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Finite volume effects near the chiral crossover
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The effect of a finite volume presents itself both in heavy ion experiments as well as in recent model
calculations. The magnitude is sensitive to the proximity of a nearby critical point. We calculate
the finite volume effects at finite temperature in continuum QCD using lattice simulations. We
focus on the vicinity of the chiral crossover. We investigate the impact of finite volumes at zero
and small chemical potentials on the QCD transition though the chiral observables.
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1. Introduction

It is well known that QCD exhibits a thermal transition which turned out to be an analytic crossover
in the case of physical quark masses and vanishing baryon chemical potential `� = 0 [1]. Finite
size scaling using aspect ratios !) = 4, 5, 6 specified the transition as analytic since the peak of
the chiral susceptibility shows basically no or a mild volume dependence. Further studies of the
equation of state demonstrate that the main driver of uncertainties are not finite volume effects, but
instead cut-off effects which lead to taste-violation in the case of staggered quarks [2]. These can
be significantly reduced by employing tree-level corrections, stout-smearing methods or using the
HISQ action [3, 4]. Especially the observation that there is basically no volume dependence in the
transition region contributed to the unspoken common standard in the community to choose !) = 4
to study the thermal properties of QCD such as high-order fluctuations [5, 6] or the pseudocritical
transition line )2 (`�) [7–9].
Nevertheless finite volume effects play a crucial role phenomenologically and theoretically. The
fireball produced in heavy-ion collisions is of finite size and if the crossover turns into a real
transition, volume effects get more and more severe. Hence we study the impact of finite volumes at
vanishing chemical potential and at finite `� using the imaginary chemical potential Taylor method
by setting the focus on the chiral observables.

2. Chiral observables

In the case of vanishing quark masses the chiral condensate 〈k̄k〉 deals as a true order parameter to
probe the spontaneous breaking of the underlying chiral symmetry. Since nature presents us small
but finite quark masses, the symmetry is also explicitly broken which leads to a non-vanishing value
of the condensate at high temperatures ) although the spontaneous breaking is restored. We are
interested in physical results and perform whenever it is possible a continuum extrapolation. Hence
we use the following renormalization scheme to remove additive and multiplicative divergences

〈k̄k〉 = )
+

m log /
m<

〈k̄k〉' = −
[
〈k̄k〉) − 〈k̄k〉) =0

] <
5 4
c

(1)

j =
)

+

m2 log /
m<2 j' = [j) − j) =0]

<2

5 4
c

, (2)

by subtracting the zero temperature part of the observable 〈...〉) =0 and multiplying with the light
quark mass < in lattice units. To get a dimensionless quantity, the result is divided by the pion
decay constant 5c .

3. Volume dependence of the chiral condensate

The key feature of a crossover transition is basically no or a very mild volume dependence of the
observable and hence the absence of discontinuities or divergences up to the infinite volume limit.
In the opposite direction, i.e. decreasing the volume, the behavior is not so clear. Chiral perturbation
theory (chiral PT) predicts an exponential dependence of the condensate as a function of the spatial
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extension #G . The leading asymptotic behavior of the condensate at vanishing magnetic field and
) = 0 takes on the form [10]

〈k̄k〉 ∼
√
<c

�2
c

4−<c#G

(2c#G)3/2
. (3)

This can be compared with our lattice results if we pick a temperature below )2 as shown in Fig. 1.
Here the chiral condensate is solved via a spline interpolation at fixed ) = 140 MeV for all lattices
with #C = 12.
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N3/2

x
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Figure 1: Chiral condensate solved at a fixed temperature ) = 140 MeV for every lattice with #C = 12 as a
function of the spatial extension #G . The blue curve is a fit inspired by chiral PT (Eq. (3)) in the range of
#G ∈ [28, 64].

The blue curve is the fit function 5 (#G) as shown in the legend and provides j2/ndof = 1.03. The
coefficient 2 is <c according to Eq. (3) and reads 2 = 131 ± 10 MeV. This remarkable agreement
with the pion mass is only true for #G ≥ 28. One reason for this lies in the fact that the transition
temperature for 183 × 12 and 203 × 12 is below ) = 140 MeV as shown in Fig. 4 in the lower left
panel. Hence the system tends to be deconfined and cannot be described by the chiral PT Eq. (3)
which is valid for zero temperature.
The exponential behavior of the condensate as a function of #G could be observed for a large range
of temperatures. Hence it is reasonable to fit 6(#G) = 0′ + 1′ · exp(−2′ · #G) inspired by Eq. (3) to
the condensate values at fixed temperature. The results for the coefficients 2′ and 1′ are shown in
Fig. 2:
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Figure 2: Fit parameters of 6(#G) = 0′ + 1′ · exp(−2′ · #G) as functions of the temperature. Left: 2′

coefficient converted in MeV. Right: Corresponding amplitude 1′.

