
P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
3
7

Gauge-equivariant multigrid neural networks

Daniel Knüttel, Christoph Lehner and Tilo Wettig∗

Department of Physics, University of Regensburg, 93040 Regensburg, Germany

E-mail: tilo.wettig@ur.de

We show how multigrid preconditioners for the Wilson-clover Dirac operator can be constructed
using gauge-equivariant neural networks. For the multigrid solve we employ parallel-transport
convolution layers. For the multigrid setup we consider two versions: the standard construction
based on the near-null space of the operator and a gauge-equivariant construction using pooling and
subsampling layers. We show that both versions eliminate critical slowing down. We also show
that transfer learning works and that our approach allows for communication-avoiding algorithms
on large machines. In the outlook we discuss how the multigrid setup can be accelerated using
gauge-invariant properties of the gauge field.

The 40th International Symposium on Lattice Field Theory (Lattice 2023)
July 31st - August 4th, 2023
Fermi National Accelerator Laboratory

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:tilo.wettig@ur.de
https://pos.sissa.it/

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
3
7

Gauge-equivariant multigrid neural networks Tilo Wettig

1. Introduction

The wall-clock time of lattice QCD simulations is typically dominated by the solution of the
Dirac equation. The iteration count of an iterative solver is determined by the condition number
of the Dirac matrix 𝐷, which increases dramatically in the continuum limit and for physical quark
mass (“critical slowing down”). Let us assume that the residual vector in the iterative solver is
expanded in the eigenvectors of 𝐷. This expansion contains contributions from the high and low
eigenmodes of 𝐷. A good preconditioner can reduce both contributions and thus eliminate critical
slowing down. The current state of the art is represented by multigrid algorithms [1–3], which
consist of two components: a smoother and a coarse-grid correction that reduce the contributions
of the high and low modes to the residual, respectively. Here, we show that such preconditioners
can be learned by gauge-equivariant neural networks. For details we refer to [4, 5].

2. Parallel-transport convolution layers and high-mode preconditioner

An important guiding principle in the construction of a neural network (called “model” in
the following) for lattice QCD is gauge equivariance, i.e., the requirement that the transformation
implemented by the model commutes with gauge transformations [6–8]. Building gauge equivari-
ance into the model implies that the model does not have to learn the gauge symmetry and thus
can achieve the same expressivity with fewer weights. To this end we define a parallel-transport
operator 𝑇𝑝 for a path 𝑝 = (𝑝1, . . . , 𝑝𝑛𝑝

) consisting of a sequence of hops 𝑝𝑖 = ± ˆ̀ in a single
direction by

𝑇𝑝 = 𝐻𝑝𝑛𝑝
· · ·𝐻𝑝1 with 𝐻`𝜑(𝑥) = 𝑈†

` (𝑥 − ˆ̀)𝜑(𝑥 − ˆ̀) , (1)

where we employed the usual lattice notation and 𝜑 denotes a field with both gauge and non-gauge
degrees of freedom. (In lattice QCD with gauge group SU(3) and Wilson fermions, 𝜑 has 3 · 4 = 12
d.o.f. at every lattice site.) 𝑇𝑝 acts on the field 𝜑 and returns a new field 𝑇𝑝𝜑. By construction, 𝜑
and 𝑇𝑝𝜑 transform in the same way under a gauge transformation. Generalizing [7], we define a
gauge-equivarant parallel-transport convolution layer by its action on a field,

𝜓𝑎 (𝑥)
PTC
=

∑︁
𝑏

∑︁
𝑝∈𝑃

𝑊
𝑝

𝑎𝑏
𝑇𝑝𝜑𝑏 (𝑥) or 𝜓𝑎 (𝑥)

LPTC
=

∑︁
𝑏

∑︁
𝑝∈𝑃

𝑊
𝑝

𝑎𝑏
(𝑥)𝑇𝑝𝜑𝑏 (𝑥) , (2)

where 𝑎 and 𝑏 are feature indices, 𝑃 denotes a set of paths, the 𝑊 𝑝

𝑎𝑏
are trainable layer weights that

act on the non-gauge indices of the field, and 𝐿 stands for local (i.e.,𝑊 depends on 𝑥). In the context
of lattice QCD, the 𝑊 𝑝

𝑎𝑏
are 4 × 4 spin matrices. We do not include an activation function since we

want to learn a linear preconditioner. Graphically, we represent a feature by a plane and a layer by an
arrow between planes, with the paths defining the layer drawn on the plane on which the layer acts
(see Fig. 1 below). Note that our approach naturally allows for communication-avoiding algorithms:
On a large machine we can choose not to communicate information between subvolumes by setting
the links 𝑈` (𝑥) connecting subvolumes to zero. The resulting (small) loss in performance may be
amortized by the time saved on communication, leading to an overall gain in wall-clock time.

