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TEK reduction is a well-established technique that allows single-site simulations of Yang-Mills
theory in the large-𝑁𝑐 limit by exploiting volume reduction induced by twisted boundary condi-
tions. We performed simulations for 𝑆𝑈 (841) for several gauge couplings and applied standard
Wilson flow techniques combined with a tree-level improvement methodology to set the lattice
scale. The wide range of gauge couplings covered by our simulations allows us to explore a region
in the coupling space where our data exhibits asymptotic scaling and perturbation theory could
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of Yang-Mills theory at large-𝑁𝑐 in MS-scheme.
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1. Introduction

In a generic bare-coupling definition scheme labelled by 𝑠, the Renormalization Group (RG)
equation for the bare ’t Hooft coupling 𝜆𝑠 = 𝑔2𝑁𝑐 dependence on the cutoff scale 𝑎 reads

𝛽𝑠 (𝜆𝑠) = − d𝜆𝑠
d log 𝑎2 . (1)

It is well-known that the 𝛽-function has the following perturbative expansion around 𝜆𝑠 ∼ 0

𝛽(𝜆𝑠) ∼ −𝑏0𝜆
2
𝑠 − 𝑏1𝜆

3
𝑠 − 𝑏

(𝑠)
2 𝜆4

𝑠 + O
(
𝜆5
𝑠

)
, (2)

where 𝑏0 and 𝑏1 are known to be universal (scheme independent) and in a pure Yang-Mills theory
they amount to 𝑏0 = 11

3(4𝜋 )2 and 𝑏1 = 34
3(4𝜋 )4 , while higher-order coefficients are known to be

dependent on the scheme chosen. Using a fully perturbative 𝛽-function truncated at O
(
𝜆3) , upon

integration, Eq. (1) gives

− log 𝑎Λ𝑠 =
1

2𝑏0𝜆𝑠 (𝑎)
+ 𝑏1

2𝑏2
0

log(𝑏0𝜆𝑠 (𝑎)) +
𝑐
(𝑠)
1

2𝑏0
𝜆𝑠 (𝑎) + O

(
𝜆2
𝑠

)
, (3)

where the coefficient of the linear term is given by 𝑐
(𝑠)
1 =

𝑏
(𝑠)
2
𝑏0

− 𝑏2
1

𝑏2
0
, and is scheme-dependent, as

well as the Λ-parameter itself. On the lattice, it is natural to use the coupling parameter in the
lattice action as a natural coupling scheme. For Wilson action we label it as 𝜆𝑤 ≡ 1/𝑏 = 2𝑁2/𝛽.
This scheme is known to have large higher-order perturbative corrections, since the ratio between
the Wilson and MS scales is large [1, 2] ΛMS

Λ𝑤
= 38.853. This induces large violations of the scale

dependence of the coupling with respect to the truncated perturbative prediction, which we refer
to as asymptotic scaling. This showed up from the earliest studies, and several authors proposed
adopting a different definition of the coupling which is better behaved. These are called improved
couplings. The goal of this work is to test how well the asymptotic predictions hold for the case of
Yang-Mills theory in the large-𝑁𝑐 limit. Our results are based upon an extensive analysis. Here we
present some preliminary results. The full analysis will follow in a future publication [3].

Our strategy is to make use of the volume reduction property at large 𝑁𝑐 which allows to obtain
results about standard 𝑆𝑈 (𝑁𝑐) gauge theory by simulations on a single site lattice with twisted
boundary conditions [4, 5]. After a change of variables, the resulting Wilson action of the reduced
model (TEK model) becomes

𝑆TEK = 𝑏𝑁𝑐

∑︁
𝜇≠𝜈

tr
[
1 − 𝑧𝜇𝜈𝑈𝜇𝑈𝜈𝑈

†
𝜇𝑈

†
𝜈

]
(4)

where 𝑈𝜇 are 𝑆𝑈 (𝑁𝑐) matrices, 𝑏 = 1/𝜆𝑤 is the inverse of ’t Hooft coupling 𝜆 = 𝑔2𝑁𝑐, while 𝑧𝜇𝜈

is a complex phase encoding the twist and given by 𝑒
𝑖 2𝜋𝑘
𝑁𝑐 for 𝜈 > 𝜇 (𝑘 is an integer coprime with√

𝑁𝑐). This particular choice of the twist factor is called symmetric twist.
The vacuum configurations for the TEK action (4) are called twist-eaters and they are given

by 𝑈𝜇 = Γ𝜇 which are the solutions of the twist equation:

Γ𝜇Γ𝜈 = 𝑧𝜈𝜇Γ𝜈Γ𝜇 (5)
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Figure 1: Left-hand side: Flowed dimensionless energy density for pure Yang-Mills for different numbers
of colours at 𝑏 = 0.37. Right-hand side: Same flow curves with the norm correction applied. The
scaling windows in Eq. (9) are represented with a vertical stripe of the same colour as the flow
curve they are associated with. They all start at 𝑇 = 1.25 but only the ones with the smallest 𝑁𝑐

are depicted so as not to make the colours overlap.