The fit exponent 2′ is nearly constant and takes on a value of around the QCD scale 200 MeV and
shows a rapid rise after passing )2 ≈ 156 MeV. In the case of the amplitude 1′ > 1 for ) < )2 . If
the temperature is higher than )2 , then 1′ shrinks to values below 1.

4. Volume dependence of the transition temperature )2

To obtain the transition temperature )2 we follow a similar strategy as described in [7]. The chiral
susceptibilty is expressed as a function of the condensate. The advantage is that j(〈k̄k〉) has a
simpler form compared to j()) and can be fitted more precisely. Together with the corresponding
〈k̄k〉2 for which j takes on its maximum value, the transition temperature can be read off from
〈k̄k〉 ()) via spline interpolation. This procedure allows us to calculate precisely the proxy X) for
the width of the transition defined as

X) = 〈k̄k〉−1
(
〈k̄k〉2 +

Δ 〈k̄k〉
2

)
− 〈k̄k〉−1

(
〈k̄k〉2 −

Δ 〈k̄k〉
2

)
(4)

Δ 〈k̄k〉 =

√√√√√
−jmax

©« d2j

d 〈k̄k〉2

�����
〈k̄k〉2

ª®¬
−1

. (5)

More details can be found in [7, 11, 12]. For a broad range of aspect ratios we can now perform
a continuum extrapolation as examplary demonstrated in the left panel of Fig. 3. The continuum
extrapolotated results of the transition temperature for each aspect ratio are shown on the right
panel. Again we observe an exponential dependence which allows us to obtain the infinite volume
limit of the continuum extrapolated transition temperatures

)2 (#C →∞, !) →∞) = 158.9 ± 0.6 MeV. (6)
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Figure 3: Left: Exemplary continuum extrapolation of )2 at aspect ratio !) = 4. Right: Continuum
extrapolated )2 as a function of the aspect ratio !) and additional infinite volume extrapolation via an
exponential fit.

The exponential dependence on the volume is not limited to )2 . As demonstrated in Fig.4, the peak
of the susceptibility jmax and the width of the transition X) Eq. (4) indicate a similar behavior.
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Figure 4: Volume dependence of jmax (upper left), X) (upper right) and )2 (lower left) as functions of #G .
The lattice geometry is converted in the box size L in fm (lower right).
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The peak of the susceptibility (upper left panel) decreases and stays nearly constant if #G ' 40
(!) ' 3.3) which is a clear sign of a crossover. It confirms the common standard to use !) = 4 in
QCD thermodynamics to be close to the infinite volume limit. In the opposite direction, the peak
increases significantly as the volume is further decreased.

5. Volume dependence of )2 at finite and real ˆ̀�

So far we set the focus on vanishing chemical potential. Let us extend our results to finite density
and investigate the volume dependence. To circumvent the sign problem, we performed simulations
at purely imaginary and vanishing chemical potentials. These runs deal as a lever arm to extrapolate
to finite and real ˆ̀�. In Fig. 5 the temperature is shown as a function of ˆ̀2

�
for various volumes at

fixed #C = 12. There is a clear volume dependence visible for imaginary and vanishing ˆ̀�. In the
linear extrapolation in ˆ̀2

�
we see that the volume dependence gets weaker and tends to disappear

near ˆ̀2
�
= 6.
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Figure 5: )2 as a function of ˆ̀2
�
for various lattices with #C = 12. The colored bands indicate a linear

extrapolation.

Given these runs, we extrapolate )2 to real `� according to )2 (`�)
)2 (0) = 1− ^2

(
`�

)2 (`�)

)2
up to leading

order. The results are shown in Fig. 6 and 7.
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Figure 6: )2 extrapolated to finite and real `� from imaginary chemical potentials.
Left: Fixed aspect ratio !) = 4 and the discretization effects. Right: Fixed #C = 12 and varying volume.

Fixing the aspect ratio !) = 4 and varying the temporal extension #C indicates that the cut-off
effects seem to stay rather constant in the extrapolation regime of `� as the bands of the left panel
of Fig. 6 are nearly parallel. This is not the case if the focus is set on finite volume effects for which
#C = 12 is fixed and #G is varied as depicted on the right panel. Here the volume effects seem to
decrease for higher chemical potentials and even to completely disappear around `� ≈ 400 MeV.
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Figure 7: )2 extrapolated to finite and real `� for various box sizes converted in fm for #C = 12.

Given the transition lines for every lattice with #C = 12, we can calculate the result in a finite box
with size ! [fm]. The idea is to keep the box size constant and to vary the lattice geometry at fixed
temporal extension. For this purpose )2 (#G) is iterated for each `� to match the desired box size
in fm. The results are shown in Fig. 7. Here we can conclude that a box size of ! = 5 fm agrees
with the infinite volume extrapolated result.
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