Since the high eigenmodes of the Dirac matrix are related to the short-distance behavior, we
can construct a PTC-based high-mode preconditioner consisting of one or two layers with a small

2

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
3
7

Gauge-equivariant multigrid neural networks Tilo Wettig

number of hops. Our performance measure is the iteration count gain, defined as the ratio of the
iteration counts of the outer solver (GMRES in our case) without and with preconditioner. For
our numerical tests we use the Wilson-clover Dirac operator 𝐷WC with 𝑐SW = 1 on an 83 × 16
pure-gauge configuration with 𝛽 = 6.0. The quark mass 𝑚 was tuned to near criticality to make the
solution of the Dirac equation a challenging problem. We train the model 𝑀 by generating random
vectors 𝑣 and optimizing the cost function

𝐶 = |𝑀𝐷WC𝑣 − 𝑣 |2 , (3)

which is dominated by the high modes of 𝐷WC. Since our training data set is arbitrarily large we do
not need to add a regulator to avoid overfitting. Here and below we used the Adam optimizer [9]. We
obtained an iteration count gain of about 5 (for a single layer with zero- and one-hop paths) to 10 (for
two layers with zero- and one-hop paths or one layer with up to two-hop paths). We also observed
that transfer learning worked with no or very little retraining for (i) a different configuration from
the same ensemble, (ii) a configuration with a different 𝛽 and (iii) a different quark mass.

3. Low-mode preconditioner: standard and gauge-equivariant construction

To obtain a low-mode preconditioner we could, in principle, construct a deep network of
(L)PTC layers to propagate information over long distances. However, we choose to follow the
multigrid paradigm instead and try to preserve the low-mode part of the Dirac spectrum on a
coarse lattice. For this we need restriction and prolongation operators (“multigrid setup”) to take
us back and forth between fine and coarse grid. We present two versions: the standard multigrid
setup [4] and a gauge-equivariant version [5]. We also describe how the Dirac equation is solved
approximately on the coarse grid in each version.

In the standard multigrid setup, there are no gauge degrees of freedom (and thus no gauge
transformations) on the coarse grid. We define restriction and prolongation layer (with RL = PL†)
by

�̃�(𝑦) RL
=

∑︁
𝑥∈𝐵(𝑦)

𝑊 (𝑦, 𝑥)𝜑(𝑥) and 𝜓(𝑥) PL
= 𝑊 (𝑦, 𝑥)†�̃�(𝑦) , (4)

where the tilde denotes fields on the coarse grid, 𝑥 and 𝑦 are sites on the fine and coarse grid,
respectively, and 𝐵(𝑦) denotes the block of sites on the fine grid corresponding to site 𝑦 on the
coarse grid. The 𝑊 (𝑦, 𝑥) are layer weights. In the standard setup they are not trainable but
constructed from a set of vectors 𝑢𝑖 in the near-null space of 𝐷. Specifically,

𝑊 (𝑦, 𝑥)† =
𝑠∑︁
𝑖=1

�̄�
𝑦

𝑖
(𝑥)𝑒†

𝑖
, (5)

where the 𝑒𝑖 are the canonical unit vectors on the coarse grid and the �̄�
𝑦

𝑖
are the 𝑢𝑖 blocked on the

sites of 𝐵(𝑦) and then orthonormalized within each block. The coarse-grid operator is defined as

�̃� = RL ◦ 𝐷WC ◦ PL . (6)

3

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
3
7

Gauge-equivariant multigrid neural networks Tilo Wettig

For the approximate solution of the Dirac equation on the coarse grid we use a preconditioner �̃�
consisting of a single LPTC layer with zero- and one-hop paths and gauge fields replaced by 1. We
use the same training strategy as before, but now with cost function 𝐶 = |�̃��̃�𝑣 − 𝑣 |2.

