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1. The Sphaleron Rate

The strong sphaleron rate is defined as

Γsphal = lim
Vs→∞

tM→∞

1
VstM

〈[∫ tM

0
dt ′M

∫
Vs

d3x q(t ′M, ®x)
]2

〉
=

∫
dtMd3x 〈q(tM, ®x)q(0, ®0)〉 , (1)

where tM is the Minkowski time and q = (αs/8π)GG̃ is the QCD topological charge density. This
quantity plays a very key role in different phenomenological situations.

Recently in [1] it has been suggested that the strong sphaleron rate plays a crucial role in axion
phenomenology. Specifically, the QCD strong sphaleron rate governs the creation and annihilation
of axions in the early Universe and directly influences the Boltzmann equation, which describes the
time-evolution of the axion number distribution in the cosmological medium. Furthermore, during
heavy-ion collisions, a formation of a hot quark-gluon plasma with strong magnetic fields occurs.
The non-zero sphaleron rate within this plasma can induce local imbalances in left and right-handed
quark species, resulting in phenomena such as the Chiral Magnetic Effect. This effect manifests
as an electric current parallel to the magnetic field within the quark-gluon medium, see [2–5] for
details.

This attention from different points of view calls for a fully non perturbative computation of
the QCD sphaleron rate at finite temperature. Previously, other computations have been performed,
although only restricted to pure gauge [6–9]. In this paper we present our results in pure gauge for
a temperature T ' 1.24 Tc and for the first time in full QCD at the physical point from numerical
Monte Carlo simulations on the lattice above the chiral crossover. More details can be found in the
main papers [10, 11].

2. Our strategy

The sphaleron rate can be computed using the Kubo formulas as the zero frequency limit of
the topological spectral function ρ(ω)

Γsphal = 2T lim
ω→0

ρ(ω)

ω
, (2)

where ρ(ω) is related to the Euclidean topological charge density correlatorG(t) =
∫

d3x 〈q(x)q(0)〉
as

G(t) = −
∫ ∞

0

dω
π
ρ(ω)b(ω, τ), (3)

where we called b(ω, τ) = cosh[ω(t−1/(2T ))]
sinh[ω/(2T )] . Thus, if we are able to invert this relation, once the

correlation function is known, we can extract information about the sphaleron rate. To solve
this inversion problem, we apply the recently-proposed modification [12] of the Backus–Gilbert
inversionmethod [13] called HLTmethod. Using this technique one looks for approximate solutions
of the inverse problem (3) as a smeared version of the true spectral function

ρ̄(ω̄) =

∫ ∞

0
dω∆(ω, ω̄)ρ(ω), (4)

2
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where ∆(ω, ω̄) is a pseudo-gaussian smearing function defined as a linear combination of the basis
function in Eq. (3), i.e. ∆(ω, ω̄) =

∑1/T
i=0 gτ(ω̄)b(ω, τ), being Nτ the total number of temporal data.

This makes possible to find an estimate of the spectral function as

ρ̄(ω̄) = −πω̄

1/T∑
t=0

gt (ω̄)G(t). (5)

The coefficients gt , that define the shape of the function ∆, are fixed by minimising a functional
defined as

F[gt ] = (1 − λ)Aα[gt ] +
λ

C2 B[gt ], λ ∈ [0, 1), (6)

where C is a normalization factor proportional to the correlator in a fixed point (we used C =
G(tT = 0.5) in this work) and λ is a free parameter which is varied to check for systematics. The
functional Aα[gt ] =

∫ ∞
0 dω [∆(ω, ω̄) − δ(ω, ω̄)]2 eαω with α < 2, quantifies the deviation between

the smearing function and a selected target function. The functional B[gt ] =
∑1/T

t,t′=0 Covt,t′ gtgt′
quantifies the magnitude of the statistical uncertainties related to the final result and it is used to

regularise the problem. As in [5], the target function is chosen as ∆(ω, ω̄ = 0) =
(

2
σπ

)2
ω

sinh(ω/σ) .

