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We present methods to constrain fermionic condensates on the level of the path integral, which
grant access to the quantum effective potential in the infinite volume limit. In the case of a sponta-
neously broken symmetry, this potential possesses a manifestly flat region, which is inaccessible
to the standard approach on the lattice. However, by constraining the appropriate order parameters
such as the chiral condensate, one is then able to probe the flat region. We demonstrate our method
of constraining fermionic condensates in the 2-dimensional Gross-Neveu model, which exhibits a
spontaneously broken chiral symmetry. We show how the potential flattens for increasing volume
and that the flat region is dominated by inhomogeneous field configurations.
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1. Introduction

In this work, we consider fermionic theories that spontaneously break chiral symmetry, result-
ing in a non-zero chiral condensate. The standard procedure to investigate the breaking of such a
symmetry on the lattice would be to introduce an explicit breaking of the symmetry and then tak-
ing the double limit of infinite volume and subsequently zero explicit breaking. Such a procedure
can be extremely expensive in theories like Quantum chromodynamics (QCD). An alternative ap-
proach would be to investigate the quantum effective potential Γ, which is the Legendre transform
of the free energy with respect to the expectation value of the order parameter – in our case the
chiral condensate. It then incorporates all quantum effects of the theory. This manifestly convex
potential features a flat region in the case of a broken symmetry, with the edges of the flat region
corresponding to the ground state manifold. Thus, if one has access to this object, it is rather trivial
to investigate whether the symmetry is broken and what the value of the order parameter is.

While one cannot access this quantity directly in lattice simulations, it is possible to employ
the constraint path integral formalism. Here, one introduces a constraint of the form 𝛿(𝜙 − 𝜑)
on a given order parameter 𝜑 to the path integral. The resulting constraint path integral Z𝜙 only
integrates over the configurations that fulfill the constraint, i.e., 𝜑 = 𝜙. The so-called constraint
potential Ω(𝜙) = − lnZ𝜙/𝑉 can be shown to coincide with the quantum effective potential Γ(𝜙)
in the infinite volume limit [1]. This gives an alternative approach to investigate a spontaneous
symmetry breaking, where one only has to take the infinite volume limit instead of the double limit
that we discussed before. While a constraint of bosonic order parameters has been successfully
applied on the lattice [2, 3], it has not been used so far for fermionic order parameters such as the
chiral condensate. In this work, we present methods to constrain the chiral condensate and obtain
the constraint potential. We test these methods in the 2-dimensional Gross-Neveu (GN) model [4]
in the 𝑁 𝑓 → ∞ limit. While this presents a rather simple setup, our method is applicable to other
fermionic theories such as QCD. This work presents preliminary investigations of our developments
that we will discuss in full detail in an upcoming publication [5].

2. The Gross-Neveu model

The 2-dimensional GN model [4] is a so-called four-Fermi theory with its bosonized Euclidean
action obtained from a Hubbard-Stratonovich (HS) transformation given by

𝑆𝜎 =
∫

d2𝑥
[
−�̄�(𝑥)

( /𝜕 + 𝜎(𝑥)
)
𝜓(𝑥) + 𝑁 𝑓

2𝑔2 𝜎
2(𝑥)

]
. (1)

where �̄�, 𝜓 are fermion spinors with 𝑁𝛾 = 2 components and 𝑁 𝑓 species, and the coupling 𝑔2

controls the coupling strength of the scalar four-Fermi interaction
(
�̄�𝜓

)2 in the original action before
bosonization. The bosonic field 𝜎 is an auxiliary field that is introduced by the HS transformation
and its expectation value is proportional to the chiral condensate as given by the Ward identity

⟨�̄�𝜓(𝑥)⟩ = 𝑁 𝑓

𝑔2 ⟨𝜎(𝑥)⟩. (2)

One can integrate over the fermionic degrees of freedom in the path integral to obtain

Z =
∫

D[𝜎] e−𝑆eff , 𝑆eff =
∫

d2𝑥
𝑁 𝑓

2𝑔2 𝜎
2(𝑥) − ln Det𝑄 [𝜎], 𝑄 [𝜎] = /𝜕 + 𝜎. (3)
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An often considered limit is the limit 𝑁 𝑓 → ∞, which suppresses all quantum fluctuations for
the bosonic field 𝜎. In this limit, the only configurations Σ that contribute to the path integral are
the ones with the largest weight. These are the ones that minimize the effective action 𝑆eff . Thus,
the calculation of the path integral reduces to a minimization problem. We exclusively consider this
limit in this work.

