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A particularly interesting application of autoencoders (AE) for High Energy Physics is their use
as anomaly detection (AD) algorithms to perform a signal-agnostic search for new physics. This
is achieved by training the AE on standard model physics and tagging potential signal events as
anomalies. The use of an AE as an AD algorithm relies on the assumption that the network better
reconstructs examples it was trained on than ones drawn from a different probability distribution,
i.e. anomalies. Using the search for non resonant production of semivisible jets as a benchmark,
we demonstrate the tendency of AEs to generalize beyond the dataset they are trained on, hindering
their performance. We show how normalized AEs, specifically designed to suppress this effect,
give a sizable boost in performance. We further propose a different loss function and signal-
agnostic training stopping condition to reach the optimal performance.
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1. Introduction

The standard model (SM) of particle physics has been tested experimentally to very high
precision and always found in excellent agreement with theoretical calculations. However, it does
not explain the existence of dark matter, suggested by astronomical observation such as the cosmic
microwave background power spectrum [1]. Despite an extensive search program for specific new
physics models, there is so far no hint of dark matter at collider experiments. This motivates to search
for new physics in a signal-agnostic way. In this report, using the search for non resonant production
of semivisible jets as a benchmark, we demonstrate how normalized autoencoders (NAE) can be
trained in a fully signal model agnostic way to search for new physics in the CMS experiment [2].
Compared to the first application of NAE to detect anomalous jets [3], which uses jet images, the
loss function and regularization proposed in Ref. [4], we use jet substructure variables, a different
loss function and a different strategy to define the best training point to use for inference.

2. Benchmark new physics model: semivisible jets

Semivisible jets [5] (SVJ) are a new physics signature arising in Hidden Valley theories where
the dark sector is made of dark quarks interacting via a confining 𝑆𝑈 (𝑁) force, dark quantum
chromodynamics (QCD). In this family of models, dark quarks are expected to hadronize in the
dark sector, forming dark bound states. A fraction of them is unstable and promptly decays back
to SM quarks, which then hadronize in the SM sector. Stable dark hadrons escape detection. The
different jet substructure of SVJs, due to the double hadronization step and invisible dark hadrons,
can be exploited to classify them versus SM jets. The signal model is parametrized by the mass
of the 𝑡-channel mediator, 𝑚Φ, and the invisible fraction of the jet, 𝑟inv, defined as the ratio of the
number of invisible dark hadrons and the total number of dark hadrons.

3. Autoencoders

3.1 Theoretical description

Autoencoders (AE) are neural networks composed of two parts: an encoder, which maps the
input features space to a lower dimensional latent space, and a decoder which maps the latent
space to an output space with same dimension as the input space. AEs are trained to minimize the
reconstruction error between input and output, such that examples out of the training distribution,
i.e. anomalies, have a higher reconstruction error. Trained on SM data, AEs can thus perform
signal-agnostic searches for new physics [6, 7]. In the case of SVJs, AEs are trained on SM jets.

3.2 The problem of out-of-distribution reconstruction

AEs were proven to well perform anomalous detection of SVJs versus background QCD jets [8].
This study thus considers a top-quark jets dataset, which contains a mix of 𝑏-jets, light quark jets
from resolved hadronic top decay, boosted 𝑊 decay, boosted hadronic top decay and initial state
radiation gluon jets, from 𝑡𝑡 production production. Simulated events are used. Both 𝑡𝑡 background
and SVJ signal events are generated at parton level with MadGraph5_amc@nlo [9], final state
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quarks are hadronized with PYTHIA [10], and events are reconstructed with the CMS detector using
GEANT4 [11]. For SVJ events, the Hidden Valley module implemented in PYTHIA version 8.2 is
employed for the hadronization of the dark quarks. The detailed event selection can be found in
Ref. [12]. 20 000 background events were used for training (85%) and evaluation (15%), and 10 000
to 20 000 signal events, depending on the signal hypothesis, were used for evaluation. Signal events
are not used for the training.

Ten independent AEs, to reduce statistical fluctuations from one training to another and provide
average performance, were trained on this top-quark jets dataset until minimal validation loss (no
decrease for 100 epochs). They take 8 jet substructure input features, mapped to a normal distri-
bution: major and minor jet axes, first energy flow polynomial, energy correlation function 𝐶

𝛽=0.5
2 ,

transverse momentum dispersion, softdrop mass, 2- and 3-subjettiness. The architecture is a fully
connected neural network with 10, 10, 6, 10, 10 neurons. Other technical details can be found in
Ref. [12]. The signal (SVJ) and background (top jet) reconstruction errors are shown in Fig. 1,
together with the average Area Under the Curve (AUC) of the Receiver Operating Characteristic
(ROC) for multiple SVJ signals. The AEs generalize (reconstruct with low error) out of the training
phase-space (out-of-distribution, OOD): the signal and background reconstruction errors have same
value at the minimal validation loss. An illustration of OOD is given in Fig. 2.