The parameter σ is crucial for determining the accuracy of the gt coefficients. In our analysis, we
took several values around the value σ/T ∼ 1.75, kept fixed in physical units for all the ensembles
at all the temperatures, and then we performed the limit σ → 0 using general theoretical arguments
known in the literature [14–16]. In all cases, since the dependence is expected to start from O(σ2),
we observed a mild dependence already around σ/T = 1.75. This is an indication that this value is
already sufficiently small for our precision. Finally, the value of the λ parameter has been chosen
inside the plateau close to λ = 0. Then, another value has been selected inside the same plateau
and the resulting observed systematic added to the final uncertainty.

To measure the topological charge correlation functions G(t) that have been used as input
for the inversion procedure, we discretised the charge density using the standard gluonic clover
definition qL(n) = −1

29π2
∑±4
µνρσ=±1 εµνρσTr

{
Πµν(n)Πρσ(n)

}
, where Πµν(n) is the plaquette and

ε(−µ)νρσ = −εµνρσ . By computing the time profile QL(nt ) of the topological charge QL , we
obtain the topological charge density correlator in dimensionless physical units as GL (tT )

T 5 =

N5
t

N3
s
〈QL(nt,1)QL(nt,2)〉, where Ns and Nt are the spatial and temporal extents of the lattice and

tT = min
{
|nt,1 − nt,2 |/Nt ; 1 − |nt,1 − nt,2 |/Nt

}
is the physical time separation between the sources

entering the correlator. The topological charge profiles are calculated on smoothed configurations in
order to suppress ultraviolet (UV) fluctuations. The smoothing radius is given by rs/a '

√
8ncool/3,

thus ncool/N2
t ∝ (rsT)

2.

3. The quenched case

We discretize the Euclidean pure-SU(3) gauge action using the standard Wilson lattice gauge
action SW = −

β
3
∑

n,µ>ν<Tr
[
Πµν(n)

]
, where β = 6/g2 is the bare inverse gauge coupling and

Πµν(n) ≡ Uµ(n)Uν(n + µ̂)U
†
µ(n + ν̂)U

†
ν (n) is the plaquette.

All simulations parameters are summarized in Tab. 1. We performed simulations for 4 values
of β, corresponding to 4 values of the lattice spacing a, following a Line of Constant Physics

3
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Ns Nt β a/r0 L/r0 r0T Stat.
36 12 6.440 0.09742(97) 0.8554(86) 3.507(35) 80k
42 14 6.559 0.08364(84) 0.8540(85) 3.513(35) 10k
48 16 6.665 0.07309(73) 0.8551(86) 3.508(35) 16k
60 20 6.836 0.05846(58) 0.8553(86) 3.508(35) 5k

Nt β a [fm] L [fm] T [MeV] T/Tc

12 6.440 0.04598(67) 1.655(24) 357.6(5.2) 1.244(18)
14 6.559 0.03948(58) 1.658(24) 357.0(5.2) 1.242(18)
16 6.665 0.03450(50) 1.656(24) 357.5(5.2) 1.244(18)
20 6.836 0.02759(40) 1.656(24) 357.6(5.2) 1.244(18)

Table 1: Summary of simulation parameters.

(LCP) where the spatial volume [a(β)Ns]
3 ' [1.66(2) fm]3, the aspect ratio Ns/Nt = 3 and the

temperature T = [a(β)Nt ]
−1 ' 357(5)MeV ' 1.24(2) Tc were kept fixed for each gauge ensemble.

Examples of the obtained correlation functions used as inputs for our inversion algorithm are
shown in Fig. 1. To perform this computation we compare two strategies for extracting the rate:
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Figure 1: The figure shows the correla-
tion function GL(tT) for a fixed value of
the smoothing ncool/N2

t ' 0.069 for all ex-
plored values of the lattice spacing.
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Figure 2: Examples of the continuum extrapolation
at fixed ncool/N2

t of the correlator for two different
values of tT .

the first one, proposed here, involves extracting the sphaleron rate from finite lattice spacing
correlators, taking the continuum limit with a fixed smoothing radius, and then performing a zero-
smoothing extrapolation. The second strategy, a traditional approach, extracts the rate directly from
the correlator after a double extrapolation. In both cases, the rate is obtained using a modified
Backus–Gilbert procedure. The results from both strategies are compatible within errors and are
compared to previous literature at similar temperatures. The new strategy yields improved results
in terms of statistical and systematic uncertainties.

3.1 Results

In this paragraph, the results obtained adopting the two methods are presented and discussed.