The theory exhibits a discrete chiral symmetry under which the fermionic and bosonic fields
transform as

𝜓 → 𝛾5𝜓, �̄� → −�̄�𝛾5, 𝜎 → −𝜎. (4)

This symmetry is spontaneously broken in the 𝑁 𝑓 → ∞ limit and one finds a non-zero expectation
value ⟨�̄�𝜓⟩. We renormalize the theory, by requiring that the expectation value of 𝜎 assumes a
homogeneous non-zero value, i.e., ⟨𝜎⟩ = 𝜎0, which is achieved by choosing an appropriate value
of the coupling (see Refs. [6] for further details on the renormalization).

In this work, we consider a naive lattice discretization of the GN model. We refer to Ref. [7]
for a detailed discussion of the GN model within this discretization.

3. Constraining the Gross-Neveu model

We are interested in constraining the expectation value of the chiral condensate and obtaining
the effective potential as a function of this expectation value. We consider two options to achieve
this:

1. a fermionic constraint, where we constrain the chiral condensate directly,

2. a bosonic constraint, where we constrain the auxiliary field, which is linked to the chiral
condensate via the Ward identity (2).

3.1 Fermionic constraint

With the fermionic constraint, we modify the bosonized path integral by introducing a con-
straint on the spatial average of the condensate to obtain

Z𝜙 (f) =
∫

D[�̄�, 𝜓, 𝜎] e−𝑆𝜎 𝛿

(
1
𝑉

∫
d2𝑥 �̄�(𝑥)𝜓(𝑥) − 𝜙 (f )𝑁 𝑓

)
. (5)

This type of constraint involves a combination of Grassmann numbers in a Dirac delta distribution.
A priori, it is not clear whether this is a well-defined object. However, if we choose a representation
of the Dirac delta as 𝛿(𝑥) =

∫ ∞
−∞

d𝜂
2π ei𝜂𝑥 , one recognizes that it merely requires that arbitrary powers

of 𝑥 are non-vanishing. This is realized if �̄� and 𝜓 have infinitely many degrees of freedom as, e.g.,
in the infinite volume, and thus arbitrary powers of 1

𝑉

∫
d𝑥 �̄�(𝑥)𝜓(𝑥) do not vanish. This aspect

will be discussed in greater detail in Ref. [5].
Applying this expansion to the path integral with the fermionic constraint and a subsequent

integration over the fermionic degrees of freedom results in the reduced path integral

Z𝜙 (f) =
∫

D𝜎

∫ ∞

−∞

d𝜂
2π e−𝑆

′
eff (𝜂) [𝜎 ]−i𝜂𝜙 (f)𝑁 𝑓 , 𝑆′eff (𝜂) [𝜎] = − ln Det

(
𝑄
[
𝜎
]
+ i𝜂

𝑉

)
+
∫

d2𝑥
𝑁 𝑓 𝜎

2

2𝑔2 .

(6)
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One cannot perform the 𝜂-integral analytically in this form. We can, however, expand the determi-
nant in powers of 1/𝑉 to obtain

𝑆′eff (𝜂) [𝜎] = − ln Det (𝑄 [𝜎]) − i𝜂
𝑉 Tr𝑄−1 − 𝜂2

2𝑉2 Tr𝑄−2 + O
(
𝜂3

𝑉3

)
+
∫

d2𝑥
𝑁 𝑓 𝜎

2

2𝑔2 . (7)

Neglecting terms of order O
(

1
𝑉3

)
, allows us to carry out the 𝜂-integral in a closed form to obtain

the constraint path integral

Z𝜙 (f) = N
∫

D𝜎 e−𝑆eff [𝜎 ]−
𝑁 𝑓 (𝜙 (f)−M)2

2𝜒 − 1
2 ln Tr𝑄−2

, M ≡ 1
𝑉𝑁 𝑓

Tr𝑄−1, 𝜒 ≡ − 1
𝑉𝑁 𝑓

Tr𝑄−2,

(8)

where N is an irrelevant normalization constant and the additional ln Tr𝑄−2 term is suppressed
in the limit 𝑁 𝑓 → ∞. The relevant configurations Σ in this limit are the ones that minimize the
complete exponent of the weight instead of only 𝑆eff . One can intuitively understand that the modi-
fications to the weight of the path integral in Eq. (8) punish configurations, where M deviates from
𝜙 (f ) . As the expectation value of M would be the chiral condensate in the unconstrained case, this
result appears plausible.