Any other metric than the minimal validation loss, that would make use of the signal sample,
e.g. the signal reconstruction error or AUC, would be biased towards the signals utilized and thus
not signal-agnostic.
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Figure 1: (Left) Average background and signal (𝑚Φ = 2 TeV, 𝑟inv = 0.3) reconstruction errors for
one representative training. (Right) Average Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) for all 10 trainings. The epoch with lowest validation loss was used for evaluation. The
AUC is calculated for several mediator masses 𝑚Φ with fixed invisible fraction 𝑟inv, and several 𝑟inv for fixed
𝑚Φ for illustration purposes, but the full 2D parameter space could be explored.
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Figure 2: Illustration of out-of-distribution reconstruction.

4. Normalized autoencoders

4.1 Theoretical description

Normalized autoencoders [4] suppress OOD reconstruction by learning the training data proba-
bility distribution 𝑝data. The NAE model probability 𝑝𝜃 is defined using the reconstruction error 𝐸𝜃 .
It assigns high probability to low reconstruction error examples:

𝑝𝜃 (𝑥) =
1
Ω𝜃

exp (−𝐸𝜃 (𝑥))

where Ω𝜃 is a normalization constant ensuring that the sum of all probabilities is 1. Examples
following 𝑝𝜃 are obtained by sampling via a Langevin Markov Chain Monte Carlo (MCMC)
(“negative examples”). The loss function proposed in Ref. [4] is the difference between the
reconstruction error of the training (“positive”) examples and of the negative examples, aiming to
achieve 𝑝𝜃 = 𝑝data:

E𝑥∼𝑝data [𝐿 𝜃 (𝑥)] = E𝑥∼𝑝data [𝐸𝜃 (𝑥)] − E𝑥′∼𝑝𝜃
[𝐸𝜃 (𝑥′)]

positive energy 𝐸+ negative energy 𝐸−

The loss function proposed in this work prevents the divergence of negative energy and mini-
mizes the positive energy while the energy difference is close to 0:

𝐿 = log (cosh (𝐸+ − 𝐸−)) + 𝛼𝐸+ 𝛼 > 0, hyper-parameter

4.2 Application to semivisible jet tagging

Ten independent NAEs were trained on the same top-quark jets dataset. In order to measure the
distance between positive and negative samples, the Energy Mover’s Distance (EMD) was computed
on the validation set between the positive and negative samples in the input feature space. Figure 3
shows reconstruction errors, EMD and AUC for a representative training.

The different loss function efficiently prevents OOD reconstruction as, after the positive and
negative energies are equal, the reconstruction error of the signal is stable and higher than that of
the background. As the positive energy is minimized beyond a certain value, the EMD increases:
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Figure 3: The background, signal (𝑚Φ = 2 TeV, 𝑟inv = 0.3) and negative samples reconstruction errors (top
left), the average AUC (top right) computed over an ensemble of signal hypotheses (the same as in the bottom
right plot), and the EMD, calculated on the validation set between negative and positive samples (bottom
left), as a function of the epoch number, for one representative training. Average AUC for all 10 independent
NAE trainings at the best epoch (bottom right), corresponding to the epoch number before increase of the
EMD, indicated by black dashed lines in the EMD plot.

the network cannot better reconstruct training examples and suppress OOD reconstruction at the
same time. During and after the EMD increase, the AUC first decreases and then increases,
because the low reconstruction error phase-space first overlaps more with signal-rich and then
signal-depleted phase-spaces. Using the AUC to define the best epoch would therefore be biased
towards the signals utilized for its calculation. The best epoch is thus just before the EMD increase:
minimal OOD reconstruction and maximal training examples reconstruction. This is a fully signal-
agnostic procedure to train a NAE, not using signal SVJs simulation. The NAE achieves sensible
improvement in performance compared to the standard AE, as shown in the AUC table in Fig. 3.

5. Conclusion

This study demonstrated the tendency of AEs to generalize beyond the training dataset, resulting
in drastically reduced anomaly detection performance, and how NAEs overcome this shortcoming.
In addition, a fully signal-agnostic training definition to reach the optimal performance was provided.
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