <2
B) (12)

between the Yukawa coupling in the fundamental effective action (3) and the (numerically different)
parameters of the full action including the composite, featuring an additional contribution from (10).

We now discuss the anomalous momentum scaling of the dimensionless _ 5 = _ 5 /: , with : the
average momentum, being the cutoff in the fRG approach. The anomalous dimension W_ 5 is defined
by mC_ 5 = W_ 5 _ 5 , where mC ≡ : m: , and the anomalous scaling of the wave functions /q by mC/q =

4
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Figure 2: Diagrammatic flow of the composite’s two-point function, necessary for the computation of the
composite’s anomalous dimension (15). All lines correspond to regulated propagators. Crossed circles
depict the insertion of the derivative of the fRG regulator mC' (q):

.

Wq /q. For the mixing term (10), the full momentum dimension, defined with its : scaling, reads
[_ 5 : /1/2

5
/

1/2
B ] = W 5 B . From this, we can relate the value of the mass mixing parameter at a

measurable IR scale : = Λc to a UV value _̄ 5 at : = ΛUV via its momentum scaling as

_ 5 (Λ2) = _ 5 (ΛUV) (Λc/ΛUV)W_ 5 , with W_ 5 ≡
[
_ 5

]
= W 5 B − 1 − W 5 /2 − WB/2 (13)

enclosing all non-perturbative information on the composite and its dynamics.
With W 5 being negligible, the magnitude and sign of WB and W 5 B will lead to a more or less

enhanced scaling of _ 5 . This determines the SM-like fermion masses due to mixing with the
resonances (after integrating out the latter, see, e.g. [11, 42, 44]) as

< 5 ∼
E
√

2

_
!

5 (Λ2)_
'

5 (Λ2)
6B (Λc)

=
Y5 E√

2

(
Λc
ΛUV

)(W
_!
5

+W
_'
5

)
, with Y5 =

_
!

5 (ΛUV) _
'

5 (ΛUV)
6B (Λc)

(14)

gathering all O(1) quantities (obeying the naturalness criterion), where 6B is the coupling strength
of the resonances. The hierarchical pattern of SM fermion masses (and mixings) will now arise
from small differences in the anomalous dimensions W_ via RG flow between the largely separated
scales Λc ∼ 10 TeV � ΛUV. We stress that W_ 5 > 0 is necessary in the FPC framework in order to
generate the masses of the light SM fermions, which we will check below.

3. Anomalous scaling and flavour hierarchies
In this section, we compute the anomalous dimensions of the composite sector in the non-

perturbative fRG approach [33–35, 59] with its extension to treat emergent compositeness [36–
39, 43], widely employed in the areas of condensed matter and QCD. This approach implements the
Wilsonian idea of progressive integration of momentum shells by suppressing quantum fluctuations
of momenta ? below an IR cutoff scale : via a regulator ' (q)

:
. This leads to a cutoff dependent effec-

tive action Γ: [q], with its flow determined by the so-calledWetterich equation, see [60] for a review.
First, it turns out that, due to the tensor structure in the respective diagrams, the anomalous

dimension W 5 B vanishes for <F = 0 [40], such that in (13) only WB remains to be calculated explic-
itly. For this, we observe that the momentum scale variation of the wave-function renormalisation
can be obtained from the composite’s two-point function

Γ
(2)
BB̄,: =

XΓ:

XB(?)XB̄(−?)
= i/B f` ?` , as WB =

mC/B
/B

=

−i m?2

(
f` ?` mCΓ

(2)
BB̄,:

)
/B tr [f`fa]

���
?=0

. (15)

The flow mCΓ
(2)
BB̄,: is now derived by solving the (one-loop exact) Wetterich equation, with its

diagrammatic form depicted in Figure 2. Explicit expressions and more details are provided in [40].
Diagram (A) vanishes for ? = 0 and thus the anomalous dimension is driven by diagram (B). We
obtain the analytic result

WB = −
ℎ2
B

16c2
#TC

2
tr
[
T 2] (

1 + WS
5

)
< 0 , (16)

5
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Figure 3: SM fermion masses as a function of the anomalous dimension W_. The scans correspond to
Y5 ∈ [0.1, 4c], W_ ∈ [−1, 3], and the size of the walking regime is varied within ΔΛ ≡ log (Λc/ΛUV) ∈
[−2,−10], as indicated by colours. While the red-shaded region is strictly excluded, the green region indicates
the ballpark of W_ in the MFPC scenario with two additional Dirac fermions in (17), see text for details.

where WS is the anomalous dimension of the fundamental scalar TC-field, whose subleading effect
can be neglected for the time being (as will a potential tr

[
T 2] ≠ 1), and #TC is the dimension of

the fundamental representation of the SU(#TC)-gauge group.
In Figure 3 we illustrate the SM fermion masses from (14) as a function of the anomalous

dimension, where we assume W_!
5
= W_'

5
≡ W_ (≈ −1−WB/2). Scans in Y5 ⊂ [0.1, 4c] for nine

different walking regimes of sizes ΔΛ ⊂ [−2,−10] are shown in different colours. While for
the O(1) top Yukawa W_ ∼ 0 is needed, the lightest fermions require W_ ∼ 0.5 − 2.0, depending
on the walking regime. Finally, in order to provide a quantitative prediction for the anomalous
dimension in models of MFPC, we employ (9) to estimate the composite sector parameters from
the fundamental TC couplings in the walking regime. Here, we extend the minimal MFPC matter
content with additional Dirac fermions in order to allow for a walking regime, which is not present
for the minimal content [46, 47], and employ the 4-loopMS results [46–48, 69, 70] in our numerics.
Our result for 1, 2 and 3 additional Dirac fermions reads

W_ ∼ −1 − 1
2

[
− #TC

32c2

(
(1 + <̄2

B) A6 (6
∗
TC)

4

<̄B

)]
∼ {4.74, 0.47, −0.42} , (17)

where we considered <̄B ≡ <B/
√
B = 1 and A6 ≈ 1, see [40] for more details. The estimate for

MFPC with two additional Dirac fermions is presented as a green vertical dashed line, while the
green shaded region encloses a 20% variation in ℎB .

4. Conclusions
We have explored the generation of the SM fermion mass hierarchies in FPC via the non-

perturbative fRG. This provides a novel application of functional methods to new physics scenarios
involving strong dynamics. The dynamical treatment of the emergence of resonances allows us to
investigate the theory in a global manner, taking into account fundamental and composite degrees
of freedom simultaneously as well as their interplay. We can thus access the properties of the
composites, such as their couplings, from the parameters of the fundamental effective action. In
particular, we derived the anomalous scaling of the linear mixing couplings from the momentum
scaling of the 2-point functions in the effective action via the fRG. Finally, we presented an estimate
for the mass spectrum in the MFPC scenario with two additional Dirac fermions coupled to the
TC-gauge group, which confirms the possibility to address the flavor puzzle in FPC.

6
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