Double-extrapolated correlators Using this strategy, first of all we extrapolate the correla-
tion function GL(tT)/T5 to the continuum limit keeping fixed the smoothing radius. This is done

4
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Figure 3: Examples of the zero-cooling extrapolation
of the correlator G(tT, ncool/N2

t ) for two different val-
ues of tT .
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Figure 4: Dependences as a function of σ of the
sphaleron rate. The last panel refers to the double ex-
trapolated correlator case, while the other ones at finite
lattice spacing and smoothing radius, corresponding
to ncool/N2

t ' 0.04.

by fixing ncool/N2
t for all the lattice spacings by performing a spline cubic interpolation of our

correlators at non-integer values of ncool. The same has been done on the coarsest correlation
functions in order to maintain the same physical time separation tT for each lattice spacing. To
perform the continuum limit, we assume O(a2) = O(1/N2

t ) corrections. After the continuum limit
extrapolation, shown in Fig 2, we can perform the zero-cooling limit ncool/N2

t which is carried on
assuming linear corrections in ncool/N2

t , see Fig. 3. The result is in overall good agreement with
the double-extrapolated correlator obtained for the same temperature in Ref. [6] and is shown in
Fig. 1.

Finally, having extracted the l.h.s. of Eq. (3), we can perform the inversion using the HLT
algorithm to extract the rate Γsphal using the strategy described in the previous Section. The
bottom panel in Figure 4 shows the σ dependence of the sphaleron rate extracted from the double
extrapolated correlation function. The dependence shows that σ/T = 1.75 is already a reasonable
choice, since the signal is flat in the errors as we decrease its value. Our final estimate is

Γsphal

T4 = 0.079(25), T = 1.24Tc . (7)

This result is compatible with the one reported in Ref. [6], although the central value is ∼ 33%
smaller.

Double extrapolated sphaleron rate. Using the second approach, we perform the inversion
directly on the correlation functions at finite lattice spacing and finite smoothing radius. In Fig. 4
it is shown the dependence in σ. The results for the sphaleron rate are firstly extrapolated in the
continuum at fixed ncool/N2

t assuming O(a2) corrections, see Fig. 5. Then, the zero smoothing
radius limit is performed on the continuum extrapolations of the sphaleron rate, as shown in Fig. 6.
Our final estimate using this method is

5
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Figure 5: Continuum extrapolation of the sphaleron
rate.
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Figure 6: Zero cooling radius extrapolation.

Γsphal

T4 = 0.060(15), T ' 1.24 Tc, (8)

which is in perfect agreement with the one obtained using the previous method, but is more accurate.
Moreover, also this result presents a smaller central value for the sphaleron rate compared to the
one reported in Ref. [6] at the same temperature, Γsphal/T4 = 0.12(3), even if it is still compatible
with it. Furthermore, if we compare our result with Ref. [9], where a completely different strategy
was used, the smallest temperature result in that work, for T ' 1.3 Tc, close to our measure, is in
perfect agreement with the one extracted in this work.

4. The full QCD case

T [MeV] T/Tc β a [fm] ams · 10−2 Ns Nt

230 1.48

3.814* 0.1073 4.27 32 8
3.918* 0.0857 3.43 40 10
4.014 0.0715 2.83 48 12
4.100 0.0613 2.40 56 14
4.181 0.0536 2.10 64 16

300 1.94

3.938 0.0824 3.30 32 8
4.059 0.0659 2.60 40 10
4.165 0.0549 2.15 48 12
4.263 0.0470 1.86 56 14

365 2.35

4.045 0.0676 2.66 32 8
4.175 0.0541 2.12 40 10
4.288 0.0451 1.78 48 12
4.377 0.0386 1.55 56 14

430 2.77

4.280 0.0458 1.81 32 10
4.385 0.0381 1.53 36 12
4.496 0.0327 1.29 48 14
4.592 0.0286 1.09 48 16

570 3.68
4.316 0.0429 1.71 32 8
4.459 0.0343 1.37 40 10
4.592 0.0286 1.09 48 12

Table 2: Summary of simulation parameters. See Ref. [17] for more details on the configuration generation.

Finally, we extended our computation to full QCD. We did Monte Carlo simulations of Nf =

2 + 1 QCD at the physical point across five temperatures: T = 230, 300, 365, 430, and 570 MeV.