In the presence of the constraint, it is, however, important to distinguish M from the chiral
condensate, which reads then⟨

�̄�𝜓
⟩
𝜙 (f)

𝑉𝑁 𝑓
= 𝜙 (f ) +

⟨
(𝜙 (f ) −M)2

𝜒

𝛾

𝜒

⟩
𝜙 (f)

− 1
𝑉𝑁 𝑓

⟨
𝛾

𝜒

⟩
𝜙 (f)

, 𝛾 ≡ 1
𝑉𝑁 𝑓

Tr𝑄−3. (9)

This might be surprising, since from Eq. (5), one would have expected the chiral condensate to be
𝜙 (f ) . The volume expansion destroys this exactness and one retains additional terms as modifica-
tions, which stem from the exchange of the infinite volume limit and the 𝜂-integration. However,
we will see in Section 4 that these corrections are actually small in the relevant regions of 𝜙 (f ) .
Moreover, one finds that the Ward identity (2) is preserved even after the volume expansion.

3.2 Bosonic constraint

The bosonic constraint, introduces a constraint on the spatial average of the field 𝜎 to the path
integral as

Z𝜙 (b) =
∫

D
[
�̄�, 𝜓, 𝜎

]
e−𝑆𝜎 𝛿

(
1
𝑉

∫
d𝑥 𝜎(𝑥) − 𝜙 (b)

)
. (10)

Even though, we do not constrain the chiral condensate directly, one might expect that it is con-
strained nevertheless due to the Ward identity (2). However, one finds that this Ward identity re-
ceives an extra contribution in the constrained path integral with the modified relation given by

⟨�̄�𝜓⟩𝜙 (b)

𝑉
=

𝑁 𝑓

𝑔2 𝜙 (b) −
𝜕Ωb

(
𝜙 (b) )

𝜕𝜙 (b) ≡
𝑁 𝑓

𝑔2 𝜙 (b) − 𝑗b

(
𝜙 (b)

)
, (11)

with Ωb = − lnZ𝜙 (b) Thus, we expect that this bosonic constraint constrains the chiral condensate
up to 𝑗b, which is the derivative of the constraint potential with respect to the constraint parameter.
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Figure 1: The expectation value
⟨
�̄�𝜓

⟩
𝜙 (x) for the two constraint methods.

Moreover, in contrast to the fermionic constraint, one finds that ⟨�̄�𝜓⟩𝜙 (b) = 𝑉
⟨
M

⟩
𝜙 (b) without any

corrections. Bosonic constraints have been considered in various studies [2, 3] and their application
has been well understood. We exploit this type of constraint in the special setup of the GN model to
benchmark the ability of the fermionic constraint to constrain the chiral condensate, which we focus
on in this work. As the bosonic constraint works on the level of the bosonic fields, which are the
degrees of freedom in which the minimization of the action is done, we can enforce it numerically in
the minimization routine. The same is true for a Monte-Carlo simulation, where the 𝜎-field would
be the degree of freedom that is integrated over.

4. Results of the constrained Gross-Neveu model

As a first test of the constraining methods, we consider a single coupling 𝑔2 ≈ 0.49203 on two
lattices 𝑉 = 𝐿2 ∈ {402, 602}. For this coupling, the bosonic vacuum expectation value with the
unconstrained path integral is ⟨𝜎⟩ = 𝜎0 = 0.5 = 1.01620 𝑔2. In order to facilitate the numerical
minimizations, we restrict the 𝜎-field to be homogeneous in one of the two directions.

We start our investigation by calculating
⟨
�̄�𝜓

⟩
𝜙 (x) for both constraints as shown in Fig. 1 to

estimate the extent of the consistency of the constraints. With the bosonic constraint, we find that
the chiral condensate is given by 𝜙 (b)/𝑔2 up to a maximum value in 𝜙 (b) , where the additional term
in Eq. (11) contributes, i.e., 𝑗 ≠ 0. The chiral condensate being constrained that strongly in some
range of 𝜙 (b) even though we constrained the bosonic field, is certainly remarkable. One finds that
this maximum value of 𝜙 (b) increases with increasing volume. We find a similar situation with
the fermionic constraint, where the chiral condensate is constrained again up to a maximum value
in 𝜙 (f ) , which increases also with volume. However, the deviation from 𝜙 (f ) is minimal beyond
this point and the chiral condensate is still constrained approximately. This shows that the chiral
condensate is controlled considerably better by the fermionic constraint compared to the bosonic
constraint. For even larger 𝜙 (f ) (beyond 𝜎0/𝑔2), one finds that there is a large deviation of

⟨
�̄�𝜓

⟩
𝜙 (f)

from 𝜙 (f ) , which appears to be independent of the volume. This signals that the additional terms in
Eq. (9) become relevant.

To understand how the constraints works and why the jumps at the intermediate values of 𝜙 (x)

happen, we consider the field configurations Σ that we find in the numerical minimization for 𝐿 = 60
in Fig. 2. We show the configurations for both constraint types each at similar values of

⟨
�̄�𝜓

⟩
𝜙 (x) .