We now turn to the gauge-equivarant version (for earlier related work see, e.g., [10–13]). The
coarse grid is the same as before, but the coarse fields now have the same gauge indices as on the
fine grid (and non-gauge indices as well). For each block 𝐵(𝑦) on the fine grid we define a reference
site 𝐵𝑟 (𝑦) ⊂ 𝐵(𝑦). Given a gauge transformation Ω on the fine grid, we require that the coarse
fields transform as �̃�(𝑦) → Ω̃(𝑦)�̃�(𝑦), where Ω̃(𝑦) = Ω(𝐵𝑟 (𝑦)). This can be achieved if we define
restriction and prolongation layer by

RL = SubSample ◦Pool and PL = Pool† ◦SubSample† (7)

with pooling layer and subsampling layer given by

Pool 𝜑(𝑥) =
∑︁
𝑞∈𝑄

𝑊𝑞 (𝑥)𝑇𝑞𝜑(𝑥) and SubSample 𝜑(𝑦) = 𝜑(𝐵𝑟 (𝑦)) . (8)

Here, 𝑞 = (𝑝, �̄�) denotes a path 𝑝 and a (possibly smeared) gauge field �̄�, and the 𝑊𝑞 (𝑥) are
trainable layer weights acting on the non-gauge indices of 𝜑 (in lattice QCD they are 4 × 4 spin
matrices). A set of paths is called complete if it connects every site in 𝐵(𝑦) to 𝐵𝑟 (𝑦) exactly once,
and we require𝑄 to contain one or more such complete sets of paths. The pooling layer corresponds
to a gauge-equivariant averaging procedure. The subsampling layer then simply picks out the field
after pooling at the reference site. To train the layer weights we used the cost function

𝐶 = | PL ◦RL 𝑣ℓ − 𝑣ℓ |2 + | PL ◦RL 𝑣ℎ − 𝑃ℓ𝑣ℎ |2 + | RL ◦PL 𝑣𝑐 − 𝑣𝑐 |2 , (9)

where 𝑣ℓ denotes fine-grid vectors from the near-null space, 𝑣ℎ and 𝑣𝑐 are random vectors on fine
and coarse grid, respectively, and 𝑃ℓ = 𝑊†𝑊 is the blocked low-mode projector with 𝑊 from
Eq. (5). The first term in the cost function trains PL ◦RL to be an autoencoder that preserves the
low modes, the second term trains PL ◦RL to project high eigenmodes to zero, and the third term
encourages RL ◦PL = 1 so that PL ◦RL is a proper projection operator.

For the approximate coarse-grid solve we employ a similar LPTC model as in the standard
version, but now with coarse-grid gauge fields �̃�` (𝑦) (instead of 1). There are several options to
define coarse-grid gauge fields that transform correctly under gauge transformations. We investi-
gated two options: “plain” and “Galerkin” coarse-grid gauge fields. In the first case, we assume that
for two neighboring sites 𝑦 and 𝑦′ on the coarse grid, the corresponding reference sites on the fine
grid are connected by a straight path that aligns with a coordinate axis, i.e., 𝐵𝑟 (𝑦′) − 𝐵𝑟 (𝑦) = 𝑏 ˆ̀
with 𝑏 ∈ N+. Then �̃�` (𝑦) = 𝑈` (𝐵𝑟 (𝑦)) · · ·𝑈` (𝐵𝑟 (𝑦) + (𝑏 − 1) ˆ̀). In the second case, we define
�̃�` (𝑦) = �̃� (𝑦, 𝑦 + ˆ̀) with �̃� = RL ◦𝐷WC ◦ PL. Note that in this case the coarse-grid gauge fields
are, in general, no longer elements of the original gauge group.

4. Multigrid model and results

We now combine the high- and low-mode models to learn a multigrid model that approximates
the short- and long-distance features of 𝐷−1, see Fig. 1. We first construct a short-distance model

4

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
3
7

Gauge-equivariant multigrid neural networks Tilo Wettig

Figure 1: Gauge-equivariant multigrid model. The smoother is represented by the four double planes and
arrows, while the coarse-grid correction is represented by the gray frustums and the blue planes and arrows.

that accepts a second input feature (an initial guess). This model plays the role of the smoother in
the multigrid method, with the initial guess from the long-distance model acting on the coarse grid.
Assuming that we have a high-mode model 𝑀ℎ approximating 𝐷−1, the smoother maps the tuple
(𝑢𝑘 , 𝑏) to 𝑢𝑘+1 according to