6
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Figure 7: Continuum extrapolation of the sphaleron
rate.
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Figure 8: Zero cooling radius extrapolation.

For each temperature, we explored 3-5 lattice spacing values while maintaining a constant physical
lattice volume. We selected the bare coupling and quarkmasses to stay on a Line of Constant Physics
(LCP), where ms/ml = 28.15 and mπ ' 135 MeV were kept fixed at their physical values [18–20].
The gauge sector was discretised using the tree-level Symanzik improved Wilson gauge action, and
the quark sector employed rooted stout staggered fermions. In Tab 2 the simulation parameters are
summarised.

Here, we followed the same procedure as before performing the double limit directly on the
sphaleron rate. In Figs. 7-8, we show the extrapolation to the continuum limit and at zero cooling
radius for the temperature T = 230 MeV. In Table 3, we summarize our results for the sphaleron
rate as a function of the temperature.

Let us comment on those results. In Fig. 9, we show our comparison with our pure gauge
results and the previous determinations [6, 9]. These are valid in two different limits of energy
scales. The full QCD determinations turn out to be slightly larger (although of the same order of
magnitude) than the quenched ones, both when we report the rates in terms of the absolute T in
MeV, and when we report them in terms of T/Tc. Furthermore, we tried to look for ansätze that
could describe the behaviour of our results.

T [MeV] Γsphal/T4

230 0.310(80)
300 0.165(40)
365 0.115(30)
430 0.065(20)
570 0.045(12)

Table 3: Summary of the determinations of the sphaleron rate of 2 + 1 full QCD at the physical point.

From Refs. [21, 22], we refer to the semiclassical estimate for the sphaleron rate as Γsphal

T 4 '

C1α
5
s , where αs is the running strong coupling. Thus, we used as ansatz

Γsphal

T4 =

[
A

log(T2/T2
c ) + log(B2)

]5
, (9)

7
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Figure 9: Sphaleron rate for 2+1 full QCD at the physical point as a function of temperature T (diamond
points). Dashed line and uniform shaded area represent best fit of our results. Starred shaded area depicts
semiclassical prediction.

where we used the 1-loop result for the temperature running of αs(T). The fit is shown in Fig 9
as a dashed line while the uniform shaded area represents the corresponding error band; the fit
parameters turn out to be A = 2.96(51) and B = 4.3(1.7). The red band shows the semiclassical
prediction results using the coefficients predicted by the theory, namely B0 = Tc/ΛQCD ' 0.46(2)
using the latest world-average FLAG value for the 3-flavor dynamically-generated scale Λ(MS)

QCD
(µ =

2 GeV) ' 338(12) MeV [23], and A0 = C1/5
1 C2 ' 3.08(2) using the expressions for C1 and C2

reported, respectively, in Refs. [21, 24]. While A is in good agreement with the prediction A0, the
pole parameter B is larger by an order of magnitude compared to B0. As a final remark, we would
also like to mention that, despite a semiclassically-inspired logarithmic power-law fits well our full
QCD results for the sphaleron rate, also other functional forms could describe the T-behavior of
our data, like a simple power-law in T. More details can be found in the main paper [11].

5. Conclusions

We computed the sphaleron rate from Euclidean lattice correlators of the topological charge by
solving an inverse problem. The method that we used is the recently-introduced HLT method [12].
Our strategy for the computation of the sphaleron rate has been firstly tested on the pure gauge
case [10] and then extended for the first full QCD computation [11]. The main strategy, used
in both cases, has been to invert the finite-lattice spacing and finite-smoothing radius correlators,
postponing the double-extrapolation directly on the final quantity, i.e. the sphaleron rate. In pure
gauge our result is in agreement with the ones already in the literature, while in full QCD, having
studied the temperature behaviour, we tried to describe our data using semiclassically-inspired
functional form. However, also other functional forms, such as a regular power-law decay of the
rate, are shown to describe well our data [11].

In the future, it would be extremely interesting to repeat our calculation of the sphaleron rate
adopting a different fermionic discretisation and also investigate higher temperatures in order to
better clarify the actual temperature behaviour. Finally, it would be interesting to extend present
computations to the case of non-zero spatial momentum ®k.

8
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