For small values of
⟨
�̄�𝜓

⟩
𝜙 (x) , we find inhomogeneous configurations in both cases, which interpo-

5
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Figure 2: The minimizing field configuration Σ for several values of
⟨
�̄�𝜓

⟩
𝜙 (x) with the bosonic and fermionic

constraint for 𝐿 = 60.

late between the minima of the classical double well potential at ±𝜎0 = ±0.5. The bosonic field Σ
mostly stays in one of the two minima and transitions through the unfavored regions with a tunneling
profile that is independent of

⟨
�̄�𝜓

⟩
𝜙 (x) . For increasing value of

⟨
�̄�𝜓

⟩
𝜙 (x) , the ratio of space that the

bosonic field spends in one of the minima changes to accommodate the change in the constraint. At
a certain value of

⟨
�̄�𝜓

⟩
𝜙 (x) , the required ratio cannot be fulfilled anymore leading to the observed

breakdown of the constraint. The approximate nature of the fermionic constraint enables configu-
rations such as the green curve, where the field does not tunnel all the way. These configurations
correspond to a value of the chiral condensate just before the jump at 𝜙 (f ) ≈ 0.75 of the 𝐿 = 60
curve in the right plot of Fig. 1. For large

⟨
�̄�𝜓

⟩
𝜙 (x) , one finds homogeneous field configurations for

both constraining methods. We find that the tunneling profile has a fixed physical width and, thus,
for increasing volume more extreme ratios of space in the two minima can be fulfilled.

Now we turn to the constraint potential Ωx = − lnZ𝜙 (x) /𝑉 . In a full Monte-Carlo simulation,
one would measure 𝑗𝑥 – the derivative of Ωx w.r.t. to the constraint parameter – and reconstruct
Ωx from this [3]. In the considered 𝑁 𝑓 → ∞ limit, however, we can also directly calculate Ωx,
because there is only a single configuration that is contained in the path integral. The two methods
yield the same result within numerical accuracy. Fig. 3 depicts the constraint potential for both
constraining methods as a function of the constraint parameter. Both methods feature a flat region
for small constraint parameters, which extends to larger constraint parameters for larger volumes.
This regime features the inhomogeneous field configurations shown in Fig. 2. The value of the
flat region is finite but approaches the value corresponding to the minimum for increasing volume.
The flat region will extend all the way to the minimum in the infinite volume limit. This is the
behavior that we expect from the quantum effective potential, which agrees with the constraint
potential for 𝑉 → ∞. We notice that the deviation from the flat behavior is non-analytic for the
bosonic constraint and smooth for the fermionic constraint, which reflects the approximate nature
of this constraint. Next, we consider the constraint potential as a function of

⟨
�̄�𝜓

⟩
𝜙 (x) instead

of the constraint parameter, as this enables a real comparison of the two methods. This is done in
Fig. 4, where the results in the flat region from different constraint methods for the same volume
agree within numerical accuracy. For the fermionic constraint, one finds that Ωf is double-valued
for some values of

⟨
�̄�𝜓

⟩
𝜙 (f) . There is, however, no stability issue as this is only due to the fact

6
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Figure 3: The constraint potentialΩx as a function of the constraint parameter with the bosonic and fermionic
constraint for 𝐿 ∈ {40, 60}.
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Figure 4: The constraint potential Ωx as a function of
⟨
�̄�𝜓

⟩
𝜙 (x) with both constraint types for 𝐿 ∈ {40, 60}.

that two values of 𝜙 (f ) can correspond to a single value of
⟨
�̄�𝜓

⟩
𝜙 (f) in the region where it jumps in

Fig. 1. We conclude that the fermionic constraint is actually able to constrain the chiral condensate
in order to calculate the constraint potential. As expected, this flattens for increasing volume and
we expect it to be equivalent to the quantum effective potential in the infinite volume limit.

5. Conclusion

In this work, we presented two methods to constrain the chiral condensate on the level of the
path integral and used these to successfully calculate the constraint potential as a function of the
expectation value ⟨�̄�𝜓⟩. While the bosonic constraint was used in this form in others contexts, the
fermionic constraint is an entirely new approach, which directly constrains the fermion bilinear �̄�𝜓.
Neither of the methods are limited to the 𝑁 𝑓 → ∞ limit in which we tested the methods, but could
also be used in Monte-Carlo simulations. It was shown that such constrained simulations are an
excellent tool to investigate spontaneous symmetry breaking on the lattice with a lesser numerical
effort compared to the traditional method with an explicit breaking [3]. Moreover, the fermionic
constraint is not unique to the GN model and can be implemented similarly in other fermionic
theories. This includes QCD, where it could provide a valuable alternative to the standard approach
in full lattice simulations. This discussion and results of the constrained chiral GN model featuring
a continuous chiral symmetry will be presented in Ref. [5].
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