𝑢𝑘+1 = (1 − 𝑀h𝐷)𝑢𝑘 + 𝑀h𝑏 = 𝑢𝑘 + 𝑀h(𝑏 − 𝐷𝑢𝑘) . (10)

Hence the smoother model 𝑀𝑠 must have two input features and one output feature. To have another
control parameter we choose 𝑀𝑠 to map (𝑢𝑘 , 𝑏) to a 𝑢𝑘+𝑟 with 𝑟 ∈ N+. (In the full multigrid model
𝑟 = 2 performed better than 𝑟 = 1.) Since both 𝐷 and 𝑀ℎ can be represented by (L)PTC layers,
every smoother iteration corresponds to 2𝑟 successive layers. The cost function for the training of
𝑀𝑠 is 𝐶 = |𝑀𝑠 (𝑢𝑘 , 𝑏) − 𝑢𝑘+𝑟 |2 with random vectors 𝑢𝑘 , 𝑏 and 𝑢𝑘+𝑟 given by Eq. (10).

In the combined multigrid model in Fig. 1, we first duplicate the input feature and preserve
one copy for smoother. We then restrict the other copy to the coarse grid, apply our coarse-grid
model, and prolongate the result to the fine grid. The copy of the initial feature and the result of the
coarse-grid model are the two input features of the smoother, represented by the last 2𝑟 = 4 layers.
Additional multigrid levels can be implemented by recursively replacing the coarse-grid layer by
the entire model.

In Fig. 2 we present numerical results (for more results and details of the training, see [4, 5]).
The iteration count on the vertical axis refers to the outer solver GMRES to precision 10−8. In the
plot on the left we observe that without preconditioner the iteration count increases dramatically
as the quark mass is tuned to a critical value. Using the smoother-only model as a preconditioner
reduces the iteration count but still exhibits critical slowing down (CSD), while the gauge-equivarant
Galerkin model eliminates CSD. In the plot on the right we see the same data for the Galerkin model
but on a different scale on the vertical axis. The gauge-equivariant multigrid model based on plain
coarse-grid gauge fields performs well but shows small remnants of CSD. The performance of the
multigrid model based on the standard multigrid setup (called “Original” in the title of the plot) is
similar to that of the Galerkin model.

5

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
3
7

Gauge-equivariant multigrid neural networks Tilo Wettig

−0.564 −0.562 −0.560 −0.558

m

0

1000

2000

3000

4000

5000

It
er

a
ti

o
n

C
o
u

n
t

Unpreconditioned

Smoother-only model

Gauge-equivariant Galerkin model

−0.564 −0.562 −0.560 −0.558

m

0

50

100

150

200

250

300

350

400

It
er

a
ti

o
n

C
o
u
n
t

Original multi-grid model

Gauge-equivariant plain coarse-link model

Gauge-equivariant Galerkin model

Figure 2: Original model and gauge-equivariant Galerkin model both eliminate critical slowing down.

5. Summary and outlook

We have reformulated the problem of constructing a (multigrid) preconditioner in the language
of gauge-equivariant neural networks. We find that such networks can learn the general paradigms
of multigrid, significantly reduce the iteration count of the outer solver, and eliminate critical
slowing down. This is true for both the standard and the gauge-equivariant multigrid setup. We
have also seen that transfer learning works, i.e., very little or no extra training is needed if we change
the gauge-field configuration or system parameters like ^ and 𝛽. Furthermore, we can implement
communication avoidance naturally. All layers presented here are implemented in GPT [14].

An important problem, which we will address in future work, is to reduce the cost of the
multigrid setup. In the standard version of the setup, restriction and prolongation layer do not have
trainable weights, and hence the setup cost is comparable to the current state of the art. However, in
the gauge-equivariant version, there are trainable weights. They are gauge-invariant spin matrices
that could be learned from gauge-invariant features of the gauge field such as energy density or
topological charge density, see Fig. 3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t

0

1

2

3

4

5

6

7

z

y

x

|Tr
(
WW †) |

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t

0

1

2

3

4

5

6

7

z

y

x

qtop after 40× 0.1 stout smearing

−80

−60

−40

−20

0

Figure 3: We compare the site-dependent norm of one of our trained pooling layer weights (left) with
the topological charge density after 40 steps of 𝜌 = 0.1 stout smearing (right). The plot shows the entire
four-dimensional fields as two-dimensional 𝑡–𝑧 grids of two-dimensional 𝑦–𝑥 grids, thereby covering all
83 × 16 sites.