The equivalence of the TEK model and the infinite volume large 𝑁𝑐 gauge theory has been proven
both perturbatively and non-perturbatively. Furthermore, the proof shows that finite 𝑁𝑐 corrections
take the form of finite volume corrections in a lattice whose effective size is 𝑉 = (

√
𝑁𝑐)4 [4, 5].

Thus our choice of 𝑁𝑐 = 841 implies a lattice of size 294 allowing us to study the approach to the
continuum limit and matching the expected behaviour of the infinite volume large 𝑁𝑐 gauge theory.

2. The Wilson flow scale(s)

To set the scale we use an observable which allows a simple determination with great precision.
This is the gradient flow scale [6]. This is based upon evolving the gauge field with the equation
𝜕𝑡𝐴𝜇 (𝑥, 𝑡) = 𝐷𝜈𝐺𝜇𝜈 (𝑥, 𝑡), 𝑡 being the flow time. As observable we take the flowed energy density
𝐸 (𝑡) =

〈
tr
(
𝐺𝜇𝜈 (𝑥, 𝑡)𝐺𝜇𝜈 (𝑥, 𝑡)

)
/2
〉
. On the single-site twisted lattice the evolution takes place with

respect to the dimensionless lattice flow time 𝑇 = 𝑡

𝑎2 , with the corresponding observable being

𝐸 = − 1
128

∑︁
𝜇≠𝜈

tr
[
𝑧𝜈𝜇 (𝑈𝜈𝑈𝜇𝑈

†
𝜈𝑈

†
𝜇 +𝑈𝜇𝑈

†
𝜈𝑈

†
𝜇𝑈𝜈 +𝑈†

𝜈𝑈
†
𝜇𝑈𝜈𝑈𝜇 +𝑈†

𝜇𝑈𝜈𝑈𝜇𝑈
†
𝜈) − h.c.

]2
, (6)

in terms of which we define the dimensionless observable Φ(𝑇) =
⟨𝑇2𝐸 (𝑇 )⟩

𝑁𝑐
normalized to the

number of colours in order to have a finite large 𝑁𝑐 limit. This observable allows to define a scale
as follows

Φ(𝑇)
����
𝑇=𝑇1

≡ 1
𝑁𝑐

〈
𝑇2𝐸 (𝑇)

〉 ����
𝑇=𝑇1

= 0.05. (7)

The choice of 0.05 is taken as a compromise that minimizes finite volume effects (finite 𝑁𝑐) while
still being very slightly affected by lattice artefacts. To exemplify this, we display in the left side
of Fig. 1 the flow curves for several values of 𝑁𝑐 for pure Yang-Mills reduced model (𝑁 𝑓 = 0) at

3
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𝑏 = 0.37, where the two reference scales 0.1 and 0.05 are depicted with corresponding horizontal
grey lines. As it is visible from the plot, although the scale 𝑇1 is less affected by the 𝑁𝑐-dependence
of the flow, the systematic error induced is still sizeable for the smaller values of 𝑁𝑐. The situation
can be strongly ameliorated by the method employed in Ref. [7] to be briefly explained below.

Our approach is to consider a new lattice observable to replace Φ(𝑇), which nonetheless
coincides with its infinite 𝑁𝑐 and vanishing lattice spacing limit. It is clear that this quantity is
as good an observable as the previous one, but is expected to have smaller finite 𝑁𝑐 and lattice
corrections. This is given by

Φ̂(𝑇) = 3
128𝜋2N̂𝑁 (𝑇)

Φ(𝑇, 𝑁) (8)

where the prefactor N̂𝑁 (𝑇) is a function of
√︁

8𝑇/𝑁𝑐) such that N̂∞(0) = 3
128𝜋2 . It is determined

in such a way as to eliminate the 𝑁𝑐 dependence at the lowest order of perturbation theory. This
was analytically calculated in Ref. [8]. We refer to our modified method as norm correction and
we expect it to simultaneously reduce finite-𝑁𝑐 and lattice artefacts in an effective window in 𝑇 .
The lower limit is set to eliminate any interference from lattice artefacts, while the upper limit is
determined by ensuring that the smearing radius remains reasonably smaller than a fraction of the
overall size of the effective lattice, where residual finite-volume effects are negligible. We typically
refer to this range in 𝑇 as the scaling window, which can be expressed as[

1.25, 𝛾2 𝑁𝑐

8

]
with 𝛾 = 0.22 (9)

After the application of the norm correction, we define 𝑇1 in the same way but in terms of Φ̂(𝑇), and
we extract the scale 𝑇1 = 𝑡1/𝑎2 by interpolation. The right-hand side of Fig. 1 shows the effect. We
observe that, apart from the case of 𝑁𝑐 = 169, all the scales𝑇1, interpolated from Φ̂, coincide within
errors, signalling that the norm-correction can effectively correct the finite-𝑁𝑐/finite-size effects.
The norm-correction method was used in Ref. [7] to determine the scale from data of 𝑁𝑐 = 289 and
361. In our case, since 𝑁𝑐 = 841 is much larger we can safely claim that the corresponding scales
amount to the corresponding one at infinite 𝑁𝑐. A detailed discussion about the norm correction
and its applications to the case of this and other theories can be found also in[9].

We have measured the scale 𝑇1 for a large number of values of 𝑏 for the TEK model. The
obtained values of 1/

√
8𝑇1 are listed in the second column of Tab. 1. We can confront the extracted

scales with a previous, less precise, determination in units of the string tension 𝜎 given in Ref. [10].
The numbers are reported in the third column of Tab. 1. In Fig. 2, we depict each value of the
dimensionless ratio 𝑅 =

√
𝜎
√

8𝑡1 as a function of (𝑎/
√

8𝑡1)2. Exact scaling would imply the ratio
to be constant. Such a fit has a 𝜒2/#dof = 1.6, mainly spoiled by the value at the 2 coarsest point.
Nevertheless, we notice that a linear fit in (𝑎/

√
8𝑡1)2 gives an 𝜒2/#dof = 0.24 and might suggest

slight scaling violations. As a final value, we will consider 0.674(8) (18) where the systematic
error is the dispersion between the two previously obtained values. This comparison with the string
tension is a remarkable confirmation of the validity of scaling for a wide range of ’t Hooft couplings
with only small violations in the case of the coarsest ensembles.

4
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𝑏 𝑎√
8𝑡1

𝑎
√
𝜎

0.355 0.37689(62) 0.2410(30)
0.360 0.31754(47) 0.2058(25)
0.365 0.2716(10) 0.1784(17)
0.370 0.23582(69) 0.1573(19)
0.375 0.20605(69) 0.1361(17)
0.380 0.17734(86) 0.1191(17)
0.385 0.1584(15) 0.1049(11)

Table 1: Lattice scale in units of the Wilson flow improved scale and of the string tension (taken from [10]).
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Figure 2: Ratio of the string tension on the lattice and the Wilson flow scale for each value of the gauge
coupling 𝑏. The horizontal band corresponds to the fit to a constant, while the linear fit gives a
value of 0.6742(83) for the extrapolated value.

3. Asymptotic scaling and ΛMS

In this section, we will analyze if the scales we determined follow the asymptotic predictions
reviewed in the introduction. For the large 𝑁𝑐 theory a similar analysis was performed earlier
[10, 11]. We employ three different improved couplings: 𝜆𝐼 (from [11]), 𝜆𝐸 (from [12, 13]) and
𝜆𝐸′ , defined in Tab. 2. Having at our disposal such a large range of values for the ’t Hooft couplings
and given the small errors of our scale determination we are certainly making stringent tests to our
data. A global analysis can be done by fitting Eq. (3) to our data for the case of the 𝐸 ′ scheme
only leaving free the value of Λ𝐸′ . The result is displayed in Fig. 3 where the data points and the
continuous best-fit curve are shown. The overall impression is very good since the curve follows
quite nicely the evolution of the data. However, given the small errors, the 𝜒2 of the fit is not
good. Indeed, for the range of scales covered, certain non-perturbative scaling violations are to be