6

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
3
7

Gauge-equivariant multigrid neural networks Tilo Wettig

References

[1] J. Brannick, R.C. Brower, M.A. Clark, J.C. Osborn and C. Rebbi, Adaptive Multigrid
Algorithm for Lattice QCD, Phys. Rev. Lett. 100 (2008) 041601 [0707.4018].

[2] R. Babich, J. Brannick, R.C. Brower, M.A. Clark, T.A. Manteuffel, S.F. McCormick et al.,
Adaptive multigrid algorithm for the lattice Wilson-Dirac operator, Phys. Rev. Lett. 105
(2010) 201602 [1005.3043].

[3] A. Frommer, K. Kahl, S. Krieg, B. Leder and M. Rottmann, Adaptive Aggregation Based
Domain Decomposition Multigrid for the Lattice Wilson Dirac Operator, SIAM J. Sci.
Comput. 36 (2014) A1581 [1303.1377].

[4] C. Lehner and T. Wettig, Gauge-equivariant neural networks as preconditioners in lattice
QCD, Phys. Rev. D 108 (2023) 034503 [2302.05419].

[5] C. Lehner and T. Wettig, Gauge-equivariant pooling layers for preconditioners in lattice
QCD, 2304.10438.

[6] T. Cohen and M. Welling, Group Equivariant Convolutional Networks, in Proceedings of
The 33rd International Conference on Machine Learning (ICML), pp. 2990–2999, 2016
[1602.07576].

[7] M. Favoni, A. Ipp, D.I. Müller and D. Schuh, Lattice Gauge Equivariant Convolutional
Neural Networks, Phys. Rev. Lett. 128 (2022) 032003 [2012.12901].

[8] J. Aronsson, D.I. Müller and D. Schuh, Geometrical aspects of lattice gauge equivariant
convolutional neural networks, 2303.11448.

[9] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, in 3rd International
Conference on Learning Representations, ICLR 2015, 2015 [1412.6980].

[10] A. Hulsebos, J. Smit and J.C. Vink, Multigrid Monte Carlo for a Bose Field in an External
Gauge Field, Nucl. Phys. B 331 (1990) 531.

[11] R.C. Brower, C. Rebbi and E. Vicari, Projective multigrid method for propagators in lattice
gauge theory, Phys. Rev. D 43 (1991) 1965.

[12] T. Kalkreuter, Multigrid methods for the computation of propagators in gauge fields, Int. J.
Mod. Phys. C 5 (1994) 629 [hep-lat/9212021].

[13] R. Ben-Av, M. Harmatz, P.G. Lauwers and S. Solomon, Parallel transported multigrid for
inverting the Dirac operator: Variants of the method and their efficiency, Nucl. Phys. B 405
(1993) 623.

[14] C. Lehner et al., Grid Python Toolkit (GPT), https://github.com/lehner/gpt.

7

https://doi.org/10.1103/PhysRevLett.100.041601
https://arxiv.org/abs/0707.4018
https://doi.org/10.1103/PhysRevLett.105.201602
https://doi.org/10.1103/PhysRevLett.105.201602
https://arxiv.org/abs/1005.3043
https://doi.org/10.1137/130919507
https://doi.org/10.1137/130919507
https://arxiv.org/abs/1303.1377
https://doi.org/10.1103/PhysRevD.108.034503
https://arxiv.org/abs/2302.05419
https://arxiv.org/abs/2304.10438
https://arxiv.org/abs/1602.07576
https://doi.org/10.1103/PhysRevLett.128.032003
https://arxiv.org/abs/2012.12901
https://arxiv.org/abs/2303.11448
https://arxiv.org/abs/1412.6980
https://doi.org/10.1016/0550-3213(90)90219-4
https://doi.org/10.1103/PhysRevD.43.1965
https://doi.org/10.1142/S0129183194000799
https://doi.org/10.1142/S0129183194000799
https://arxiv.org/abs/hep-lat/9212021
https://doi.org/10.1016/0550-3213(93)90562-4
https://doi.org/10.1016/0550-3213(93)90562-4
https://github.com/lehner/gpt

	Introduction
	Parallel-transport convolution layers and high-mode preconditioner
	Low-mode preconditioner: standard and gauge-equivariant construction
	Multigrid model and results
	Summary and outlook