5
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symbol definition Λ𝑤

Λ𝑠
𝑐1

𝜆𝑤
1
𝑏

1 −0.00438798235

𝜆𝐼
𝜆𝑤

𝑃 (𝜆𝑤 ) 0.0677656398 −0.00172791
𝜆𝐸 8(1 − 𝑃(𝜆𝑤)) 0.4148791463 −0.0005030
𝜆𝐸′ −8 log 𝑃(𝜆𝑤) 0.1080025976 −0.00042426

Table 2: Possible definitions for the gauge coupling on the lattice.
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λE ′

0.8
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1.2
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1.6

1.8

−
lo

g
a √
8t

1

Figure 3: Logartihm of the lattice spacing in units of the Wilson flow scale
√

8𝑡1 listed in 1 as a function of
the improved coupling 𝜆𝐸′ defined in Tab. 2. The green line is the result of a fit to Eq. (3).

expected.
We aim at a determination of the Λ parameters which are consistent with the predictions of

perturbation theory. It is customary to choose as preferred scale the one coming from the MS scheme
in the continuum: ΛMS. The ratio of the Λ-parameters in any scale to ΛMS can be determined by
passing through the Wilson scheme as follows:

ΛMS
Λ𝑠

≡
ΛMS
Λ𝑤

Λ𝑤

Λ𝑠

, (10)

where the separate factors can easily calculated in perturbation theory and are reported in Tab. 2.
Now using Eq. (3) truncated to order 𝜆𝑠 and fixing Λ𝑠 in terms of ΛMS we can determine this
quantity in units of

√
8𝑡1 from each of our values of 𝑏 and from all of the improved couplings. The

result is displayed in Fig. 4. Obviously, a perfect asymptotic scaling would mean that all the values
obtained were the same. However, it is natural to expect deviations coming from higher order
perturbative and non-perturbative corrections to Eq. (3). These corrections should nonetheless
vanish as we approach the continuum limit (𝑎 = 0). This seems to be the case for our data since the
larger difference obtained when comparing 𝜆𝐼 with 𝜆𝐸 approaches zero as we move towards smaller
values of the lattice spacing. To give an estimate we perform a linear plus quadratic extrapolation
in 𝑎 for each of the improved couplings separately displayed by the coloured bands in Fig. 4. The

6
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extrapolated values of ΛMS in units of
√

8𝑡1 are 0.3582(47), 0.3620(46) and 0.3652(47) for 𝜆𝐼 , 𝜆𝐸

and 𝜆𝐸′ , respectively. Notice that the three values are consistent within errors. The 𝜒2 of the fits
is not good but this is due entirely to the result at 𝑏 = 0.38 which is seen to deviate considerably
from the others. We attribute this phenomenon to a bad estimate of the error based on the large
autocorrelation times of the data at this value. A similar phenomenon has been observed and
reported in similar studies of the flow in the literature [14, 15]. Our final results having good 𝜒2

have been obtained by excluding the value at 𝑏 = 0.38, but the extrapolated values do not change
significantly if we include it. A more detailed analysis of this behaviour will be covered in a future
publication [3].

To quote a final estimate of the Λ-parameter for the Yang-Mills theory at large-𝑁𝑐 in the
MS scheme, we give the mean values between the previous results and assign the dispersion as a
systematic error.

ΛMS = 0.3618(47) (29)
(√︁

8𝑡1
)−1

= 0.5366(94) (120)
√
𝜎 , (11)

Notice that the use of the flow scale allows one to obtain an estimate at the level of 1-2 per cent.
In the previous formula, we also report the final value in units of

√
𝜎 using the dimensionless ratio

𝑅 that we found in the previous section. For the systematic error, we have added in quadrature
the systematic uncertainty on Λ and the one on 𝑅. Although this other estimate implies a loss in
precision, it has the advantage of allowing a comparison with previous determinations. These are
0.503(2) (40)

√
𝜎 in [11] and with the result 0.525(2) in the TEK model from [10] and also with the

number of 0.5093(15) (250) given in [16] and 0.542(16) (48) from [17]. To collect and compare
visually all these results we plot all the values in Fig. 5 in a FLAG-style plot.

4. Conclusions

We used volume reduction to study large 𝑁𝑐 Yang-Mills theory by simulating the TEK reduced
model. This study focuses on testing predictions of asymptotic scaling for the evolution of the scale
of the theory. We performed simulations for 𝑆𝑈 (841) and for 8 values of the coupling and obtained
a precise determination of the scale. Our study shows consistent results using different improved
couplings, having small corrections and allowing a precise determination of the Lambda parameter
of the theory in the MS scheme. Our work is part of a more extensive study to appear in a future
publication [3].
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